1
|
Buerkle M, Padmanaban DB, McGlynn R, Mariotti D, Svrcek V. Unexpected Electronic Features of NiO Quantum Dots Produced by Femtosecond Pulsed Laser Ablation in Water. J Phys Chem Lett 2024; 15:4185-4190. [PMID: 38597921 DOI: 10.1021/acs.jpclett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study examines the effect of quantum confinement and surface orientations on the electronic properties of NiO quantum dots. It compares NiO nanocrystals produced via atmospheric-pressure microplasma and femtosecond laser (fs-laser) ablation in water, finding that both methods yield quantum-confined nanocrystals with a defined face-centered cubic lattice. Notably, fs-laser synthesis generates crystalline nanocrystals from both crystalline and amorphous targets. While the electronic properties, i.e., energy of the highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO), of microplasma-synthesized NiO nanocrystals are consistent with the literature, the electronic characteristics of NiO nanocrystals produced by a fs-laser, particularly the high-lying LUMO level, are unusual for NiO quantum dots. Supported by density functional theory calculations, we show that the observed level positions are related to the different polar and nonpolar faces of the nanocrystal surface.
Collapse
Affiliation(s)
- Marius Buerkle
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | | | - Ruairi McGlynn
- School of Engineering, Ulster University, Coleraine BT15 1AP, United Kingdom
| | - Davide Mariotti
- School of Engineering, Ulster University, Coleraine BT15 1AP, United Kingdom
| | - Vladimir Svrcek
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
2
|
Muthukutty B, Doan TC, Yoo H. Binary metal oxide (NiO/SnO 2) composite with electrochemical bifunction: Detection of neuro transmitting drug and catalysis for hydrogen evolution reaction. ENVIRONMENTAL RESEARCH 2024; 241:117655. [PMID: 37980995 DOI: 10.1016/j.envres.2023.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The synergetic effect between dual oxides in binary metal oxides (BMO) makes them promising electrode materials for the detection of toxic chemicals, and biological compounds. In addition, the interaction between the cations and anions of diverse metals in BMO tends to create more oxygen vacancies which are beneficial for energy storage devices. However, specifically targeted synthesis of BMO is still arduous. In this work, we prepared a nickel oxide/tin oxide composite (NiO/SnO2) through a simple solvothermal technique. The crystallinity, specific surface area, and morphology were fully characterized. The synthesized BMO is used as a bifunctional electrocatalyst for the electrochemical detection of dopamine (DPA) and for the hydrogen evolution reaction (HER). As expected, the active metals in the NiO/SnO2 composite afforded a higher redox current at a reduced redox potential with a nanomolar level detection limit (4 nm) and excellent selectivity. Moreover, a better recovery rate is achieved in the real-time detection of DPA in human urine and DPA injection solution. Compared to other metal oxides, NiO/SnO2 composite afforded lower overpotential (157 mV @10 mA cm-2), Tafel slope (155 mV dec-1), and long-term durability, with a minimum retention rate. These studies conclude that NiO/SnO2 composite can act as a suitable electrode modifier for electrochemical sensing and the HER.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Thang Cao Doan
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
3
|
Sharma K, Sharma R, Kumari S, Kumari A. Enhancing wheat crop production with eco-friendly chitosan encapsulated nickel oxide nanocomposites: A safe and sustainable solution for higher yield. Int J Biol Macromol 2023; 253:127413. [PMID: 37858657 DOI: 10.1016/j.ijbiomac.2023.127413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
In this work, we looked at using nickel oxide (NiO) nanocomposites with chitosan encapsulation as a nano-primer to improve wheat crop output. A straightforward green precipitation procedure was used to create the nanocomposites, and they were then characterized using several methods. According to the findings, the chitosan-encapsulated NiO nanocomposites possessed a large surface area and were resilient to changes in pH. Following this, wheat seeds were primed with the nanocomposites, and under greenhouse circumstances, the impact on crop growth was assessed. The findings demonstrated that, in comparison to the control group, nanocomposites priming considerably enhanced wheat growth and germination rate up to 99 %. In comparison to untreated plants, the wheat plants treated with the nanocomposites primer had greater plant height i.e. shoot length (11.4 cm) and root length (10.3 cm), leaf area, and biomass accumulation. Further research into the mechanism underlying the priming effect of nanocomposites on wheat growth revealed that the nanocomposites enhanced nutrient absorption, photosynthesis, and stress tolerance in wheat plants. In conclusion, our research shows that chitosan-encapsulated NiO nanocomposites have the potential to improve wheat crop productivity in an environmentally benign and long-term manner, offering a viable strategy for sustainable farming.
