1
|
Pessolano E, Sosic ZA, Genazzani AA. STIM1: A new player in nuclear dynamics? Lessons learnt from tubular aggregate myopathy. Cell Calcium 2024; 123:102926. [PMID: 38959763 DOI: 10.1016/j.ceca.2024.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Two recent papers have highlighted that STIM1, a key component of Store-operated Ca2+-entry, is able to translocate to the nucleus and participate in nuclear Ca2+-handling and in DNA repair. These finding opens new avenues on the role that this Ca2+-sensing protein may have in health and disease.
Collapse
Affiliation(s)
- Emanuela Pessolano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Zlata A Sosic
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Armando A Genazzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Gamberucci A, Nanni C, Pierantozzi E, Serano M, Protasi F, Rossi D, Sorrentino V. TAM-associated CASQ1 mutants diminish intracellular Ca 2+ content and interfere with regulation of SOCE. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09681-9. [PMID: 39126637 DOI: 10.1007/s10974-024-09681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca2+ Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca2+ buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca2+dependent polymerization, reduced Ca2+storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca2+ storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca2+ confirmed that CASQ1 mutants have impaired ability to store Ca2+and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca2+entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.
Collapse
Affiliation(s)
- Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy.
| |
Collapse
|
3
|
de Feraudy Y, Vandroux M, Romero NB, Schneider R, Saker S, Boland A, Deleuze JF, Biancalana V, Böhm J, Laporte J. Exome sequencing in undiagnosed congenital myopathy reveals new genes and refines genes-phenotypes correlations. Genome Med 2024; 16:87. [PMID: 38982518 PMCID: PMC11234750 DOI: 10.1186/s13073-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.
Collapse
Affiliation(s)
- Yvan de Feraudy
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Department of Pediatric Neurology, CHU Strasbourg, Strasbourg, France
- Centre de Référence Neuromusculaire Nord-Est-Île de France, Strasbourg, France
| | - Marie Vandroux
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Norma Beatriz Romero
- Myology Institute, Neuromuscular Morphology Unit, Sorbonne Université, INSERM, GHU Pitié-Salpêtrière, Paris, France
| | - Raphaël Schneider
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Safaa Saker
- Genethon, DNA and Cell Bank, Evry, 91000, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, 91057, France
| | - Valérie Biancalana
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
- Laboratoire de Diagnostic Génétique CHRU de Strasbourg, Strasbourg, 67091, France
| | - Johann Böhm
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- IGBMC, Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
4
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
5
|
Silva-Rojas R, Pérez-Guàrdia L, Simon A, Djeddi S, Treves S, Ribes A, Silva-Hernández L, Tard C, Laporte J, Böhm J. ORAI1 inhibition as an efficient preclinical therapy for tubular aggregate myopathy and Stormorken syndrome. JCI Insight 2024; 9:e174866. [PMID: 38516893 PMCID: PMC11063934 DOI: 10.1172/jci.insight.174866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) are clinically overlapping disorders characterized by childhood-onset muscle weakness and a variable occurrence of multisystemic signs, including short stature, thrombocytopenia, and hyposplenism. TAM/STRMK is caused by gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1, both of which regulate Ca2+ homeostasis through the ubiquitous store-operated Ca2+ entry (SOCE) mechanism. Functional experiments in cells have demonstrated that the TAM/STRMK mutations induce SOCE overactivation, resulting in excessive influx of extracellular Ca2+. There is currently no treatment for TAM/STRMK, but SOCE is amenable to manipulation. Here, we crossed Stim1R304W/+ mice harboring the most common TAM/STRMK mutation with Orai1R93W/+ mice carrying an ORAI1 mutation partially obstructing Ca2+ influx. Compared with Stim1R304W/+ littermates, Stim1R304W/+Orai1R93W/+ offspring showed a normalization of bone architecture, spleen histology, and muscle morphology; an increase of thrombocytes; and improved muscle contraction and relaxation kinetics. Accordingly, comparative RNA-Seq detected more than 1,200 dysregulated genes in Stim1R304W/+ muscle and revealed a major restoration of gene expression in Stim1R304W/+Orai1R93W/+ mice. Altogether, we provide physiological, morphological, functional, and molecular data highlighting the therapeutic potential of ORAI1 inhibition to rescue the multisystemic TAM/STRMK signs, and we identified myostatin as a promising biomarker for TAM/STRMK in humans and mice.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Laura Pérez-Guàrdia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Alix Simon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Susan Treves
