1
|
Zhao Z, Shi W, Wu Y, Kong L, Gao J, Kong Y. A stimuli-responsive drug delivery system based on konjac glucomannan, carboxymethyl chitosan and mesoporous polydopamine nanoparticles. Int J Biol Macromol 2025; 292:139196. [PMID: 39736294 DOI: 10.1016/j.ijbiomac.2024.139196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation. Cytotoxicity assay indicates that the hydrogels have significant cytotoxicity against murine breast tumor cell 4 T1 while the drug-free hydrogels (oxKGM/CMCS/mPDA NPs) show good biocompatibility. In addition, the hyperthermia generated upon NIR irradiation can lead to the apoptosis of cancer cells, achieving chemo-photothermal combination therapy of BC. Release kinetics study reveals that the release of Cur from the hydrogels follows zero-order model.
Collapse
Affiliation(s)
- Zherui Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wanting Shi
- Hua Lookeng Honors College, Changzhou University, Changzhou 213164, China
| | - Yufei Wu
- Hua Lookeng Honors College, Changzhou University, Changzhou 213164, China
| | - Linxiu Kong
- Hua Lookeng Honors College, Changzhou University, Changzhou 213164, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Sun L, Zuo C, Ma B, Liu X, Guo Y, Wang X, Han M. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. CHINESE HERBAL MEDICINES 2025; 17:156-165. [PMID: 39949814 PMCID: PMC11814247 DOI: 10.1016/j.chmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 02/16/2025] Open
Abstract
Objective In order to enhance the efficacy of anti-breast cancer, paclitaxel nanoparticles (PTX NPs) and polypyrrole nanoparticles (PPy NPs) were combined with photothermal therapy and chemotherapy. At the same time, the two dosage forms of PTX NPs and PTX NPs gel were compared. Methods PTX NPs were prepared by self-assembly method, and then the cytotoxicity in vitro was investigated by Methyl thiazolyl tetrazolium (MTT) and other methods, and the efficacy and side effects in vivo were further investigated. Results The average hydrated diameter, PDI and electric potential of PTX NPs were (210.20 ± 1.57) nm, (0.081 ± 0.003) mV and (15.80 ± 0.35) mV, respectively. MTT results showed that the IC50 value of PTX NPs on 4 T1 cells was 0.490 μg/mL, while that of PTX injection was 1.737 μg/mL. The cell inhibitory effect of PTX NPs was about 3.5 times higher than that of PTX injection. The tumor inhibition rates of PTX NPs and gel were 48.64% and 56.79%, respectively. Together with local photothermal stimulation, the tumor inhibition rate of the PTX NPs reached 91.05%, surpassing that of the gel under the same conditions (48.98%), moreover, the organ index and H&E staining results of PTX NPs showed a decrease in toxicity. Conclusion This combination therapy can significantly enhance the effect of anti-breast cancer, and the synergistic effect of chemotherapy and light and heat provides a feasible and effective strategy for the treatment of tumor.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinxin Liu
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Heilongjiang 150076, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Wang Z, Zhai B, Sun J, Zhang X, Zou J, Shi Y, Guo D. Recent advances of injectable in situ-forming hydrogels for preventing postoperative tumor recurrence. Drug Deliv 2024; 31:2400476. [PMID: 39252545 PMCID: PMC11389645 DOI: 10.1080/10717544.2024.2400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The unavoidable residual tumor tissue from surgery and the strong aggressiveness of tumor cells pose challenges to the postoperative treatment of tumor patients, accompanied by in situ tumor recurrence and decreased quality of life. Therefore, there is an urgent need to explore appropriate postoperative therapeutic strategies to remove residual tumor cells after surgery to inhibit tumor recurrence and metastasis after surgery. In recent years, with the rapid development of biomedical materials, the study of local delivery systems as postoperative delivery of therapeutic agents has gradually attracted the attention of researchers. Injectable in situ-forming hydrogel is a locally administered agent injected in situ as a solution that can be loaded with various therapeutic agents and rapidly gels to form a semi-solid gel at the treatment site. This type of hydrogel tightly fills the surgical site and covers irregular excision surfaces. In this paper, we review the recent advances in the application of injectable in situ-forming hydrogels in postoperative therapy, focusing on the matrix materials of this type of hydrogel and its application in the postoperative treatment of different types of tumors, as well as discussing the challenges and prospects of its clinical application.
