1
|
Shi H, Nguyen J, Gitai Z, Shaevitz J, Bratton BP, Gopinathan A, Grason G, Huang KC. Sensing the shape of a surface by intracellular filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624198. [PMID: 39605553 PMCID: PMC11601562 DOI: 10.1101/2024.11.18.624198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the mechanisms that dictate the localization of cytoskeletal filaments is crucial for elucidating cell shape regulation in prokaryotes. The actin homolog MreB plays a pivotal role in maintaining the shape of many rod-shaped bacteria such as Escherichia coli by directing cell-wall synthesis according to local curvature cues. However, the basis of MreB's curvature-dependent localization has remained elusive. Here, we develop a biophysical model for the energetics of filament binding to a surface that integrates the complex interplay between filament twist and bending and the two-dimensional surface geometry. Our model predicts that the spatial localization of a filament like MreB with substantial intrinsic twist is governed by both the mean and Gaussian curvatures of the cell envelope, which strongly covary in rod-shaped cells. Using molecular dynamics simulations to estimate the mechanical properties of MreB filaments, we show that their thermodynamic preference for regions with lower mean and Gaussian curvatures matches experimental observations for physiologically relevant filament lengths of ∼50 nm. We find that the experimentally measured statistical curvature preference is maintained in the absence of filament motion and after a cycle of depolymerization, repolymerization, and membrane rebinding, indicating that equilibrium energetics can explain MreB localization. These findings provide critical insights into the physical principles underlying cytoskeletal filament localization, and suggest new design principles for synthetic shape sensing nanomaterials. Significance statement The protein MreB, a homolog of eukaryotic actin, regulates the shape of bacteria like Escherichia coli by guiding new cell-wall insertion based on local curvature cues. However, the mechanism by which a nanometer-scale MreB filament "senses" the micron-scale curvature of the cell wall has remained a mystery. We introduce a biophysical model of the energetics of twisted and bent filaments bound to curved surfaces, which predicts that localization of filaments like MreB is sensitive to both mean and Gaussian curvature. The model captures experimentally measured curvature enrichment patterns and explains how MreB naturally localizes to saddle-shaped regions without energy-consuming processes. Beyond cell shape regulation, our work suggests design principles for synthetic systems that can sense and respond to surface shape.
Collapse
|
2
|
Gupta R, Bhando T, Pathania R. Overexpression of l,d-Transpeptidase A Induces Dispensability of Rod Complex in Escherichia coli. ACS Infect Dis 2024; 10:3928-3938. [PMID: 39412350 DOI: 10.1021/acsinfecdis.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Antimicrobial resistance (AMR) is a significant global threat, and the presence of resistance-determinant genes is one of the major driving forces behind it. The bacterial rod complex is an essential set of proteins that is crucial for cell survival due to its role in cell wall biogenesis and shape maintenance. Therefore, these proteins offer excellent potential as drug targets; however, compensatory mutations in nontarget genes render this complex nonessential. The MreB protein of this complex is an actin homologue that rotates along the longitudinal axis of the cell to provide rod shape to the bacteria. In this study, using chemical-chemical interaction profiling and FtsZ suppression assay, we identified the MreB targeting activity of IITR07865, a previously discovered small molecule in our lab. Escherichia coli suppressors against IITR07865 revealed mutations in two cell division-associated genes, min C and pal, that have not been previously implicated in rod complex essentiality. IITR07865 resistant mutants were found to inactivate and render the rod complex nonessential, making the rod complex inhibitors ineffective. Further, through transcriptome analysis, we reveal the primary cause of resistance in suppressor strains to be the overexpression of an l, d-transpeptidase A enzyme, which is involved in peptidoglycan and Braun's lipoprotein cross-linking. Our results demonstrate a novel mechanism of resistance development in rod-shaped Gram-negative bacterial pathogen E. coli involved in UTIs where mecillinam, a clinically used antibiotic that targets rod complex, is a drug of choice.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
3
|
