1
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
2
|
Song X, Li J, Xiong Z, Sha H, Wang G, Liu Q, Zeng T. Effects of Detoxifying Substances on Uranium Removal by Bacteria Isolated from Mine Soils: Performance, Mechanisms, and Bacterial Communities. MICROBIAL ECOLOGY 2024; 87:111. [PMID: 39231820 PMCID: PMC11374843 DOI: 10.1007/s00248-024-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.
Collapse
Affiliation(s)
- Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Jun Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Zhiyu Xiong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Haichao Sha
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Qin Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Li Z, Cui E, Gu N, Ma W, Guo Q, Li X, Jin J, Wang Q, Ding C. Unveiling the biointerfaces characteristics and removal pathways of Cr(Ⅵ) in Bacillus cereus FNXJ1-2-3 for the Cr(Ⅵ)-to-Cr(0) conversion. ENVIRONMENTAL RESEARCH 2024; 251:118663. [PMID: 38460667 DOI: 10.1016/j.envres.2024.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Entian Cui
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Naipeng Gu
- UNHO (China) BioPharmaceutical Co., Ltd., Nanjing, Jiangsu, 210046, China
| | - Weixing Ma
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qingyuan Guo
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Xuan Li
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Jianxiang Jin
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Qun Wang
- Jiangsu YIDA Testing Technology Co., Ltd. , Building A-15, Big Data Industrial Park, Chengnan New District, Yancheng, Jiangsu, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
4
|
Akkurt Ş, Uçkun AA, Oğuz M, Uçkun M, Kahraman H. Equilibrium, kinetic, and thermodynamic studies on the biosorption of lead by human metallothionein gene-cloned bacteria as a novel biosorbent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11000. [PMID: 38385887 DOI: 10.1002/wer.11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/31/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Heavy metals are the main pollutants in water and are an important global problem that threatens human health and ecosystems. In recent years, there has been an increasing interest in the use of genetically modified bacteria as an eco-friendly method to solve heavy metal pollution problems. The goal of this study was to generate genetically modified Escherichia coli expressing human metallothioneins (hMT2A and hMT3) and to determine their tolerance, bioaccumulation, and biosorption capacity to lead (Pb2+ ). Recombinant MT2A and MT3 strains expressing MT were successfully generated. Minimum inhibition concentrations (MIC) of Pb for MT2A and MT3 were found to be 1750 and 2000 mg L-1 , respectively. Pb2+ resistance and bioaccumulation capacity of MT3 were higher than MT2A. Therefore, only MT3 biosorbent was used in Pb2+ biosorption, and its efficiency was examined by performing experiments in a batch system. Pb2+ biosorption by MT3 was evaluated in terms of isotherms, kinetics, and thermodynamics. The results showed that Pb biosorption fits to the Langmuir isotherm model and the pseudo-first-order kinetic model, and the reaction is exothermic. The maximum Pb2+ capacity of the biosorbent was 50 mg Pb2+ g-1 . The potential of MT3 in Pb biosorption was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) analyses. The desorption study showed that the sorbent had up to 74% recovery and could be effectively used four times. These findings imply that this biosorbent can be applied as a promising, precise, and effective means of removing Pb2+ from contaminated waters. PRACTITIONER POINTS: In this study, the tolerance levels, bioaccumulation, and biosorption capacities of Pb in aqueous solutions were determined for the first time in recombinant MT2A and MT3 strains in which human MT2A and MT3 genes were cloned. The biosorbent of MT3, which was determined to be more effective in Pb bioaccumulation, was synthesized and used in Pb biosorption. The Pb biosorption mechanism of MT3 biosorbent was identified using isotherm modeling, kinetic modeling, and thermodynamic studies. The maximum Pb removal percentage capacity of the biosorbent was 90%, whereas the maximum biosorption capacity was up to 50 mg Pb2+ g-1 . These results indicated that MT3 biosorbent has a higher Pb biosorption capacity than existing recombinant biosorbents. MT3 biosorbent can be used as a promising and effective biosorbent for removing Pb from wastewater.
Collapse
Affiliation(s)
- Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Merve Oğuz
- Department of Environmental Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| | - Hüseyin Kahraman
- Department of Biology, Faculty of Science and Literature, İnönü University, Malatya, Turkey
| |
Collapse
|
5
|
Cong M, Wu K, Wang J, Li Z, Mao R, Niu Y, Chen H. Synthesis of Aminomethylpyridine-Decorated Polyamidoamine Dendrimer/Apple Residue for the Efficient Capture of Cd(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2320-2332. [PMID: 38236574 DOI: 10.1021/acs.langmuir.3c03447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Water contamination irritated by Cd(II) brings about severe damage to the ecosystem and to human health. The decontamination of Cd(II) by the adsorption method is a promising technology. Here, we construct aminomethylpyridine-functionalized polyamidoamine (PAMAM) dendrimer/apple residue biosorbents (AP-G1.0-AMP and AP-G2.0-AMP) for adsorbing Cd(II) from aqueous solution. The adsorption behaviors of the biosorbents for Cd(II) were comprehensively evaluated. The maximum adsorption capacities of AP-G1.0-AMP and AP-G2.0-AMP for Cd(II) are 1.40 and 1.44 mmol·g-1 at pH 6. The adsorption process for Cd(II) is swift and can reach equilibrium after 120 min. The film diffusion process dominates the adsorption kinetics, and a pseudo-second-order model is appropriate to depict this process. The uptake of Cd(II) can be promoted by increasing concentration and temperature. The adsorption isotherm follows the Langmuir model with a chemisorption mechanism. The biosorbents also display satisfied adsorption for Cd(II) in real aqueous media. The adsorption mechanism indicates that C-N, N═C, C-O, CONH, N-H, and O-H groups participate in the adsorption for Cd(II). The biosorbents display a good regeneration property and can be reused with practical value. The as-prepared biosorbents show great potential for removing Cd(II) from water solutions with remarkable significance.