Collapse
Affiliation(s)
- Zhanpeng Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Bingtao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Junbo Zou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Yuan L, Wei H, Pan Z, Deng X, Yang L, Wang Y, Lu D, Li Z, Luo F, Li J, Tan H. A bioinspired injectable antioxidant hydrogel for prevention of postoperative adhesion. J Mater Chem B 2024; 12:6968-6980. [PMID: 38915270 DOI: 10.1039/d4tb00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding. PU-OHA-D hydrogel possesses versatile characteristics such as rapid gel formation, injectability, self-repair capability and biodegradability. Additionally, they exhibit an excellent ability to clear free radicals and superior tissue adhesion. PU-OHA-D can be injected in situ to form a hydrogel to prevent abdominal wall-cecum adhesion. Importantly, it can effectively eliminate free radicals and inhibit oxidative stress at the wound site. Thereby, it leads to collagen physiological degradation and prevents the occurrence of postoperative adhesions. The bioinspired hydrogel demonstrates its great potential in preventing postoperative adhesion and promoting wound healing.
Collapse
Affiliation(s)
- Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - ZhongJing Pan
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Lin Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
6
|
Mozafari N, Jahanbekam S, Ashrafi H, Shahbazi MA, Azadi A. Recent Biomaterial-Assisted Approaches for Immunotherapeutic Inhibition of Cancer Recurrence. ACS Biomater Sci Eng 2024; 10:1207-1234. [PMID: 38416058 DOI: 10.1021/acsbiomaterials.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Biomaterials possess distinctive properties, notably their ability to encapsulate active biological products while providing biocompatible support. The immune system plays a vital role in preventing cancer recurrence, and there is considerable demand for an effective strategy to prevent cancer recurrence, necessitating effective strategies to address this concern. This review elucidates crucial cellular signaling pathways in cancer recurrence. Furthermore, it underscores the potential of biomaterial-based tools in averting or inhibiting cancer recurrence by modulating the immune system. Diverse biomaterials, including hydrogels, particles, films, microneedles, etc., exhibit promising capabilities in mitigating cancer recurrence. These materials are compelling candidates for cancer immunotherapy, offering in situ immunostimulatory activity through transdermal, implantable, and injectable devices. They function by reshaping the tumor microenvironment and impeding tumor growth by reducing immunosuppression. Biomaterials facilitate alterations in biodistribution, release kinetics, and colocalization of immunostimulatory agents, enhancing the safety and efficacy of therapy. Additionally, how the method addresses the limitations of other therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
7
|
Xu S, Qian Z, Zhao N, Yuan W. Thermoresponsive injectable self-healing hydrogel containing polydopamine-coated Fe/Mo-doped TiO 2 nanoparticles for efficient synergistic sonodynamic-chemodynamic-photothermal-chemo therapy. J Colloid Interface Sci 2024; 654:1431-1446. [PMID: 37922629 DOI: 10.1016/j.jcis.2023.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
A smart hydrogel loading multifunctional nanoparticles and anticancer drugs was designed to achieve synergistic therapy against tumors with high efficiency and specificity. The thermoresponsive injectable self-healing hydrogel was prepared through the Schiff base between aldehyde-functionalized poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate-co-2-hydroxyethyl methacrylate) (P(MEO2MA-co-OEGMA-co-HEMA), APMOH) and hydroxypropyl chitosan (HPCS). The polydopamine-coated Fe/Mo-doped titanium dioxide nanoparticles (PDA@dTiO2 NPs) were prepared and dispersed into the hydrogel with anticancer drug doxorubicin (DOX). PDA@dTiO2 NPs as sonosensitizers can convert oxygen into singlet oxygen (1O2) under ultrasound (US) irradiation, achieving sonodynamic therapy (SDT). They were also considered nanoenzymes, generating oxygen to supply an oxygen source for SDT, producing hydroxyl radical (·OH) to achieve chemodynamic therapy (CDT), and eliminating glutathione (GSH) to enhance the level of oxidative stress. After near-infrared (NIR) irradiation, the temperature of the hydrogel increased due to the photothermal ability of the polydopamine (PDA) layer. When the temperature reached the hydrogel's lower critical solution temperature (LCST), the hydrophilic-hydrophobic transformation occurred, and the hydrogel volume contracted. Consequently, the release rate of PDA@dTiO2 NPs and DOX increased, improving the therapeutic effects. The nanocomposite hydrogel system can achieve synergistic sonodynamic-chemodynamic-photothermal-chemo therapy (SDT-CDT-PTT-CT) for tumors, providing a novel platform for synergistic tumor treatment.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
8
|
