1
|
Murtha KE, Sese WD, Sleiman K, Halpage J, Padyala P, Yang Y, Hornak AJ, Simmons DD. Absence of oncomodulin increases susceptibility to noise-induced outer hair cell death and alters mitochondrial morphology. Front Neurol 2024; 15:1435749. [PMID: 39507624 PMCID: PMC11537894 DOI: 10.3389/fneur.2024.1435749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cochlear outer hair cells (OHCs) play a fundamental role in the hearing sensitivity and frequency selectivity of mammalian hearing and are especially vulnerable to noise-induced damage. The OHCs depend on Ca2+ homeostasis, which is a balance between Ca2+ influx and extrusion, as well as Ca2+ buffering by proteins and organelles. Alterations in OHC Ca2+ homeostasis is not only an immediate response to noise, but also associated with impaired auditory function. However, there is little known about the contribution of Ca2+ buffering proteins and organelles to the vulnerability of OHCs to noise. In this study, we used a knockout (KO) mouse model where oncomodulin (Ocm), the major Ca2+ binding protein preferentially expressed in OHCs, is deleted. We show that Ocm KO mice were more susceptible to noise induced hearing loss compared to wildtype (WT) mice. Following noise exposure (106 dB SPL, 2 h), Ocm KO mice had higher threshold shifts and increased OHC loss and TUNEL staining, compared to age-matched WT mice. Mitochondrial morphology was significantly altered in Ocm KO OHCs compared to WT OHCs. Before noise exposure, Ocm KO OHCs showed decreased mitochondrial abundance, volume, and branching compared to WT OHCs, as measured by immunocytochemical staining of outer mitochondrial membrane protein, TOM20. Following noise exposure, mitochondrial proteins were barely visible in Ocm KO OHCs. Using a mammalian cell culture model of prolonged cytosolic Ca2+ overload, we show that OCM has protective effects against changes in mitochondrial morphology and apoptosis. These experiments suggest that disruption of Ca2+ buffering leads to an increase in noise vulnerability and mitochondrial-associated changes in OHCs.
Collapse
|
2
|
Lachgar-Ruiz M, Ingham NJ, Martelletti E, Chen J, James E, Panganiban C, Lewis MA, Steel KP. Two new mouse alleles of Ocm and Slc26a5. Hear Res 2024; 452:109109. [PMID: 39241555 DOI: 10.1016/j.heares.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The genes Ocm (encoding oncomodulin) and Slc26a5 (encoding prestin) are expressed strongly in outer hair cells and both are involved in deafness in mice. However, it is not clear if they influence the expression of each other. In this study, we characterise the auditory phenotype resulting from two new mouse alleles, Ocmtm1e and Slc26a5tm1Cre. Each mutation leads to absence of detectable mRNA transcribed from the mutant allele, but there was no evidence that oncomodulin regulates expression of prestin or vice versa. The two mutants show distinctive patterns of auditory dysfunction. Ocmtm1e homozygotes have normal auditory brainstem response thresholds at 4 weeks old followed by progressive hearing loss starting at high frequencies, while heterozygotes show largely normal thresholds until 6 months of age, when signs of worse thresholds are detected. In contrast, Slc26a5tm1Cre homozygotes have stable but raised thresholds across all frequencies tested, 3 to 42 kHz, at least from 4 to 8 weeks old, while heterozygotes have raised thresholds at high frequencies. Distortion product otoacoustic emissions and cochlear microphonics show deficits similar to auditory brainstem responses in both mutants, suggesting that the origin of hearing impairment is in the outer hair cells. Endocochlear potentials are normal in the two mutants. Scanning electron microscopy revealed normal development of hair cells in Ocmtm1e homozygotes but scattered outer hair cell loss even at 4 weeks old when thresholds appeared normal, indicating that there is not a direct relationship between numbers of outer hair cells present and auditory thresholds.