Collapse
Affiliation(s)
- Mengchen Cong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ziwei Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ruiyu Mao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
6
|
Al-Ghouti MA, Ashfaq MY, Khan M, Al Disi Z, Da'na DA, Shoshaa R. State-of-the-art adsorption and adsorptive filtration based technologies for the removal of trace elements: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164854. [PMID: 37353014 DOI: 10.1016/j.scitotenv.2023.164854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Water and wastewater are contaminated with various types of trace elements that are released from industrial activities. Their presence, at concentrations above the permissible limit, will cause severe negative impacts on human health and the environment. Due to their cost-effectiveness, simple design, high efficiency, and selectivity, adsorption, and adsorptive filtration are techniques that have received lots of attention as compared to other water treatment techniques. Adsorption isotherms and kinetic studies help to understand the mechanisms of adsorption and adsorption rates, which can be used to develop and optimize different adsorbents. This state-of-the-art review provides and combines the advancements in different conventional and advanced adsorbents, biosorbents, and adsorptive membranes for the removal of trace elements from water streams. Herein, this review discusses the sources of different trace elements and their impact on human health. The review also covers the adsorption technique with a focus on various advanced adsorbents, their adsorption capacities, and adsorption isotherm modeling in detail. In addition, biosorption is critically discussed together with its mechanisms and biosorption isotherms. In the end, the application of various advanced adsorptive membranes is discussed and their comparison with adsorbents and biosorbents is systematically presented.
Collapse
Affiliation(s)
- Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mohammad Y Ashfaq
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana A Da'na
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rouzan Shoshaa
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
7
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
8
|
Sevak P, Pushkar B, Mazumdar S. Mechanistic evaluation of chromium bioremediation in Acinetobacter junii strain b2w: A proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116978. [PMID: 36521220 DOI: 10.1016/j.jenvman.2022.116978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium. It was able to bioremediate 83.06% of total chromium and reduces 98.24% of Cr6+ to C3+ at a concentration of 10 ppm of chromium. The bacterial isolate could grow well at a wide pH range from 5 to 9, salinity of up to 3.5% and could also tolerate heavy metals such as Cd, Zn, As, Hg, Pb and Cu. Thus, indicating its possible on-ground applicability for bioremediation of chromium. Acinetobacter junii bioaccumulate chromium without disrupting the cell integrity and biosorption. However, chromium alters the functional groups on bacterial cell surface and led to decrease in sulfate-containing molecules. Further, the protein expression study has revealed that Cr significantly up-regulates proteins broadly classified under envelope stress responses, oxidative stress responses, energy metabolism and quorum sensing and growth regulator. The possible mechanisms of Cr detoxification in Acinetobacter junii strain b2w could be reduction, bioaccumulation and efflux along with neutralization of oxidative stress generated by Cr. Thus, based on bacterial bioremediation potential and its molecular response, it can be proposed that the isolated Acinetobacter junii has potential applicability for chromium bioremediation.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, Maharashtra, India
| |
Collapse
|
9
|
Dawwam GE, Abdelfattah NM, Abdel-Monem MO, Jahin HS, Omer AM, Abou-Taleb KA, Mansor ES. An immobilized biosorbent from Paenibacillus dendritiformis dead cells and polyethersulfone for the sustainable bioremediation of lead from wastewater. Sci Rep 2023; 13:891. [PMID: 36650253 PMCID: PMC9845294 DOI: 10.1038/s41598-023-27796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Heavy metals, including lead, cause serious damage to human health and the surrounding environment. Natural biosorbents arise as environmentally friendly alternatives. In this study, two of the 41 isolates (8EF and 17OS) were the most efficient bacteria for growing on media supplemented with Pb2+ (1000 mg/L). At high concentrations up to 2000 mg/L, the pioneer isolate 17OS exhibited remarkable resistance to multiheavy metals. This isolate was identified as Paenibacillus dendritiformis 17OS and deposited in GenBank under accession number ON705726.1. Design-Expert was used to optimize Pb2+ metal removal by the tested bacteria. Results indicated that four of six variables were selected using a minimum-run resolution IV experimental design, with a significant affecting Pb2+ removal. Temperature and Pb2+ concentration were significant positive influences, whereas incubation period and agitation speed were significant negative ones. The tested strain modulated the four significant variables for maximum Pb2+ removal using Box-Behnken design. The sequential optimization method was beneficial in increasing biosorption by 4.29%. Dead biomass of P. dendritiformis 17OS was embedded with polyethersulfone to get a hydrophilic adsorptive membrane that can separate Pb2+ easily from aqueous solutions. SEM images and FT-IR analysis proved that the new biosorbent possesses a great structure and a lot of surface functional groups with a negative surface charge of - 9.1 mV. The removal rate of 200 mg/L Pb2+ from water reached 98% using 1.5 g/L of the immobilized biosorbent. The adsorption isotherm studies were displayed to determine the nature of the reaction. The adsorption process was related to Freundlich isotherm which describes the multilayer and heterogeneous adsorption of molecules to the adsorbent surface. In conclusion, dead bacterial cells were immobilized on a polyether sulfone giving it the characteristics of a novel adsorptive membrane for the bioremediation of lead from wastewater. Thus this study proposed a new generation of adsorptive membranes based on polyethersulfone and dead bacterial cells.