He S, Gou X, Zhang S, Zhang X, Huang H, Wang W, Yi L, Zhang R, Duan Z, Zhou P, Qian Z, Gao X. Nanodelivery Systems as a Novel Strategy to Overcome Treatment Failure of Cancer. SMALL METHODS 2024; 8:e2301127. [PMID: 37849248 DOI: 10.1002/smtd.202301127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Despite the tremendous progress in cancer treatment in recent decades, cancers often become resistant due to multiple mechanisms, such as intrinsic or acquired multidrug resistance, which leads to unsatisfactory treatment effects or accompanying metastasis and recurrence, ultimately to treatment failure. With a deeper understanding of the molecular mechanisms of tumors, researchers have realized that treatment designs targeting tumor resistance mechanisms would be a promising strategy to break the therapeutic deadlock. Nanodelivery systems have excellent physicochemical properties, including highly efficient tissue-specific delivery, substantial specific surface area, and controllable surface chemistry, which endow nanodelivery systems with capabilities such as precise targeting, deep penetration, responsive drug release, multidrug codelivery, and multimodal synergy, which are currently widely used in biomedical researches and bring a new dawn for overcoming cancer resistance. Based on the mechanisms of tumor therapeutic resistance, this review summarizes the research progress of nanodelivery systems for overcoming tumor resistance to improve therapeutic efficacy in recent years and offers prospects and challenges of the application of nanodelivery systems for overcoming cancer resistance.
Collapse
Affiliation(s)
- Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xinyu Gou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shuheng Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Hongyi Huang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wanyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Rui Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhongxin Duan
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
9
|
Lee C. Injectable glucose oxidase-immobilized gelatin hydrogel prevents tumor recurrence via oxidation therapy. Colloids Surf B Biointerfaces 2023; 232:113581. [PMID: 37857184 DOI: 10.1016/j.colsurfb.2023.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
In clinical practice, surgery is the preferred treatment for breast cancer; however, the high recurrence rate due to residual tumors after surgery remains a major issue. Hydrogels can reduce the side effects of residual tumors and exert strong anticancer effects, thereby showing potential as therapeutic agents for suppressing tumor recurrence after surgery. Glucose oxidase (GOD)-immobilized gelatin hydrogels (GOD-gelatin hydrogel) were prepared by bioorthogonal click chemistry. Then, the anticancer effect, tumor recurrence inhibition, and biodegradability of the resulting hydrogels were evaluated through cell and animal experiments. GOD-gelatin hydrogel showed cytotoxicity and anticancer effect via H2O2 generation. Unlike free GOD, GOD-gelatin hydrogel remained in the surgical site after implant and continued to suppress tumor recurrence over time. The proposed GOD-gelatin hydrogel system can be easily implanted at the surgical site after tumor surgery, representing a novel treatment to suppress tumor recurrence without any systemic toxicity.
Collapse
Affiliation(s)
- Changkyu Lee
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, the Republic of Korea.
| |
Collapse
|
10
|
Dong A, Huang S, Qian Z, Xu S, Yuan W, Wang B. A pH-responsive supramolecular hydrogel encapsulating a CuMnS nanoenzyme catalyst for synergistic photothermal-photodynamic-chemodynamic therapy of tumours. J Mater Chem B 2023; 11:10883-10895. [PMID: 37917009 DOI: 10.1039/d3tb01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Traditional cancer therapies no longer meet the current demand for cancer precision therapy and personalized treatment and it's essential to develop new therapeutic modalities as well as to investigate new combination anti-tumor mechanisms. Therefore, amphiphilic prodrug polymer chains linking methoxy poly(ethylene glycol) (mPEG) and cinnamaldehyde (CA) with adipic acid dihydrazide (ADH) as the pH-responsive center were designed and synthesized, which could self-assemble into PAC micelles in aqueous solution. A supramolecular hydrogel was formed based on the host-guest interaction between α-cyclodextrin (α-CD) and PAC micelles. Polyetherimide (PEI) modified copper manganese sulfide nanoenzyme catalysts (PCMS NPs) were prepared by a solvothermal method, which could be uniformly dispersed in the hydrogel to form a composite supramolecular hydrogel (PCMS@PAC/α-CD Gel). Under an acidic tumor environment, pH-responsive hydrazone bonds were broken, resulting in the slow release of CA and the amplification of hydrogen peroxide (H2O2) levels. PCMS NPs exerted peroxidase (POD)-like activity and catalase (CAT)-like activity, which could convert H2O2 into hydroxyl radicals (˙OH) and oxygen (O2) to alleviate intra-tumor hypoxia and induce apoptosis, while exerting glutathione oxidase (GPX)-like activity to consume glutathione (GSH) to further enhance the effect of chemodynamic therapy (CDT). Under near-infrared light (NIR) irradiation, PCMS NPs exhibited an excellent photothermal conversion performance, which could rapidly increase the temperature of tumor cells to above 42 °C for photothermal therapy (PTT) and convert O2 to a superoxide anion (˙O2-) by exerting oxidase (OXD)-like activity for photodynamic therapy (PDT). It was demonstrated by in vitro and in vivo experiments that the PCMS@PAC/α-CD Gel was highly cytotoxic to cancer cells and could effectively inhibit tumor growth, indicating the potential for applications in the fields of biomedicine and smart materials.