Kumar A, Kukal S, Marepalli A, Kumar S, Govindarajan S, Pramanik D. Probing the Molecular Interactions of A22 with Prokaryotic Actin MreB and Eukaryotic Actin: A Computational and Experimental Study. J Phys Chem B 2024; 128:10553-10564. [PMID: 39413431 DOI: 10.1021/acs.jpcb.4c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Actin is a major cytoskeletal system that mediates the intricate organization of macromolecules within cells. The bacterial cytoskeletal protein MreB is a prokaryotic actin-like protein governing the cell shape and intracellular organization in many rod-shaped bacteria, including pathogens. MreB stands as a target for antibiotic development, and compounds like A22 and its analogue, MP265, are identified as potent inhibitors of MreB. The bacterial actin MreB shares structural homology with eukaryotic actin despite lacking sequence similarity. It is currently not clear whether small molecules that inhibit MreB can act on eukaryotic actin due to their structural similarity. In this study, we investigate the molecular interactions between A22 and its analogue MP265 with MreB and eukaryotic actin through a molecular dynamics approach. Employing MD simulations and free energy calculations with an all-atom model, we unveil the robust interaction of A22 and MP265 with MreB, and substantial binding affinity is observed for A22 and MP265 with eukaryotic actin. Experimental assays reveal A22's toxicity to eukaryotic cells, including yeast and human glioblastoma cells. Microscopy analysis demonstrates the profound effects of A22 on actin organization in human glioblastoma cells. This integrative computational and experimental study provides new insights into A22's mode of action, highlighting its potential as a versatile tool for probing the dynamics of both prokaryotic and eukaryotic actins.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Physics, SRM University - AP, Amaravati, Andhra Pradesh 522 240, India
| | - Samiksha Kukal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
| | - Anusha Marepalli
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh 522 240, India
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University - AP, Amaravati, Andhra Pradesh 522 240, India
| | - Debabrata Pramanik
- Department of Physics, SRM University - AP, Amaravati, Andhra Pradesh 522 240, India
- Centre for Computational and Integrative Sciences, SRM University - AP, Amaravati, Andhra Pradesh 522 240, India
| |
Collapse
|
4
|
Recalde A, Abdul-Nabi J, Junker P, van der Does C, Elsässer J, van Wolferen M, Albers SV. The use of thermostable fluorescent proteins for live imaging in Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1445186. [PMID: 39314874 PMCID: PMC11416942 DOI: 10.3389/fmicb.2024.1445186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Among hyperthermophilic organisms, in vivo protein localization is challenging due to the high growth temperatures that can disrupt proper folding and function of mostly mesophilic-derived fluorescent proteins. While protein localization in the thermophilic model archaeon S. acidocaldarius has been achieved using antibodies with fluorescent probes in fixed cells, the use of thermostable fluorescent proteins for live imaging in thermophilic archaea has so far been unsuccessful. Given the significance of live protein localization in the field of archaeal cell biology, we aimed to identify fluorescent proteins for use in S. acidocaldarius. Methods We expressed various previously published and optimized thermostable fluorescent proteins along with fusion proteins of interest and analyzed the cells using flow cytometry and (thermo-) fluorescent microscopy. Results Of the tested proteins, thermal green protein (TGP) exhibited the brightest fluorescence when expressed in Sulfolobus cells. By optimizing the linker between TGP and a protein of interest, we could additionally successfully fuse proteins with minimal loss of fluorescence. TGP-CdvB and TGP-PCNA1 fusions displayed localization patterns consistent with previous immunolocalization experiments. Discussion These initial results in live protein localization in S. acidocaldarius at high temperatures, combined with recent advancements in thermomicroscopy, open new avenues in the field of archaeal cell biology. This progress finally enables localization experiments in thermophilic archaea, which have so far been limited to mesophilic organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Gyger J, Torrens G, Cava F, Bernhardt TG, Fumeaux C. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Pseudomonas aeruginosa. mBio 2024; 15:e0141924. [PMID: 38920394 PMCID: PMC11253642 DOI: 10.1128/mbio.01419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Pseudomonas aeruginosa encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of ampC is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks. Mutants in dacB occur in beta-lactam-resistant clinical isolates of P. aeruginosa, but it has remained unclear why DacB inactivation promotes ampC induction. Similarly, the inactivation of lytic transglycosylase (LT) enzymes such as SltB1 that cut PG glycans has also been associated with ampC induction and beta-lactam resistance. Given that LT enzymes are capable of producing AMP products that serve as ampC inducers, this latter observation has been especially difficult to explain. Here, we show that ampC induction in sltB1 or dacB mutants requires another LT enzyme called MltG. In Escherichia coli, MltG has been implicated in the degradation of nascent PG strands produced upon beta-lactam treatment. Accordingly, in P. aeruginosa sltB1 and dacB mutants, we detected the MltG-dependent production of pentapeptide-containing AMP products that are signatures of nascent PG degradation. Our results therefore support a model in