Collapse
Affiliation(s)
- Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Nehad M Abdelfattah
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Hossam S Jahin
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Elkanatir, 13621, Egypt
| | - Amal M Omer
- Department of Soil Fertility and Microbiology, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Khadiga A Abou-Taleb
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shubra 11241, P.O. Box 68, Cairo, Egypt
| | - Eman S Mansor
- Water Pollution Research Department, National Research Centre, Environment and Climate Change Research Institute, Dokki, Cairo, Egypt
| |
Collapse
|
10
|
Khan M, Kamran M, Kadi RH, Hassan MM, Elhakem A, Sakit ALHaithloul HA, Soliman MH, Mumtaz MZ, Ashraf M, Shamim S. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Front Microbiol 2022; 13:878000. [PMID: 35663894 PMCID: PMC9161743 DOI: 10.3389/fmicb.2022.878000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 12/08/2022] Open
Abstract
The contamination of heavy metals is a cause of environmental concern across the globe, as their increasing levels can pose a significant risk to our natural ecosystems and public health. The present study was aimed to evaluate the ability of a copper (Cu)-resistant bacterium, characterized as Bacillus altitudinis MT422188, to remove Cu from contaminated industrial wastewater. Optimum growth was observed at 37°C, pH 7, and 1 mm phosphate, respectively. Effective concentration 50 (EC50), minimum inhibitory concentration (MIC), and cross-heavy metal resistance pattern were observed at 5.56 mm, 20 mm, and Ni > Zn > Cr > Pb > Ag > Hg, respectively. Biosorption of Cu by live and dead bacterial cells in its presence and inhibitors 1 and 2 (DNP and DCCD) was suggestive of an ATP-independent efflux system. B. altitudinis MT422188 was also able to remove 73 mg/l and 82 mg/l of Cu at 4th and 8th day intervals from wastewater, respectively. The presence of Cu resulted in increased GR (0.004 ± 0.002 Ug−1FW), SOD (0.160 ± 0.005 Ug−1FW), and POX (0.061 ± 0.004 Ug−1FW) activity. Positive motility (swimming, swarming, twitching) and chemotactic behavior demonstrated Cu as a chemoattractant for the cells. Metallothionein (MT) expression in the presence of Cu was also observed by SDS-PAGE. Adsorption isotherm and pseudo-kinetic-order studies suggested Cu biosorption to follow Freundlich isotherm as well as second-order kinetic model, respectively. Thermodynamic parameters such as Gibbs free energy (∆G°), change in enthalpy (∆H° = 10.431 kJ/mol), and entropy (∆S° = 0.0006 kJ/mol/K) depicted the biosorption process to a feasible, endothermic reaction. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX) analyses revealed the physiochemical and morphological changes in the bacterial cell after biosorption, indicating interaction of Cu ions with its functional groups. Therefore, these features suggest the potentially effective role of B. altitudinis MT422188 in Cu bioremediation.
Collapse
Affiliation(s)
- Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Roqayah H. Kadi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed M. Hassan,
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Saba Shamim,
| |
Collapse
|
11
|
Li C, Yu Y, Fang A, Feng D, Du M, Tang A, Chen S, Li A. Insight into biosorption of heavy metals by extracellular polymer substances and the improvement of the efficacy: a review. Lett Appl Microbiol 2021; 75:1064-1073. [PMID: 34562275 DOI: 10.1111/lam.13563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
Heavy metals are continuously released into aquatic environments in which they accumulate. This phenomenon endangers public health because heavy metals accumulate along the food chain. However, conventional remediation methods are inefficient, expensive and yield toxic intermediate products, which adversely affect the environment. The discovery of green bio-adsorbents such as microbial extracellular polymer substance (EPS) has quickly attracted considerable worldwide attention because of their low cost, high removal efficiency of heavy metals and industrial availability. Hence, this review considers the sources, hazards and treatment methods of heavy metals pollution, particularly the biosorption mechanism of EPS to heavy metals and the influencing factors of the bio-adsorption process, which are significant in the efficient removal of heavy metals-containing wastewater treatment. This review also focuses on strengthening the process of EPS adsorption of heavy metals, which can further contribute to heavy metals removal. Finally, it has been proposed that improving the yield, stability, selectivity and recoverability of EPS is the key direction of further research.
Collapse
Affiliation(s)
- C Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Y Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - A Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - D Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - M Du
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - A Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - S Chen
- School of Municipal and Environmental Engineering, Jilin University of Architecture and Technology, Changchun, People's Republic of China
| | - A Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China.,School of Municipal and Environmental Engineering, Jilin University of Architecture and Technology, Changchun, People's Republic of China
| |
Collapse
|
12
|
Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes (Basel) 2021. [DOI: 10.3390/pr9101696] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persistent toxic substances including persistent organic pollutants and heavy metals have been released in high quantities in surface waters by industrial activities. Their presence in environmental compartments is causing harmful effects both on the environment and human health. It was shown that their removal from wastewaters using conventional methods and adsorbents is not always a sustainable process. In this circumstance, the use of microorganisms for pollutants uptake can be seen as being an environmentally-friendly and cost-effective strategy for the treatment of industrial effluents. However, in spite of their confirmed potential in the remediation of persistent pollutants, microorganisms are not yet applied at industrial scale. Thus, the current paper aims to synthesize and analyze the available data from literature to support the upscaling of microbial-based biosorption and bioaccumulation processes. The industrial sources of persistent pollutants, the microbial mechanisms for pollutant uptake and the significant results revealed so far in the scientific literature are identified and covered in this review. Moreover, the influence of different parameters affecting the performance of the discussed systems and also very important in designing of treatment processes are highly considered. The analysis performed in the paper offers an important perspective in making decisions for scaling-up and efficient operation, from the life cycle assessment point of view of wastewater microbial bioremediation. This is significant since the sustainability of the microbial-based remediation processes through standardized methodologies such as life cycle analysis (LCA), hasn’t been analyzed yet in the scientific literature.