Collapse
Affiliation(s)
- Anqin Dong
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Shiwei Huang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Zhiyi Qian
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Sicheng Xu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Weizhong Yuan
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
11
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
12
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
13
|
Qu X, Zhou D, Lu J, Qin D, Zhou J, Liu HJ. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy. Bioact Mater 2023; 24:136-152. [PMID: 36606253 PMCID: PMC9792706 DOI: 10.1016/j.bioactmat.2022.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Surgical resection remains a mainstay in the treatment of malignant solid tumors. However, the use of neoadjuvant treatments, including chemotherapy, radiotherapy, phototherapy, and immunotherapy, either alone or in combination, as a preoperative intervention regimen, have attracted increasing attention in the last decade. Early randomized, controlled trials in some tumor settings have not shown a significant difference between the survival rates in long-term neoadjuvant therapy and adjuvant therapy. However, this has not hampered the increasing use of neoadjuvant treatments in clinical practice, due to its evident downstaging of primary tumors to delineate the surgical margin, tailoring systemic therapy response as a clinical tool to optimize subsequent therapeutic regimens, and decreasing the need for surgery, with its potential for increased morbidity. The recent expansion of nanotechnology-based nanomedicine and related medical technologies provides a new approach to address the current challenges of neoadjuvant therapy for preoperative therapeutics. This review not only summarizes how nanomedicine plays an important role in a range of neoadjuvant therapeutic modalities, but also highlights the potential use of nanomedicine as neoadjuvant therapy in preclinical and clinic settings for tumor management.
Collapse
Affiliation(s)
- Xiaogang Qu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Dong Zhou
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Jianpu Lu
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Pourbadiei B, Adlsadabad SY, Rahbariasr N, Pourjavadi A. Synthesis and characterization of dual light/temperature-responsive supramolecular injectable hydrogel based on host-guest interaction between azobenzene and starch-grafted β-cyclodextrin: Melanoma therapy with paclitaxel. Carbohydr Polym 2023; 313:120667. [PMID: 37182982 DOI: 10.1016/j.carbpol.2023.120667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Injectable stimuli-responsive hydrogels could offer an opportunity for local administration at the tumor site and a sustained drug release. In this paper, a copolymer of azobenzene derivative and N-isopropyl acrylamide (NIPAM) was synthesized, which are performed as light- and thermo-sensitive parts, respectively. The DAS@SCD/NIPAZO hydrogel was prepared upon the establishment of host-guest interactions between the hydrophobic core of CD and azobenzene moiety. The LCST of the synthesized copolymer was modified from 31.3 °C to 36.5 °C by the incorporation of the hydrophilic host moieties of the modified starch into the NIPAM copolymer structure. The LCST-based property of the hydrogel made it syringable in low temperatures and switch to a gel state after local injection. The drug release profile of the hydrogel was explored in four different conditions involving two distinct temperatures combined with two different light wavelengths to examine the light- and thermo-sensitivity of the hydrogel. Moreover, a Paclitaxel-loaded hydrogel was prepared to study the in vitro efficiency of the sample and was investigated by MTT assay against the cancerous fibroblastic cells (A-431), which revealed a sharp decline in cell viability under 365 nm light irradiation; furthermore, to evaluate the in vivo effects of the PTX-loaded hydrogel, histological studies based on staining techniques were carried out.