Collapse
Affiliation(s)
- Kashama Sharma
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Seema Kumari
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India; Centre of Nano Science & Technology, Career Point University, Bhoranj, (Tikker - kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India.
| |
Collapse
|
4
|
Le MT, Nguyen PA, Tran TTH, Chu THN, Wang Y, Arandiyan H. Catalytic performance of spinel-type Ni-Co Oxides for Oxidation of Carbon Monoxide and Toluene. Top Catal 2022. [DOI: 10.1007/s11244-022-01676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Benrabaa R, Fares A, Fodil Cherif N, Gouasmia A, Yeste P, Cauqui M. Catalytic Oxidation of Carbon Monoxide over CeO
2
and La
2
O
3
Oxides Supported Nickel Catalysts: The Effect of the Support and NiO Loading. ChemistrySelect 2022. [DOI: 10.1002/slct.202104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafik Benrabaa
- Materials Physico-Chemistry Laboratory Science and Technology Faculty Chadli BENDJEDID-El-Tarf University P.B. 73, 36000 El-Tarf Algeria
- Laboratory of Catalytic Materials and Catalysis in Organic Chemistry Faculty of Chemistry USTHB, BP32 16111 Algiers Algeria
| | - Aissat Fares
- Center for Scientific and Technical Research in Physico-chemical Analysis (CRAPC), BP 384, RP 42004, Bou-Ismail Tipaza Algeria
| | - Nawal Fodil Cherif
- Center for Scientific and Technical Research in Physico-chemical Analysis (CRAPC), BP 384, RP 42004, Bou-Ismail Tipaza Algeria
| | - Abir Gouasmia
- Laboratory of Catalytic Materials and Catalysis in Organic Chemistry Faculty of Chemistry USTHB, BP32 16111 Algiers Algeria
| | - Pilar Yeste
- Department of Materials Science Metallurgical Engineering and Inorganic Chemistry University of Cádiz Puerto Real Cádiz 11510 Spain
| | - Miguel‐Angel Cauqui
- Department of Materials Science Metallurgical Engineering and Inorganic Chemistry University of Cádiz Puerto Real Cádiz 11510 Spain
| |
Collapse
|
6
|
Effects of Calcination Temperature on CO-Sensing Mechanism for NiO-Based Gas Sensors. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NiO-sensitive materials have been synthesized via the hydrothermal synthesis route and calcined in air at 400 °C and, alternatively, at 500 °C. Structural, morphological, and spectroscopic investigations were involved. As such, the XRD patterns showed a higher crystallinity degree for the NiO calcined at 500 °C. Such an aspect is in line with the XPS data indicating a lower surface hydroxylation relative to NiO calcined at 400 °C. An HRTEM microstructural investigation revealed that the two samples differ essentially at the morphological level, having different sizes of the crystalline nanoparticles, different density of the surface defects, and preferential faceting according to the main crystallographic planes. In order to identify their specific gas-sensing mechanism towards CO exposure under the in-field atmosphere, the simultaneous evaluation of the electrical resistance and contact potential difference was carried out. The results allowed the decoupling of the water physisorption from the chemisorption of the ambient oxygen species. Thus, the specific CO interaction mechanism induced by the calcination temperature of NiO has been highlighted.
Collapse
|
7
|
LaNiO3 Perovskite Synthesis through the EDTA–Citrate Complexing Method and Its Application to CO Oxidation. Catalysts 2022. [DOI: 10.3390/catal12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of LaNiO3 materials were synthesized by the EDTA–citrate complexing method, modifying different physicochemical conditions. The LaNiO3 samples were calcined between 600 and 800 °C and characterized by XRD, SEM, XPS, CO-TPD, TG, DT, and N2 adsorption. The results evidence that although all the samples presented the same crystal phase, LaNiO3 as expected, some microstructural and superficial features varied as a function of the calcination temperature. Then, LaNiO3 samples were tested as catalysts of the CO oxidation process, a reaction never thoroughly analyzed employing this material. The catalytic results showed that LaNiO3 samples calcined at temperatures of 600 and 700 °C reached complete CO conversions at ~240 °C, while the sample thermally treated at 800 °C only achieved a 100% of CO conversion at temperatures higher than 300 °C. DRIFTS and XRD were used for studying the reaction mechanism and the catalysts’ structural stability, respectively. Finally, the obtained results were compared with different Ni-containing materials used in the same catalytic process, establishing that LaNiO3 has adequate properties for the CO oxidation process.