Collapse
|
13
|
Fathollahi A, Khasteganan N, Coupe SJ, Newman AP. A meta-analysis of metal biosorption by suspended bacteria from three phyla. CHEMOSPHERE 2021; 268:129290. [PMID: 33383280 DOI: 10.1016/j.chemosphere.2020.129290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Biosorption of heavy metals by bacterial biomass has been the subject of significant research interest in last decades due to its efficiency, relatively low cost and minimal negative effects for the surrounding environment. In this meta-analysis, the biosorption efficiencies of different bacterial strains for Cu(II), Cd(II), Zn(II), Cr(III), Mn(II), Pb(II) and Ni(II) were evaluated. Optimum conditions for the biosorption process such as initial metal concentration, temperature, pH, contact time, metal type, biomass dosage and bacterial phyla, were evaluated for each heavy metal. According to the results, the efficiencies of bacterial biomass for removal of heavy metal were as follows: Cd(II) > Cr(III) > Pb(II) > Zn(II) > Cu(II) > Ni(II) > Mn(II). Firmicute phyla showed the highest overall (living and dead) biosorption efficiency for heavy metals. Living biomass of Proteobacteria had the best biosorption performance. Living bacterial biomass was significantly more efficient in biosorption of Cu(II), Zn(II) and Pb(II) than dead biomass. The maximum biosorption efficiency of bacterial strains for Cd(II), Pb(II) and Zn(II) was achieved at pH values between 6 and 7.5. High temperatures (>35 °C) reduced the removal efficiencies for Cu(II) and Zn(II) and increased the efficiencies for Cd(II) and Cr(III) ions. The maximum biosorption efficiency of non-essential heavy metals occurred with short contact times (<2 h). Essential metals such as Zn and Cu were more efficiently removed with long biosorption durations (>24 h). The mean biosorption capacity of bacterial biomass was between 71.26 and 125.88 mg g-1. No publication bias existed according to Egger's and Begg's test results.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | | | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Alan P Newman
- Faculty of Engineering and Computing, Coventry University, Coventry, UK
| |
Collapse
|
14
|
Tang X, Huang Y, Li Y, Wang L, Pei X, Zhou D, He P, Hughes SS. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111699. [PMID: 33396030 DOI: 10.1016/j.ecoenv.2020.111699] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Extensive industrial activities have led to an increase of the content of chromium in the environment, which causes serious pollution to the surrounding water, soil and atmosphere. The enrichment of chromium in the environment through the food chain ultimately affects human health. Therefore, the remediation of chromium pollution is crucial to development of human society. A lot of scholars have paid attention to bioremediation technology owing to its environmentally friendly and low-cost. Previous reviews mostly involved pure culture of microorganisms and rarely discussed the optimization of bioreduction conditions. To make up for these shortcomings, we not only introduced in detail the conditions that affect microbial reduction but also innovatively introduced consortium which may be the cornerstone for future treatment of complex field environments. The aim of this study is to summary chromium toxicity, factors affecting microbial remediation, and methods for enhancing bioremediation. However, the actual application of bioremediation technology is still facing a major challenge. This study also put forward the current research problems and proposed future research directions, providing theoretical guidance and scientific basis for the application of bioremediation technology.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Li Wang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Peng He
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
15
|
Dai Q, Zhang T, Zhao Y, Li Q, Dong F, Jiang C. Potentiality of living Bacillus pumilus SWU7-1 in biosorption of strontium radionuclide. CHEMOSPHERE 2020; 260:127559. [PMID: 32673872 DOI: 10.1016/j.chemosphere.2020.127559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Bacillus pumilus SWU7-1 was isolated from strontium ion (Sr(II))-uncontaminated soil, its biosorption potential was evaluated, and the effect of γ-ray radiation treatment on its biosorption was discussed. Domesticated under Sr(II) stress promoted the biosorption ability of B. pumilus to Sr(II), and the biosorption efficiency increased from 46.09% to 94.69%. At a lower initial concentration, the living bacteria had the ability to resist the biosorption of Sr(II). The optimal initial concentration range was 54-130 mg/L. The biosorption profile was better matched by Langmuir than Freundlich model, showing that the biosorption process of Sr(II) by the experimental strain was closer to the surface adsorption. According to Langmuir model, the maximum biosorption capacity of B. pumilus on Sr (II) was 299.4 mg/g. During the bacterial growth in the biosorption process, the changes in biosorption capacity and efficiency can be divided into two phases, and a pseudo-second-order model is followed in each phase. There was no significant difference in the biosorption efficiency of bacteria with different culture time after γ-ray radiation, and all of them were above 90%, which showed that B. pumilus had significant radiation resistance under experimental conditions. This study emphasized the potential application of B. pumilus in the treatment of radioactive Sr(II) pollution by biosorption.
