1
|
Tang H, Abouleila Y, Saris A, Shimizu Y, Ottenhoff THM, Mashaghi A. Ebola virus-like particles reprogram cellular metabolism. J Mol Med (Berl) 2023; 101:557-568. [PMID: 36959259 PMCID: PMC10036248 DOI: 10.1007/s00109-023-02309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
3
|
Costa VV, Sugimoto MA, Hubner J, Bonilha CS, Queiroz-Junior CM, Gonçalves-Pereira MH, Chen J, Gobbetti T, Libanio Rodrigues GO, Bambirra JL, Passos IB, Machado Lopes CE, Moreira TP, Bonjour K, Melo RCN, Oliveira MAP, Andrade MVM, Sousa LP, Souza DG, Santiago HDC, Perretti M, Teixeira MM. Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife 2022; 11:73853. [PMID: 35293862 PMCID: PMC8959599 DOI: 10.7554/elife.73853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Josy Hubner
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio S Bonilha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gisele Olinto Libanio Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana L Bambirra
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingredy B Passos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Elizabeth Machado Lopes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiane P Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kennedy Bonjour
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Milton A P Oliveira
- Tropical Pathology and Public Health Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Gloria Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Ferreira DTDO, Atanaka M, Martinez Espinosa M, Schuler-Faccini L, da Silva Caldeira A, da Silva JH, Vivi-Oliveira VK, de Castro da Paz R, do Nascimento VF, Terças-Trettel ACP. Recent dengue virus infection: epidemiological survey on risk factors associated with infection in a medium-sized city in Mato Grosso. SAO PAULO MED J 2022; 140:33-41. [PMID: 34852169 PMCID: PMC9623843 DOI: 10.1590/1516-3180.2020.0718.r1.18052021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Dengue is considered to be the most important arbovirus worldwide, with important complications that increase its lethality. In Brazil, an endemic country, the disease reaches significant incidence levels, with occurrences of serious cases and high costs of hospitalizations for its treatment. OBJECTIVE To analyze risk factors among individuals with recent histories of dengue infection in a medium-sized city in Mato Grosso. DESIGN AND SETTING Descriptive cross-sectional study, of epidemiological-survey type, conducted among the urban population of a city located in mid-northern Mato Grosso. METHODS A seroepidemiological survey using questionnaires and collection of biological material was conducted among 596 adults aged ≥ 18 years who had been selected through a cluster sampling process. Positive dengue cases were those with positive results from anti-dengue immunoassays (ELISA). Statistical analyses with descriptive and inferential techniques were used, with 95% confidence intervals and a 5% significance level. RESULTS The seroepidemiological profile of the study participants was predominantly female, with ages between 18 and 39 years, self-declared non-white race/color, not more than eight years of education and not living with a companion. Among the sanitary factors analyzed, the following were risk factors for dengue virus infection: no running water at home; no water supply from the public piped network; no waste from drains or toilets sent to the sewage network; endemic disease combat agents visiting the home; and presence of mosquito breeding sites at home. CONCLUSION Low schooling levels and previous dengue virus infection were associated with current dengue virus infection.
Collapse
Affiliation(s)
- Dandára Thaís de Oliveira Ferreira
- MSc. Nutritionist and Public Manager, Storage and Distribution Center for Medicines and Supplies of the Municipal Health Department, Várzea Grande (MT), Brazil.
| | - Marina Atanaka
- PhD. Nurse and Associate Professor IV, Postgraduate Program on Collective Health, Universidade Federal de Mato Grosso (UFMT), Cuiabá campus, Cuiabá (MT), Brazil.
| | - Mariano Martinez Espinosa
- PhD. Statistician and Associate Professor IV, Postgraduate Program on Collective Health, Universidade Federal de Mato Grosso (UFMT), Cuiabá campus, Cuiabá (MT), Brazil.
| | - Lavinia Schuler-Faccini
- MD, PhD. Full Professor, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre (RS), Brazil.
| | | | - Juliana Herrero da Silva
- MSc. Nurse and Technical Manager, Municipal Epidemiological Surveillance Department, Tangará da Serra (MT), Brazil.
| | | | - Rayana de Castro da Paz
- Specialist. Pharmacist, Biochemist and Technical Consultant, General Coordination Office for Health Laboratories, Health Surveillance Department, Ministry of Health, Brasília (DF), Brazil.
| | - Vagner Ferreira do Nascimento
- PhD. Nurse and Adjunct Professor II, Universidade do Estado de Mato Grosso (UNEMAT), Tangará da Serra campus, Tangará da Serra (MT), Brazil.
| | - Ana Cláudia Pereira Terças-Trettel
- PhD. Nurse and Adjunct Professor, Universidade do Estado de Mato Grosso (UNEMAT), Tangará da Serra campus, Tangará da Serra (MT), Brazil; and Permanent Professor, Postgraduate Program on Collective Health, Universidade Federal de Mato Grosso (UFMT), Cuiabá campus, Cuiabá (MT), Brazil.
| |
Collapse
|