1
|
Patel V, Ramadass K, Morrison B, Britto JSJ, Lee JM, Mahasivam S, Weerathunge P, Bansal V, Yi J, Singh G, Vinu A. Utilising the Nanozymatic Activity of Copper-Functionalised Mesoporous C 3 N 5 for Sensing Biomolecules. Chemistry 2023; 29:e202302723. [PMID: 37673789 DOI: 10.1002/chem.202302723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0 ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4 mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.
Collapse
Affiliation(s)
- Vaishwik Patel
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brodie Morrison
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jolitta Sheri John Britto
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jang Mee Lee
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), Science, Technology, Engineering and Mathematics (STEM) College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, 3001, Australia
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Gbe JLK, Ravi K, Tillous EK, Arya A, Grafouté M, Biradar AV. Designing of 3D Architecture Flower-like Mn-Promoted MgO and Its Application for CO 2 Adsorption and CO 2-Assisted Aerobic Oxidation of Alkylbenzenes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17879-17892. [PMID: 36995780 DOI: 10.1021/acsami.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sustainable chemistry research prioritizes reducing atmospheric carbon dioxide, and one logical solution is to develop adsorbents suitable for carbon capture and utilization. In this work, a new family of three-dimensional (3D) flower-like Mn-promoted MgO was synthesized by the coprecipitation method and used as an adsorbent for CO2 capture and a catalyst for CO2 utilization. The scanning electron microscopy (SEM) analysis of the samples shows a 3D architecture composed of thin nanosheets. The X-ray diffraction (XRD) analysis confirms the presence of the MgO with a cubic structure, while X-ray photoelectron spectroscopy (XPS) reveals the existence of Mn particles as a combination of Mn3+ and Mn4+ ions on MgO. N2 adsorption-desorption experiments highlight the beneficial contribution of Mn particles to surface area enhancement and reveal the existence of mesopores. Furthermore, the designed 3D Mn-doped MgO as an adsorbent demonstrates its capability to improve the ability of MgO to adsorb CO2 (from 0.28 mmol/g for pure MgO to 0.74 mmol/g) in ambient conditions and it is regenerable up to 9 cycles with a slight variation after the third cycle. Moreover, Mn-doped MgO shows good catalyst activity for the oxidation of ethylbenzene derivatives to carbonyl compounds in the presence of CO2 and O2. Mn-15/MgO shows excellent catalytic behavior with a conversion of 97.4 and 100% selectivity. Also, it is regenerable with an insignificant decrease in conversion (∼11.63%) after seven cycles, while the selectivity of acetophenone remains stable. The analyses of the recycled sample suggest that the chemical compositions of Mn and Mg influence the catalytic activity of those Mn-promoted MgO materials. The role of CO2 gas in the aerobic oxidation of ethylbenzene to acetophenone has also been proved. Finally, the control experiments and EPR studies reveal that the reaction takes place through the formation of radicals.
Collapse
Affiliation(s)
- Jean-Louis K Gbe
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Krishnan Ravi
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eric Kessein Tillous
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Aarti Arya
- AMS Lab, Separation Process Division, CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Moussa Grafouté
- Physics Department, Technology Laboratory, Felix Houphouet Boigny University of Cocody, Abidjan 00225, Côte d'Ivoire
| | - Ankush V Biradar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|