Collapse
Affiliation(s)
- Qunwei Dai
- Fundamental Science on Nuclear Waste and Environmental Safety Laboratory (SWUST), Mianyang City, Sichuan, 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China.
| | - Ting Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Yulian Zhao
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Qiongfang Li
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST, Ministry of Education), Mianyang City, Sichuan, 621010, China
| | - Chunqi Jiang
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| |
Collapse
|
16
|
Abstract
Hexavalent chromium (Cr(VI)) in water systems is a major hazard for living organisms, including humans. The most popular technology currently used to remove Cr(VI) from polluted water is sorption for its effectiveness, ease of use, low cost and environmental friendliness. The electrostatic interactions between chromium species and the sorbent matrix are the main determinants of Cr(VI) sorption. The pH plays a central role in the process by affecting chromium speciation and the net charge on sorbent surface. In most cases, Cr(VI) sorption is an endothermic process whose kinetics is satisfactorily described by the pseudo second-order model. A critical survey of the recent literature, however, reveals that the thermodynamic and kinetic parameters reported for Cr(VI) sorption are often incorrect and/or erroneously interpreted.
Collapse
|
17
|
He C, Zhang B, Yan W, Ding D, Guo J. Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122684. [PMID: 32330782 DOI: 10.1016/j.jhazmat.2020.122684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen and methane commonly co-exist in aquifer. Either hydrogen or methane has been individually utilized as electron donor for bio-reducing chromate. However, little is known whether microbial chromate reduction would be suppressed or promoted when both hydrogen and methane are simultaneously supplied as joint electron donors. This study for the first time demonstrated microbial chromate reduction rate could be accelerated by both hydrogen and methane donating electrons. The maximum chromate reduction rate (4.70 ± 0.03 mg/L·d) with a volume ratio of hydrogen to methane at 1:1 was significantly higher than that with pure hydrogen (2.53 ± 0.02 mg/L·d) or pure methane (2.01 ± 0.02 mg/L·d) as the sole electron donor (p < 0.01). High-throughput 16S rRNA gene amplicon sequencing detected potential chromate reducers (e.g., Spirochaetaceae, Delftia and Azonexus) and hydrogenotrophic bacteria (e.g., Acetoanaerobium) and methane-metabolizing microorganisms (e.g., Methanobacterium), indicating that these microorganisms might play important roles on microbial chromate reduction using both hydrogen and methane as electron donors. Abundant hupL and mcrA genes responsible for hydrogen oxidation and methane conversion were harbored, together with chrA gene for chromate reduction. More abundant extracellular cytochrome c and intracellular NADH were detected with joint electron donors, suggesting more active electron transfers.
Collapse
Affiliation(s)
- Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Wenyue Yan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
18
|
Kalola V, Desai C. Biosorption of Cr(VI) by Halomonas sp. DK4, a halotolerant bacterium isolated from chrome electroplating sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27330-27344. [PMID: 31332685 DOI: 10.1007/s11356-019-05942-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated Cr(VI) biosorption by a halotolerant gram-negative bacterium Halomonas sp. DK4 isolated from chrome electroplating sludge. The bacterium could withstand high concentrations of Cr(VI) exhibiting a minimal inhibitory concentration (MIC) of 250 mg/L. Plackett-Burman design confirmed glucose, KH2PO4, NaCl, inoculum size, and initial Cr(VI) concentration as significant variables influencing the Cr(VI) removal ability of the bacterium. The suspended culture of Halomonas sp. DK4 was able to remove 81% (100 mg/L) of Cr(VI) in optimized MSM medium from aqueous solutions within 48 h. The bacterium also removed 59% Cr(VI) in the presence of 15% NaCl concentration within 72 h. The main mechanism involved in Cr(VI) removal by Halomonas sp. DK4 was determined to be biosorption which was best explained using the Langmuir isotherm model, wherein the maximum adsorption of 150.7 mg/g was observed under equilibrium conditions. Kinetic studies reveal that chemisorption of Cr(VI) by Halomonas sp. DK4 was a rate-limiting process which followed pseudo-second-order kinetics (R2 = 0.99). Bacterial biomass exhibited maximum adsorption of 70.3% Cr(VI) at an initial concentration of 100 mg/L under optimal conditions. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the presence of hydroxyl, carboxyl, amide, and phosphate groups on the bacterial surface which may be involved in Cr(VI) adsorption. Scanning electron microscopy coupled energy dispersive X-ray (SEM-EDX) analysis revealed morphological changes in the bacterial cell and accumulation of Cr(VI) on the cell surface. These results suggest the potential application of Halomonas sp. DK4 in the removal of Cr(VI) from saline chromium-containing industrial wastewaters.
Collapse
Affiliation(s)
- Vidhi Kalola
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India.
