1
|
Wang T, Wang Y, Zhang Y, Fang Z, Li S, Gu Z, Ma Y, Wang L, Han D, Wang C, Zhou J, Cao F. Drug-Loaded Mesoporous Polydopamine Nanoparticles in Chitosan Hydrogels Enable Myocardial Infarction Repair through ROS Scavenging and Inhibition of Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61551-61564. [PMID: 39347611 PMCID: PMC11566824 DOI: 10.1021/acsami.4c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this study, we synthesized mesoporous polydopamine nanoparticles (MPDA NPs) using an emulsion-induced interface assembly strategy and loaded epigallocatechin gallate (EGCG) into MPDA NPs via electrostatic attraction to form EGCG@MPDA NPs. In the post myocardial infarction (MI) environment, these interventions specifically aimed to eliminate reactive oxygen species (ROS) and facilitate the repair of MI. We further combined them with a thermosensitive chitosan (CS) hydrogel to construct an injectable composite hydrogel (EGCG@MPDA/CS hydrogel). Utilizing in vitro experiments, the EGCG@MPDA/CS hydrogel exhibited excellent ROS-scavenging ability of H9C2 cells under the oxidative stress environment and also could inhibit their apoptosis. The EGCG@MPDA/CS hydrogel significantly promoted left ventricular ejection fraction (LVEF) in infarcted rat models post injection for 28 days compared to the PBS group (51.25 ± 1.73% vs 29.31 ± 0.78%, P < 0.05). In comparison to the PBS group, histological analysis revealed a substantial increase in left ventricular (LV) wall thickness in the EGCG@MPDA/CS hydrogel group (from 0.58 ± 0.03 to 1.39 ± 1.11 mm, P < 0.05). This work presents a novel approach to enhance MI repair by employing the EGCG@MPDA/CS hydrogel. This hydrogel effectively reduces local oxidative stress by ROS and stimulates the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway.
Collapse
Affiliation(s)
- Tianhu Wang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingjie Zhang
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhiyi Fang
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Sulei Li
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenghui Gu
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Ma
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Linghuan Wang
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Dong Han
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Changyong Wang
- Beijing
Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jin Zhou
- Beijing
Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Cao
- Chinese
PLA Medical School & Department of Cardiology, The Second Medical
Center National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Wu C, Liao W, Zhang Y, Yan Y. Peptide-based supramolecular hydrogels and their biotherapeutic applications. Biomater Sci 2024; 12:4855-4874. [PMID: 39158039 DOI: 10.1039/d4bm00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In recent years, supramolecular hydrogels have made groundbreaking research progress in biomedical fields such as drug delivery, biosensing, imaging analysis, and tissue engineering. Peptides, with their unique characteristics of facile preparation, low immunogenicity and easy biodegradability, are commonly used as building blocks of supramolecular hydrogels. Peptide-based supramolecular hydrogels loaded with drugs, prepared via physical means or covalent crosslinking, exhibit unique three-dimensional network structures and strong water retention capacities. These properties enhance drug bioavailability and reduce side effects, enabling drug accumulation and responsive release at disease sites, significantly improving the therapeutic efficacy. Here, we review recent advancements in peptide-based supramolecular hydrogels and their biotherapeutic applications, including chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, gene therapy, antibacterial and anti-inflammatory treatments, and other biological applications. This review aims to provide new inspiration for the development of biomaterials in the therapeutic field and provide more personalized options for disease treatment. Additionally, challenges and limitations in this field are briefly discussed.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Wenjie Liao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yujia Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
3
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
4
|
Srivastava A, Saxena K, Brighu U. Phosphorus recovery potential from sewage sludge by struvite precipitation: remodelling policy framework in Rajasthan, India. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1009-1022. [PMID: 39141048 DOI: 10.2166/wst.2024.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
The manufacturing of fossil-based fertilizers by extraction of rock phosphate has contributed to carbon emissions and depleted the non-renewable phosphorus reserves. Sewage sludge, which is a waste product from Sewage Treatment Plants (STPs), is rich in phosphorus. The existing techniques for sludge management contribute to carbon emissions and ecological footprint. Struvite (raw fertilizer) and biochar recovery from sludge has emerged as viable methods to reduce carbon emission and ensure economic sustainability of STPs. In this work, the potential for phosphorus recovery and revenue generation is discussed for Rajasthan state in India. The fate of phosphorus and heavy metals in STPs is evaluated which indicates that about 70% of the phosphorus and trace amounts of metals end up in sewage sludge. Further, the power consumption is high in STPs due to industrial wastewater ingress. There is a need to bridge the gap between sewage treatment and generation in Rajasthan, improve STP performance before resource recovery inclusion at policy-level and scale-up. Mixing struvite with biochar can lead to safe application of struvite as raw fertilizer as heavy metals are sequestered by biochar. A business framework is developed to serve as a blueprint and potential model for linking technical and market viability.
Collapse
Affiliation(s)
- Ankit Srivastava
- Municipal Council Bhiwadi, Department of Local Self-government, Government of Rajasthan, India
| | - Kanika Saxena
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India E-mail: ;
| | - Urmila Brighu
- Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Hua Y, He Z, Ni Y, Sun L, Wang R, Li Y, Li X, Jiang G. Silk fibroin and hydroxypropyl cellulose composite injectable hydrogel-containing extracellular vesicles for myocardial infarction repair. Biomed Phys Eng Express 2024; 10:045001. [PMID: 38640908 DOI: 10.1088/2057-1976/ad40b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Extracellular vesicles (EVs) have been recognized as one of the promising specific drugs for myocardial infarction (MI) prognosis. Nevertheless, low intramyocardial retention of EVs remains a major impediment to their clinical application. In this study, we developed a silk fibroin/hydroxypropyl cellulose (SF/HPC) composite hydrogel combined with AC16 cell-derived EVs targeted modification by folic acid for the treatment of acute myocardial infarction repair. EVs were functionalized by distearoylphosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG-FA) via noncovalent interaction for targeting and accelerating myocardial infarction repair.In vitro, cytocompatibility analyses revealed that the as-prepared hydrogels had excellent cell viability by MTT assay and the functionalized EVs had higher cell migration by scratch assay.In vivo, the composite hydrogels can promote myocardial tissue repair effects by delaying the process of myocardial fibrosis and promoting angiogenesis of infarct area in MI rat model.
Collapse
Affiliation(s)
- Yinjian Hua
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Zhengfei He
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Yunjie Ni
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Linggang Sun
- Department of Cardiology, The First People's Hospital, Fuyang, Hangzhou, 311400, People's Republic of China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Xintong Li
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, People's Republic of China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
6
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Hu W, Yang C, Guo X, Wu Y, Loh XJ, Li Z, Wu YL, Wu C. Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction. Gels 2022; 8:423. [PMID: 35877508 PMCID: PMC9316750 DOI: 10.3390/gels8070423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI.
Collapse
Affiliation(s)
- Wei Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Cui Yang
- School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE) Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (W.H.); (X.G.); (Y.W.)
| |
Collapse
|