which SltB1 and DacB use their PG-cleaving activity to open space in the PG matrix for the insertion of new material. Thus, their inactivation mimics low-level beta-lactam treatment by reducing the efficiency of new PG insertion into the wall, causing the degradation of some nascent PG material by MltG to produce the ampC-inducing signal. IMPORTANCE Inducible beta-lactamases like the ampC system of Pseudomonas aeruginosa are a common determinant of beta-lactam resistance among gram-negative bacteria. The regulation of ampC is elegantly tuned to detect defects in cell wall synthesis caused by beta-lactam drugs. Studies of mutations causing ampC induction in the absence of drug therefore promise to reveal new insights into the process of cell wall biogenesis in addition to aiding our understanding of how resistance to beta-lactam antibiotics arises in the clinic. In this study, the ampC induction phenotype for mutants lacking a glycan-cleaving enzyme or an enzyme that cuts cell wall crosslinks was used to uncover a potential role for these enzymes in making space in the wall matrix for the insertion of new material during cell growth.
Collapse
Affiliation(s)
- Joël Gyger
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gabriel Torrens
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Thomas G. Bernhardt
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Coralie Fumeaux
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
7
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Kawai Y, Kawai M, Mackenzie ES, Dashti Y, Kepplinger B, Waldron KJ, Errington J. On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis. Nat Commun 2023; 14:4123. [PMID: 37433811 DOI: 10.1038/s41467-023-39723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Inhibition of bacterial cell wall synthesis by antibiotics such as β-lactams is thought to cause explosive lysis through loss of cell wall integrity. However, recent studies on a wide range of bacteria have suggested that these antibiotics also perturb central carbon metabolism, contributing to death via oxidative damage. Here, we genetically dissect this connection in Bacillus subtilis perturbed for cell wall synthesis, and identify key enzymatic steps in upstream and downstream pathways that stimulate the generation of reactive oxygen species through cellular respiration. Our results also reveal the critical role of iron homeostasis for the oxidative damage-mediated lethal effects. We show that protection of cells from oxygen radicals via a recently discovered siderophore-like compound uncouples changes in cell morphology normally associated with cell death, from lysis as usually judged by a phase pale microscopic appearance. Phase paling appears to be closely associated with lipid peroxidation.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Maki Kawai
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilidh Sohini Mackenzie
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernhard Kepplinger
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Kevin John Waldron
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P, Srinivasan R. A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell 2023; 34:ar16. [PMID: 36652338 PMCID: PMC10011733 DOI: 10.1091/mbc.e22-12-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and β-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhagyashri Soumya Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Srilakshmi Kalathil
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
10
|
Cylke KC, Si F, Banerjee S. Effects of antibiotics on bacterial cell morphology and their physiological origins. Biochem Soc Trans 2022; 50:1269-1279. [PMID: 36093840 PMCID: PMC10152891 DOI: 10.1042/bst20210894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Characterizing the physiological response of bacterial cells to antibiotic treatment is crucial for the design of antibacterial therapies and for understanding the mechanisms of antibiotic resistance. While the effects of antibiotics are commonly characterized by their minimum inhibitory concentrations or the minimum bactericidal concentrations, the effects of antibiotics on cell morphology and physiology are less well characterized. Recent technological advances in single-cell studies of bacterial physiology have revealed how different antibiotic drugs affect the physiological state of the cell, including growth rate, cell size and shape, and macromolecular composition. Here, we review recent quantitative studies on bacterial physiology that characterize the effects of antibiotics on bacterial cell morphology and physiological parameters. In particular, we present quantitative data on how different antibiotic targets modulate cellular shape metrics including surface area, volume, surface-to-volume ratio, and the aspect ratio. Using recently developed quantitative models, we relate cell shape changes to alterations in the physiological state of the cell, characterized by changes in the rates of cell growth, protein synthesis and proteome composition. Our analysis suggests that antibiotics induce distinct morphological changes depending on their cellular targets, which may have important implications for the regulation of cellular fitness under stress.