| |
Collapse
|
19
|
Hu X, Cao J, Yang H, Li D, Qiao Y, Zhao J, Zhang Z, Huang L. Pb2+ biosorption from aqueous solutions by live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2. PLoS One 2020; 15:e0226557. [PMID: 31995615 PMCID: PMC6988972 DOI: 10.1371/journal.pone.0226557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/29/2019] [Indexed: 01/14/2023] Open
Abstract
In this study, the Pb2+ biosorption potential of live and dead biosorbents of the hydrocarbon-degrading strain Rhodococcus sp. HX-2 was analyzed. Optimal biosorption conditions were determined via single factor optimization, which were as follows: temperature, 25°C; pH, 5.0, and biosorbent dose, 0.75 g L−1. A response surface software (Design Expert 10.0) was used to analyze optimal biosorption conditions. The biosorption data for live and dead biosorbents were suitable for the Freundlich model at a Pb2+ concentration of 200 mg L−1. At this same concentration, the maximum biosorption capacity was 88.74 mg g−1 (0.428 mmol g−1) for live biosorbents and 125.5 mg g−1 (0.606 mmol g−1) for dead biosorbents. Moreover, in comparison with the pseudo-first-order model, the pseudo-second-order model seemed better to depict the biosorption process. Dead biosorbents seemed to have lower binding strength than live biosorbents, showing a higher desorption capacity at pH 1.0. The order of influence of competitive metal ions on Pb2+ adsorption was Cu2+ > Cd2+ > Ni+. Fourier-transform infrared spectroscopy analyses revealed that several functional groups were involved in the biosorption process of dead biosorbents. Scanning electron microscopy showed that Pb2+ attached to the surface of dead biosorbents more readily than on the surface of live biosorbents, whereas transmission electron microscopy confirmed the transfer of biosorbed Pb2+ into the cells in the case of both live and dead biosorbents. It can thus be concluded that dead biosorbents are better than live biosorbents for Pb2+ biosorption, and they can accordingly be used for wastewater treatment.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Jiachang Cao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Hanyu Yang
- College of Management Science and Engineering, Capital University of Economics and Business, Beijing, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Jialin Zhao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Zhixia Zhang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin, China
- * E-mail:
| |
Collapse
|
20
|
Aryal M. A comprehensive study on the bacterial biosorption of heavy metals: materials, performances, mechanisms, and mathematical modellings. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Discharges of waste containing heavy metals (HMs) have been a challenging problem for years because of their adverse effects in the environment. This article provides a comprehensive review of recent findings on bacterial biosorption and their performances for sequestration of HMs. It highlights the significance of HM removal and presents a brief overview on bacterial functionality and biosorption technology. It also discusses the achievements towards utilisation of bacterial biomass with biosorption of HMs from aqueous solutions. This article includes different types of kinetic, equilibrium, and thermodynamic models used for HM treatments using different bacterial species, as well as biosorption mechanisms along with desorption of metal ions and regeneration of bacterial biosorbents. Its fast kinetics of metal biosorption and desorption, low operational cost, and no production of toxic by-products provide attraction to many researchers. Bacteria can easily be produced using inexpensive growth media or obtained as a by-product from industries. A systematic comparison of the literature for a metal-binding capacity of bacterial biomass under different conditions is provided here. The properties of the cell wall constituents such as peptidoglycan and the role of functional groups for metal sorption are presented on the basis of their biosorption potential. Many bacterial biosorbents as reported in scientific literature have a high biosorption capacity, where some are better than commercial adsorbents. Based on the reported results, it seems that most bacteria have the potential for industrial applications for detoxification of HMs.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tri-Chandra Multiple Campus , Tribhuvan University , Kathmandu 00977 , Nepal
| |
Collapse
|
21
|
Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S. Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Ren B, Wang K, Zhang B, Li H, Niu Y, Chen H, Yang Z, Li X, Zhang H. Adsorption behavior of PAMAM dendrimers functionalized silica for Cd(II) from aqueous solution: Experimental and theoretical calculation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ghoochian M, Panahi HA, Sobhanardakani S, Taghavi L, Hassani AH. Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Rangabhashiyam S, Balasubramanian P. Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
K.V.G. R, Sudakaran SV, Pulimi M, Natarajan C, Mukherjee A. Removal of hexavalent chromium using nano zero valent iron and bacterial consortium immobilized alginate beads in a continuous flow reactor. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2018; 12:104-114. [DOI: 10.1016/j.eti.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
26
|
Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. CHEMOSPHERE 2018; 208:139-148. [PMID: 29864705 DOI: 10.1016/j.chemosphere.2018.05.166] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 05/25/2023]
Abstract
Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted.
Collapse
Affiliation(s)
- Pablo M Fernández
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Silvana C Viñarta
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, 4700 San Fernando del Valle de Catamarca, Catamarca, Argentina.
| | - Anahí R Bernal
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Elías L Cruz
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina.
| | - Lucía I C Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 450, 4000 San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
27
|
Alex SA, Chandrasekaran N, Mukherjee A. Using gold nanorod-based colorimetric sensor for determining chromium in biological samples. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Prathna TC, Raichur AM. Fluoride Removal from Aqueous Solutions Using Poly(Styrene Sulfonate)/Nanoalumina Multilayer Thin Films. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700064. [PMID: 31565320 PMCID: PMC6607118 DOI: 10.1002/gch2.201700064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/24/2017] [Indexed: 06/10/2023]
Abstract
In the present study, fluoride removal from drinking water is investigated using layer-by-layer (LbL) fabricated poly(sodium 4-styrene-sulfonate) (PSS)/Al2O3 thin films. The surface morphology of the fabricated thin films is characterized using atomic force microscopy and field emission-scanning electron microscopy. Optical profilometry is used to determine the self-assembly of the multilayer thin films. The effect of various parameters such as adsorbent dosage, contact time, initial fluoride content, number of bilayers, surface area, and pH is thoroughly studied. Fluoride removal increases with the number of bilayers and number of slides (total surface area). The amount of fluoride adsorbed increases from 11.32 to 26 mg L-1 when the number of substrates increases from 1 to 5. A 68% removal of fluoride is observed when 20 bilayers of PSS/Al2O3 thin films with three slides at an initial fluoride concentration of 5 mg L-1 are used, thereby bringing down the fluoride concentration level below the World Health Organization permissible limit. Slide reusability studies reveal that the fabricated thin films can be used for ten cycles without affecting the fluoride removal properties of the film. This study demonstrates the potential application of immobilized PSS/Al2O3 thin films as an effective adsorbent for drinking water purification.