Collapse
|
8
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High‐Index Faceting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| | - Mariano D. Susman
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - David H. West
- SABIC Technology Center 1600 Industrial Blvd. Sugar Land Houston TX 77478 USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa, 34 20156 Milano Italy
| |
Collapse
|
9
|
Cheula R, Susman MD, West DH, Chinta S, Rimer JD, Maestri M. Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High-Index Faceting. Angew Chem Int Ed Engl 2021; 60:25391-25396. [PMID: 34406684 PMCID: PMC9290742 DOI: 10.1002/anie.202105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2 O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal-solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals.
Collapse
Affiliation(s)
- Raffaele Cheula
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| | - Mariano D. Susman
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - David H. West
- SABIC Technology Center1600 Industrial Blvd. Sugar LandHoustonTX77478USA
| | | | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular EngineeringUniversity of Houston4726 Calhoun RoadHoustonTX77204-4004USA
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic ProcessesDipartimento di EnergiaPolitecnico di MilanoVia La Masa, 3420156MilanoItaly
| |
Collapse
|
10
|
Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycrystalline NiO thick film-based gas sensors have been exposed to different test gas atmospheres at 250 °C and measured via simultaneous electrical resistance and work function investigations. Accordingly, we decoupled different features manifested toward the potential changes, i.e., work function, band-bending, and electron affinity. The experimental results have shown that the presence of moisture induces an unusual behavior toward carbon monoxide (CO) detection by considering different surface adsorption sites. On this basis, we derived an appropriate detection mechanism capable of explaining the lack of moisture influence over the CO detection with NiO-sensitive materials. As such, CO might have both chemical and dipolar interactions with pre-adsorbed or lattice oxygen species, thus canceling out the effect of moisture. Additionally, morphology, structure, and surface chemistry were addressed, and the results have been linked to the sensing properties envisaging the role played by the porous quasispherical–hollow structures and surface hydration.
Collapse
|
11
|
Hussain I, Jalil AA, Hamid MYS, Hassan NS. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. CHEMOSPHERE 2021; 277:130285. [PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
Collapse
Affiliation(s)
- I Hussain
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - M Y S Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
12
|
Baraiya BA, Tanna H, Mankad V, Jha PK. Dressing of Cu Atom over Nickel Cluster Stimulating the Poisoning-Free CO Oxidation: An Ab Initio Study. J Phys Chem A 2021; 125:5256-5272. [PMID: 34115503 DOI: 10.1021/acs.jpca.1c02354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this work using first-principles calculations based on spin-polarized density functional theory (DFT), the role of the Cu atom in degrading the poisoning of carbon monoxide (CO) over NinCu clusters is unveiled. The search has been initiated with the examination of structural, magnetic, and electronic properties of Nin+1 and NinCu clusters (1 ≤ n ≤ 12). X-ray absorption near-edge structure (XANES) spectra of Ni K-edge are computed to extract the information on the oxidation states and coordination environment of metal sites of the clusters. This study is operated with the two forms of dispersion corrections, i.e., D2 and D3, with standard DFT (with LDA and GGA functionals) for the consideration of van der Waals interactions during CO adsorption. The PBE and PBE-D3 approaches are found to be capable of yielding the experimentally observed preferential site for CO adsorption. The effect of spin-polarization on the reactivity of transition metals (TMs) toward CO adsorption is crucially assessed by the electronic reactivity descriptors such as d-band center, d-band width, and fractional filling of d-band using a spin-polarized d-band center model. The effective charge transfer from Cu to Ni atoms makes Ni atoms more efficient of charge and is attributed to the degrading adsorption of CO over NinCu clusters. The Ni12Cu cluster stands out with good CO oxidation activity for the Langmuir-Hinshelwood (L-H) reaction pathway.
Collapse
Affiliation(s)
- Bhumi A Baraiya
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Hemang Tanna
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Venu Mankad
- Department of Physics, School of Sciences, GITAM University, Hyderabad Campus, Hyderabad 502329, Telangana, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|