Collapse
Affiliation(s)
- K. Callaghan Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Fangwei Si
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Novel MreB inhibitors with antibacterial activity against Gram (-) bacteria. Med Chem Res 2022; 31:1679-1704. [PMID: 37077288 PMCID: PMC10112653 DOI: 10.1007/s00044-022-02967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
MreB is a cytoskeleton protein present in rod-shaped bacteria that is both essential for bacterial cell division and highly conserved. Because most Gram (-) bacteria require MreB for cell division, chromosome segregation, cell wall morphogenesis, and cell polarity, it is an attractive target for antibacterial drug discovery. As MreB modulation is not associated with the activity of antibiotics in clinical use, acquired resistance to MreB inhibitors is also unlikely. Compounds, such as A22 and CBR-4830, are known to disrupt MreB function by inhibition of ATPase activity. However, the toxicity of these compounds has hindered efforts to assess the in vivo efficacy of these MreB inhibitors. The present study further examines the structure-activity of analogs related to CBR-4830 as it relates to relative antibiotic activity and improved drug properties. These data reveal that certain analogs have enhanced antibiotic activity. In addition, we evaluated several representative analogs (9, 10, 14, 26, and 31) for their abilities to target purified E. coli MreB (EcMreB) and inhibit its ATPase activity. Except for 14, all these analogs were more potent than CBR-4830 as inhibitors of the ATPase activity of EcMreB with corresponding IC50 values ranging from 6 ± 2 to 29 ± 9 μM.
Collapse
|
12
|
Pande V, Mitra N, Bagde SR, Srinivasan R, Gayathri P. Filament organization of the bacterial actin MreB is dependent on the nucleotide state. J Biophys Biochem Cytol 2022; 221:213108. [PMID: 35377392 PMCID: PMC9195046 DOI: 10.1083/jcb.202106092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
MreB, the bacterial ancestor of eukaryotic actin, is responsible for shape in most rod-shaped bacteria. Despite belonging to the actin family, the relevance of nucleotide-driven polymerization dynamics for MreB function is unclear. Here, we provide insights into the effect of nucleotide state on membrane binding of Spiroplasma citri MreB5 (ScMreB5). Filaments of ScMreB5WT and an ATPase-deficient mutant, ScMreB5E134A, assemble independently of the nucleotide state. However, capture of the filament dynamics revealed that efficient filament formation and organization through lateral interactions are affected in ScMreB5E134A. Hence, the catalytic glutamate functions as a switch, (a) by sensing the ATP-bound state for filament assembly and (b) by assisting hydrolysis, thereby potentially triggering disassembly, as observed in other actins. Glu134 mutation and the bound nucleotide exhibit an allosteric effect on membrane binding, as observed from the differential liposome binding. We suggest that the conserved ATP-dependent polymerization and disassembly upon ATP hydrolysis among actins has been repurposed in MreBs for modulating filament organization on the membrane.