Collapse
Affiliation(s)
| | - Ashok M. Raichur
- Department of Materials EngineeringIndian Institute of ScienceBangalore560012India
- Nanotechnology and Water Sustainability Research UnitUniversity of South AfricaThe Science CampusFlorida Park1710Roodepoort JohannesburgSouth Africa
| |
Collapse
|
29
|
Lin D, Ji R, Wang D, Xiao M, Zhao J, Zou J, Li Y, Qin T, Xing B, Chen Y, Liu P, Wu Z, Wang L, Zhang Q, Chen H, Qin W, Wu D, Liu Y, Liu Y, Li S. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Crit Rev Food Sci Nutr 2017; 59:395-410. [DOI: 10.1080/10408398.2017.1374241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Ran Ji
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dan Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Mengshi Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jingjing Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jinpeng Zou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yutong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Tao Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Peng Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
30
|
Chromium(VI) Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent. MATERIALS 2017; 10:ma10050502. [PMID: 28772865 PMCID: PMC5459042 DOI: 10.3390/ma10050502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/04/2022]
Abstract
An evaluation of the chromium(VI) adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI) removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions.
Collapse
|
31
|
Mohapatra RK, Parhi PK, Patra JK, Panda CR, Thatoi HN. Biodetoxification of Toxic Heavy Metals by Marine Metal Resistant Bacteria- A Novel Approach for Bioremediation of the Polluted Saline Environment. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Fanaie VR, Karrabi M, Amin MM, Shahnavaz B, Fatehizadeh A. Biosorption of 4-chlorophenol by dried anaerobic digested sludge: artificial neural network modeling, equilibrium isotherm, and kinetic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2017; 14:37-48. [DOI: 10.1007/s13762-016-1139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
33
|
Gutiérrez-Corona JF, Romo-Rodríguez P, Santos-Escobar F, Espino-Saldaña AE, Hernández-Escoto H. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. World J Microbiol Biotechnol 2016; 32:191. [DOI: 10.1007/s11274-016-2150-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022]
|
34
|
Aryal M, Liakopoulou-Kyriakides M. Bioremoval of heavy metals by bacterial biomass. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:4173. [PMID: 25471624 DOI: 10.1007/s10661-014-4173-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/17/2014] [Indexed: 05/22/2023]
Abstract
Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.
Collapse
Affiliation(s)
- Mahendra Aryal
- Faculty of Chemical Engineering, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | |
Collapse
|
35
|
Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Thanjavur Chandrasekaran P, Chaudhuri G, Pulimi M, Raichur AM, Babu S, Chandrasekaran N, Nagarajan R, Mukherjee A. Cytotoxicity of TiO2 nanoparticles towards freshwater sediment microorganisms at low exposure concentrations. ENVIRONMENTAL RESEARCH 2014; 135:333-345. [PMID: 25462683 DOI: 10.1016/j.envres.2014.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
There is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (≤1ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR.
Collapse
Affiliation(s)
- Jyoti Kumari
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Deepak Kumar
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Ankita Mathur
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Arif Naseer
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | | | | | - Gouri Chaudhuri
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India; Department of Chemical Technology, University of Johannesburg, South Africa
| | - S Babu
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | | | - R Nagarajan
- Department of Chemical Engineering, IIT Madras, Chennai, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India.
| |
Collapse
|
36
|
Kumar D, Kumari J, Pakrashi S, Dalai S, Raichur AM, Sastry TP, Mandal AB, Chandrasekaran N, Mukherjee A. Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:152-160. [PMID: 25062447 DOI: 10.1016/j.ecoenv.2014.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 05/29/2023]
Abstract
Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (≤1ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | - Jyoti Kumari
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | | | | | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India; Department of Chemical Technology, University of Johannesburg, Johannesburg, South Africa
| | - T P Sastry
- Bioproducts Laboratory, CSIR-Central Leather Research Institute, Chennai, India
| | - A B Mandal
- Bioproducts Laboratory, CSIR-Central Leather Research Institute, Chennai, India
| | | | | |
Collapse
|
37
|
Rangabhashiyam S, Suganya E, Selvaraju N, Varghese LA. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World J Microbiol Biotechnol 2014; 30:1669-89. [DOI: 10.1007/s11274-014-1599-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
|
38
|
Neoh CH, Yahya A, Adnan R, Abdul Majid Z, Ibrahim Z. Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2912-2923. [PMID: 23054764 DOI: 10.1007/s11356-012-1193-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C-H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.
Collapse
Affiliation(s)
- Chin Hong Neoh
- Department of Biological Sciences, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | | | | | | | | |
Collapse
|
39
|
Samuel J, Paul ML, Ravishankar H, Mathur A, Saha DP, Natarajan C, Mukherjee A. The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential. Biodegradation 2013; 24:829-42. [PMID: 23494520 DOI: 10.1007/s10532-013-9631-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
In the current study, indigenous bacterial isolates Bacillus subtilis VITSUKMW1 and Escherichia coli VITSUKMW3 from a chromite mine were adapted to 100 mg L(-1) of Cr(VI). The phase contrast and scanning electron microscopic images showed increase in the length of adapted E. coli cells and chain formation in case of adapted B. subtilis. The presence of chromium on the surface of the bacteria was confirmed by energy dispersive X-ray spectroscopy (EDX), which was also supported by the conspicuous Cr-O peaks in FTIR spectra. The transmission electron microscopic (TEM) images of adapted E. coli and B. subtilis showed the presence of intact cells with Cr accumulated inside the bacteria. The TEM-EDX confirmed the internalization of Cr(VI) in the adapted cells. The specific growth rate and Cr(VI) reduction capacity was significantly higher in adapted B. subtilis compared to that of adapted E. coli. To study the possible role of Cr(VI) toxicity affecting the Cr(VI) reduction capacity, the definite assays for the released reactive oxygen species (ROS) and ROS scavenging enzymes (SOD and GSH) were carried out. The decreased ROS production as well as SOD and GSH release observed in adapted B. subtilis compared to the adapted E. coli corroborated well with its higher specific growth rate and increased Cr(VI) reduction capacity.