Collapse
|
16
|
Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels 2022; 8:gels8110741. [PMID: 36421563 PMCID: PMC9689473 DOI: 10.3390/gels8110741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
At present, an oral tumor is usually treated by surgery combined with preoperative or postoperative radiotherapies and chemotherapies. However, traditional chemotherapies frequently result in substantial toxic side effects, including bone marrow suppression, malfunction of the liver and kidneys, and neurotoxicity. As a new local drug delivery system, the smart drug delivery system based on hydrogel can control drug release in time and space, and effectively alleviate or avoid these problems. Environmentally responsive hydrogels for smart drug delivery could be triggered by temperature, photoelectricity, enzyme, and pH. An overview of the most recent research on smart hydrogels and their controlled-release drug delivery systems for the treatment of oral cancer is given in this review. It is anticipated that the local drug release method and environment-responsive benefits of smart hydrogels will offer a novel technique for the low-toxicity and highly effective treatment of oral malignancy.
Collapse
|
17
|
Qian J, Su L, He J, Ruan R, Wang J, Wang Z, Xiao P, Liu C, Cao Y, Li W, Zhang J, Song J, Yang H. Dual-Modal Imaging and Synergistic Spinal Tumor Therapy Enabled by Hierarchical-Structured Nanofibers with Cascade Release and Postoperative Anti-adhesion. ACS NANO 2022; 16:16880-16897. [PMID: 36136320 DOI: 10.1021/acsnano.2c06848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most treatments for spinal cancer are accompanied by serious side effects including subsequent tumor recurrence, spinal cord compression, and tissue adhesion, thus a highly effective treatment is crucial for preserving spinal and neurological functionalities. Herein, trilayered electrospun doxorubicin@bovine serum albumin/poly(ε-caprolactone)/manganese dioxide (DOX@BSA/PCL/MnO2) nanofibers with excellent antiadhesion ability, dual glutathione/hydrogen peroxide (GSH/H2O2) responsiveness, and cascade release of Mn2+/DOX was fabricated for realizing an efficient spinal tumor therapy. In detail, Fenton-like reactions between MnO2 in the fibers outermost layer and intra-/extracellular glutathione within tumors promoted the first-order release of Mn2+. Then, sustained release of DOX from the fibers' core layer occurred along with the infiltration of degradation fluid. Such release behavior avoided toxic side effects of drugs, regulated inflammatory tumor microenvironment, amplified tumor elimination efficiency through synergistic chemo-/chemodynamic therapies, and inhibited recurrence of spinal tumors. More interestingly, magnetic resonance and photoacoustic dual-modal imaging enabled visualizations of tumor therapy and material degradation in vivo, achieving rapid pathological analysis and diagnosis. On the whole, such versatile hierarchical-structured nanofibers provided a reference for rapid and potent theranostic of spinal cancer in future clinical translations.
Collapse
Affiliation(s)
- Jiaqi Qian
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Lichao Su
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jingjing He
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Peijie Xiao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Yang Cao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Weidong Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
18
|
Wang Y, Niu W, Qu X, Lei B. Bioactive Anti-Inflammatory Thermocatalytic Nanometal-Polyphenol Polypeptide Scaffolds for MRSA-Infection/Tumor Postsurgical Tissue Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4946-4958. [PMID: 35073045 DOI: 10.1021/acsami.1c21082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Postsurgical tumor recurrence, infection, and tissue defect are still the challenges in clinical medicine. The development of multifunctional biomaterial scaffolds with a microenvironment-responsive tumor-infection therapy-tissue repair is highly desirable. Herein, we report a bioactive, injectable, adhesive, self-healing, antibacterial, and anti-inflammatory metal-polyphenol polypeptide nanocomposite scaffold (PEAPF) with temporal-spatial-controlled inflammation-triggered therapeutic properties for efficient infection and postsurgical tumor therapy and skin repair. PEAPF scaffolds showed sustained and inherent inflammation-triggered Fenton catalysis and mild thermochemical effect for specifically inhibiting tumor recurrence in vitro and in vivo. The PEAPF scaffolds significantly facilitated skin tissue regeneration in MRSA-infected chronic wounds and postsurgical tissue defects after tumor resection. This study presents the multifunctional scaffold-based safe and efficient therapeutic strategy to prevent local tumor recurrence and enhance postsurgical tissue regeneration.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710054, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|