Collapse
Affiliation(s)
- Vani Pande
- Indian Institute of Science Education and Research, Pune, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institutes, Training School Complex, Anushakti Nagar, Mumbai, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | | |
Collapse
|
13
|
Lobritz MA, Andrews IW, Braff D, Porter CBM, Gutierrez A, Furuta Y, Cortes LBG, Ferrante T, Bening SC, Wong F, Gruber C, Bakerlee C, Lambert G, Walker GC, Dwyer DJ, Collins JJ. Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality. Cell Chem Biol 2022; 29:276-286.e4. [PMID: 34990601 PMCID: PMC8857051 DOI: 10.1016/j.chembiol.2021.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
β-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that β-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by β-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the β-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for β-lactam antibiotic lethality.
Collapse
Affiliation(s)
- Michael A. Lobritz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA,Present address: Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland,These authors contributed equally
| | - Ian W. Andrews
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,These authors contributed equally
| | - Dana Braff
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA,Present address: GRO Biosciences, Cambridge, MA 02139, USA
| | - Caroline B. M. Porter
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Arnaud Gutierrez
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Present address: Institut Cochin, INSERM U1016 – CNRS UMR8104 – Université Paris Descartes, 75014 Paris, France
| | - Yoshikazu Furuta
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Present address: Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Louis B. G. Cortes
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sarah C. Bening
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Felix Wong
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Charley Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chris Bakerlee
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Guillaume Lambert
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel J. Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, Department of Biomedical Engineering, and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA,Corresponding authors: ,
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA,Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA,Lead contact,Corresponding authors: ,
| |
Collapse
|
14
|
Cell density-dependent antibiotic tolerance to inhibition of the elongation machinery requires fully functional PBP1B. Commun Biol 2022; 5:107. [PMID: 35115684 PMCID: PMC8813938 DOI: 10.1038/s42003-022-03056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/18/2022] [Indexed: 01/20/2023] Open
Abstract
The peptidoglycan (PG) cell wall provides shape and structure to most bacteria. There are two systems to build PG in rod shaped organisms: the elongasome and divisome, which are made up of many proteins including the essential MreB and PBP2, or FtsZ and PBP3, respectively. The elongasome is responsible for PG insertion during cell elongation, while the divisome is responsible for septal PG insertion during division. We found that the main elongasome proteins, MreB and PBP2, can be inhibited without affecting growth rate in a quorum sensing-independent density-dependent manner. Before cells reach a particular cell density, inhibition of the elongasome results in different physiological responses, including intracellular vesicle formation and an increase in cell size. This inhibition of MreB or PBP2 can be compensated for by the presence of the class A penicillin binding protein, PBP1B. Furthermore, we found this density-dependent growth resistance to be specific for elongasome inhibition and was consistent across multiple Gram-negative rods, providing new areas of research into antibiotic treatment.
Collapse
|
15
|
Zhou Z. Bistability of a helical filament confined on a cylinder. Phys Rev E 2022; 105:024502. [PMID: 35291070 DOI: 10.1103/physreve.105.024502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The natural configuration of an intrinsically curved and twisted filament is uniquely a helix so that it can be referred to as a helical filament. We find that confining a helical filament on a cylinder can create a bistable state. When c_{0}R=0.5, where c_{0} is the intrinsic curvature of filament and R is the radius of cylinder, the phase diagram for the stability of a helix contains three regimes. Regime I has a small intrinsic twisting rate (ITR) and exhibits a bistable state which consists of two isoenergic helices. In regime II, the filament has a moderate ITR and the bistable state consists of a metastable low-pitch helix and a stable nonhelix. In regime III, the helix is unstable, owing to a large ITR. A similar phenomenon occurs when c_{0}R∼0.5. Monte Carlo simulation confirms these conclusions and indicates further that there are bistable nonhelices in regime III. This bistable system offers a prospective green material since the wide range of parameters and distinctive configurations for bistable states favor its realization and application.