Collapse
Affiliation(s)
- Jastin Samuel
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Huang F, Dang Z, Guo CL, Lu GN, Gu RR, Liu HJ, Zhang H. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B Biointerfaces 2013; 107:11-8. [PMID: 23466537 DOI: 10.1016/j.colsurfb.2013.01.062] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
The present study investigated the biosorption capacity of live and dead cells of Bacillus cereus RC-1 for Cd(II). The biosorption characteristics were investigated as a function of initial pH, contact time, and initial cadmium concentration. Equilibrium biosorption was modeled using Langmuir, Freundlich and Redlich-Peterson isotherm equations. It was found that the maximum biosorption capacities calculated from Langmuir isotherm were 31.95 mg/g and 24.01 mg/g for dead cells and live cells, respectively. The kinetics of the biosorption was better described by pseudo-second order kinetic model. Desorption efficiency of biosorbents was investigated at various pH values. These results indicated that dead cells have higher Cd(II) biosorption capacity than live cells. Furthermore, zeta potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), and Fourier transform infrared spectroscopy (FTIR) studies were carried out to understand the differences in the Cd(II) biosorption behavior for the both biosorbents. The bioaccumulation of Cd(II) by B. cereus RC-1 was found to depend largely on extracellular biosorption rather than intracellular accumulation. Based on the above studies, dead biomass appears to be a more efficient biosorbent for the removal of Cd(II) from aqueous solution.
Collapse
Affiliation(s)
- Fei Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Niu Y, Qu R, Sun C, Wang C, Chen H, Ji C, Zhang Y, Shao X, Bu F. Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. JOURNAL OF HAZARDOUS MATERIALS 2013; 244-245:276-86. [PMID: 23270951 DOI: 10.1016/j.jhazmat.2012.11.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/28/2012] [Accepted: 11/19/2012] [Indexed: 05/07/2023]
Abstract
The adsorption properties of silica-gel supported hyperbranched polyamidoamine dendrimers (SiO(2)-G0-SiO(2)-G4.0) have been investigated by batch method. The effect of pH of the solution, contact time, initial Pb(II) ion concentration, temperature and coexisting metal ions have been demonstrated. The results indicated that the optimum pH value was 5. Adsorption kinetics was found to follow the pseudo-second-order model and controlled by film diffusion. The adsorption isotherms were fitted by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Langmuir isotherm model was found to be more suitable to describe the equilibrium data, suggesting the uptake of Pb(II) ions by monolayer adsorption. From D-R isotherm model, the calculated mean free energy E demonstrated the adsorption processes occurred by chemical ion-exchange mechanism. FTIR analysis revealed that amine groups were mainly responsible for the adsorption of Pb(II) by amino-terminated adsorbents, while CO of ester groups also participated in the adsorption process of ester-terminated ones. The adsorbents can selectively adsorb Pb(II) from binary ion systems in the presence of Mn(II), Cu(II), Co(II), and Ni(II). Based on the results, it is concluded that SiO(2)-G0-SiO(2)-G4.0 had great potential for the removal of Pb(II) from aqueous solution.
Collapse
Affiliation(s)
- Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads. BIORESOURCE TECHNOLOGY 2013; 128:423-430. [PMID: 23201524 DOI: 10.1016/j.biortech.2012.10.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/24/2012] [Accepted: 10/08/2012] [Indexed: 05/26/2023]
Abstract
The adsorptive removal of Cr(VI) by alginate beads containing Cr(VI)-adapted Acinetobacter junii, Escherichia coli and Bacillus subtilis in batch and continuous packed bed column reactors was investigated. Under optimized conditions (pH 3.0; contact time, 180 min; 30 °C; initial Cr(VI) concentration of 100 mg/L), 65.86 mg/g adsorption capacity was recorded in the batch study. When an adsorbent dosage of 1g/L, a flow rate of 5 mL/min, a bed height of 20 cm, an initial Cr(VI) concentration of 300 mg/L was employed, a capacity of 657 mg/g was noted for the continuous column assay. The batch sorption data followed the Langmuir isotherm and pseudo second order kinetics. Five sorption/desorption cycles yielded 100%, 99.63%, 95.31%, 80.7% and 74.22% regeneration, respectively. Cr(VI) adsorption studies using spiked ground water, freshwater and domestic wastewater in a packed bed reactor demonstrated Cr(VI) removals of 64.8%, 55.08%, 56.86% respectively. Cr(VI) sorption on immobilized bacteria was confirmed with Fourier-transform infrared and Energy dispersive X-ray spectroscopy.
Collapse
Affiliation(s)
- Jastin Samuel
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
43
|
Paul ML, Samuel J, Das SB, Swaroop S, Chandrasekaran N, Mukherjee A. Studies on Cr(VI) Removal from Aqueous Solutions by Nanoalumina. Ind Eng Chem Res 2012. [DOI: 10.1021/ie302140a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Madona Lien Paul
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil
Nadu, India
| | - Jastin Samuel
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil
Nadu, India
| | | | - Shikha Swaroop
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil
Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore 632014, Tamil
Nadu, India
| |
Collapse
|