Collapse
MESH Headings
- Animals
- Sulfate Transporters/genetics
- Sulfate Transporters/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Auditory Threshold
- Phenotype
- Alleles
- Homozygote
- Mice
- Otoacoustic Emissions, Spontaneous
- Mutation
- Heterozygote
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Molecular Motor Proteins/genetics
- Molecular Motor Proteins/metabolism
- Cochlea/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Mice, Inbred C57BL
- Acoustic Stimulation
Collapse
Affiliation(s)
- Marìa Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Neil J Ingham
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Elisa Martelletti
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Elysia James
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Clarisse Panganiban
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, UK.
| |
Collapse
|
3
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
4
|
Yang Y, Murtha K, Climer LK, Ceriani F, Thompson P, Hornak AJ, Marcotti W, Simmons DD. Oncomodulin regulates spontaneous calcium signalling and maturation of afferent innervation in cochlear outer hair cells. J Physiol 2023; 601:4291-4308. [PMID: 37642186 PMCID: PMC10621907 DOI: 10.1113/jp284690] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca2+ activity in both sensory and non-sensory cells. Calcium signalling in neonatal OHCs can be modulated by oncomodulin (OCM, β-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca2+ activity and afferent connectivity during development. Using a genetically encoded Ca2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm+/+ ) and Ocm knockout (Ocm-/- ) littermates, we found increased spontaneous Ca2+ activity and upregulation of purinergic receptors in OHCs from Ocm-/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibres on Ocm-/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca2+ signalling in the developing cochlea and the maturation of OHC afferent innervation. KEY POINTS: Cochlear outer hair cells (OHCs) exhibit spontaneous Ca2+ activity during a narrow period of neonatal development. OHC afferent maturation and connectivity requires spontaneous Ca2+ activity. Oncomodulin (OCM, β-parvalbumin), an EF-hand calcium-binding protein, modulates Ca2+ signals in immature OHCs. Using transgenic mice that endogenously expressed a Ca2+ sensor, GCaMP6s, we found increased spontaneous Ca2+ activity and upregulated purinergic receptors in Ocm-/- OHCs. The maturation of afferent synapses in Ocm-/- OHCs was also delayed, leading to an upregulation of ribbon synapses and afferent fibres in Ocm-/- OHCs before hearing onset. We propose that OCM plays an important role in modulating Ca2+ activity, expression of Ca2+ channels and afferent innervation in developing OHCs.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
| | - Kaitlin Murtha
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
| | - Leslie K. Climer
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Pierce Thompson
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
| | - Aubrey J. Hornak
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dwayne D. Simmons
- Department of Biology, Baylor University, 101 Bagby Ave, Waco, TX
- School of Biosciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
| |
Collapse
|
5
|
Yang Y, Murtha K, Climer LK, Ceriani F, Thompson P, Hornak AJ, Marcotti W, Simmons DD. Oncomodulin Regulates Spontaneous Calcium Signaling and Maturation of Afferent Innervation in Cochlear Outer Hair Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.529895. [PMID: 36909575 PMCID: PMC10002690 DOI: 10.1101/2023.03.01.529895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Cochlear outer hair cells (OHCs) are responsible for the exquisite frequency selectivity and sensitivity of mammalian hearing. During development, the maturation of OHC afferent connectivity is refined by coordinated spontaneous Ca 2+ activity in both sensory and non-sensory cells. Calcium signaling in neonatal OHCs can be modulated by Oncomodulin (OCM, β-parvalbumin), an EF-hand calcium-binding protein. Here, we investigated whether OCM regulates OHC spontaneous Ca 2+ activity and afferent connectivity during development. Using a genetically encoded Ca 2+ sensor (GCaMP6s) expressed in OHCs in wild-type (Ocm +/+ ) and Ocm knockout (Ocm -/- ) littermates, we found increased spontaneous Ca 2+ activity and upregulation of purinergic receptors in OHCs from GCaMP6s Ocm -/- cochlea immediately following birth. The afferent synaptic maturation of OHCs was delayed in the absence of OCM, leading to an increased number of ribbon synapses and afferent fibers on GCaMP6s Ocm -/- OHCs before hearing onset. We propose that OCM regulates the spontaneous Ca 2+ signaling in the developing cochlea and the maturation of OHC afferent innervation.
Collapse
|
6
|
Calcium signaling and genetic rare diseases: An auditory perspective. Cell Calcium 2023; 110:102702. [PMID: 36791536 DOI: 10.1016/j.ceca.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.
Collapse
|