- Departments of Neurology and Biomedicine, Basel University Hospital, Basel, Switzerland
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Agnès Ribes
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
- Laboratory of Hematology, University Hospital of Toulouse, Toulouse, France
| | - Lorenzo Silva-Hernández
- Neurology Service, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Céline Tard
- University Lille, Inserm, CHU Lille, U1172 Lille Neuroscience & Cognition, Center for Rare Neuromuscular Diseases Nord/Est/Ile-de-France, Lille, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, University of Strasbourg, Illkirch, France
| |
Collapse
|
6
|
Liang C, Wu F. Reconstitution of Calcium Channel Protein Orai3 into Liposomes for Functional Studies. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1296-1303. [PMID: 37770396 DOI: 10.1134/s0006297923090092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Store-operated calcium entry (SOCE) is the main mechanism for the Ca2+ influx in non-excitable cells. The two major components of SOCE are stromal interaction molecule 1 (STIM1) in the endoplasmic reticulum and Ca2+ release-activated Ca2+ channel (CRAC) Orai on the plasma membrane. SOCE requires interaction between STIM1 and Orai. Mammals have three Orai homologs: Orai1, Orai2, and Orai3. Although Orai1 has been widely studied and proven to essential for numerous cellular processes, Orai3 has also attracted a significant attention recently. The gating and activation mechanisms of Orai3 have yet to be fully elucidated. Here, we expressed, purified, and reconstituted Orai3 protein into liposomes and investigated its orientation and oligomeric state in the resulting proteoliposomes. STIM1 interacted with the Orai3-containing proteoliposomes and mediated calcium release from the them, suggesting that the Orai3 channel was functional and that recombinant STIM1 could directly open the Orai3 channel in vitro. The developed in vitro calcium release system could be used to study the structure, function, and pharmacology of Orai3 channel.
Collapse
Affiliation(s)
- Chuangxuan Liang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Berna-Erro A, Sanchez-Collado J, Nieto-Felipe J, Macias-Diaz A, Redondo PC, Smani T, Lopez JJ, Jardin I, Rosado JA. The Ca 2+ Sensor STIM in Human Diseases. Biomolecules 2023; 13:1284. [PMID: 37759684 PMCID: PMC10526185 DOI: 10.3390/biom13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Jose Sanchez-Collado
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Alvaro Macias-Diaz
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Pedro C. Redondo
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio, University of Seville, Spanish National Research Council (CSIC), 41004 Seville, Spain
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| |
Collapse
|
8
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
9
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
10
|
Silencing of the Ca2+ Channel ORAI1 Improves the Multi-Systemic Phenotype of Tubular Aggregate Myopathy (TAM) and Stormorken Syndrome (STRMK) in Mice. Int J Mol Sci 2022; 23:ijms23136968. [PMID: 35805973 PMCID: PMC9266658 DOI: 10.3390/ijms23136968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK) form a clinical continuum associating progressive muscle weakness with additional multi-systemic anomalies of the bones, skin, spleen, and platelets. TAM/STRMK arises from excessive extracellular Ca2+ entry due to gain-of-function mutations in the Ca2+ sensor STIM1 or the Ca2+ channel ORAI1. Currently, no treatment is available. Here we assessed the therapeutic potential of ORAI1 downregulation to anticipate and reverse disease development in a faithful mouse model carrying the most common TAM/STRMK mutation and recapitulating the main signs of the human disorder. To this aim, we crossed Stim1R304W/+ mice with Orai1+/− mice expressing 50% of ORAI1. Systematic phenotyping of the offspring revealed that the Stim1R304W/+Orai1+/− mice were born with a normalized ratio and showed improved postnatal growth, bone architecture, and partly ameliorated muscle function and structure compared with their Stim1R304W/+ littermates. We also produced AAV particles containing Orai1-specific shRNAs, and intramuscular injections of Stim1R304W/+ mice improved the skeletal muscle contraction and relaxation properties, while muscle histology remained unchanged. Altogether, we provide the proof-of-concept that Orai1 silencing partially prevents the development of the multi-systemic TAM/STRMK phenotype in mice, and we also established an approach to target Orai1 expression in postnatal tissues.
Collapse
|