Collapse
Affiliation(s)
- Zicong Zhou
- Department of Physics, Tamkang University, 151 Ying-chuan, Tamsui 25137, Taiwan, ROC
| |
Collapse
|
16
|
Awuni E. Modeling the MreB-CbtA Interaction to Facilitate the Prediction and Design of Candidate Antibacterial Peptides. Front Mol Biosci 2022; 8:814935. [PMID: 35155572 PMCID: PMC8828653 DOI: 10.3389/fmolb.2021.814935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Protein-protein interactions (PPIs) have emerged as promising targets for PPI modulators as alternative drugs because they are essential for most biochemical processes in living organisms. In recent years, a spotlight has been put on the development of peptide-based PPI inhibitors as the next-generation therapeutics to combat antimicrobial resistance taking cognizance of protein-based PPI-modulators that interact with target proteins to inhibit function. Although protein-based PPI inhibitors are not effective therapeutic agents because of their high molecular weights, they could serve as sources for peptide-based pharmaceutics if the target-inhibitor complex is accessible and well characterized. The Escherichia coli (E. coli) toxin protein, CbtA, has been identified as a protein-based PPI modulator that binds to the bacterial actin homolog MreB leading to the perturbation of its polymerization dynamics; and consequently has been suggested to have antibacterial properties. Unfortunately, however, the three-dimensional structures of CbtA and the MreB-CbtA complex are currently not available to facilitate the optimization process of the pharmacological properties of CbtA. In this study, computer modeling strategies were used to predict key MreB-CbtA interactions to facilitate the design of antiMreB peptide candidates. A model of the E. coli CbtA was built using the trRosetta software and its stability was assessed through molecular dynamics (MD) simulations. The modeling and simulations data pointed to a model with reasonable quality and stability. Also, the HADDOCK software was used to predict a possible MreB-CbtA complex, which was characterized through MD simulations and compared with MreB-MreB dimmer. The results suggest that CbtA inhibits MreB through the competitive mechanism whereby CbtA competes with MreB monomers for the interprotofilament interface leading to interference with double protofilament formation. Additionally, by using the antiBP software to predict antibacterial peptides in CbtA, and the MreB-CbtA complex as the reference structure to determine important interactions and contacts, candidate antiMreB peptides were suggested. The peptide sequences could be useful in a rational antimicrobial peptide hybridization strategy to design novel antibiotics. All-inclusive, the data reveal the molecular basis of MreB inhibition by CbtA and can be incorporated in the design/development of the next-generation antibacterial peptides targeting MreB.
Collapse
|
17
|
Bacterial Filamentation Drives Colony Chirality. mBio 2021; 12:e0154221. [PMID: 34724813 PMCID: PMC8561393 DOI: 10.1128/mbio.01542-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chirality is ubiquitous in nature, with consequences at the cellular and tissue scales. As Escherichia coli colonies expand radially, an orthogonal component of growth creates a pinwheel-like pattern that can be revealed by fluorescent markers. To elucidate the mechanistic basis of this colony chirality, we investigated its link to left-handed, single-cell twisting during E. coli elongation. While chemical and genetic manipulation of cell width altered single-cell twisting handedness, colonies ceased to be chiral rather than switching handedness, and anaerobic growth altered colony chirality without affecting single-cell twisting. Chiral angle increased with increasing temperature even when growth rate decreased. Unifying these findings, we discovered that colony chirality was associated with the propensity for cell filamentation. Inhibition of cell division accentuated chirality under aerobic growth and generated chirality under anaerobic growth. Thus, regulation of cell division is intrinsically coupled to colony chirality, providing a mechanism for tuning macroscale spatial patterning. IMPORTANCE Chiral objects, such as amino acids, are distinguishable from their mirror image. For living systems, the fundamental mechanisms relating cellular handedness to chirality at the multicellular scale remain largely mysterious. Here, we use chemical, genetic, and environmental perturbations of Escherichia coli to investigate whether pinwheel patterns in bacterial colonies are directly linked to single-cell growth behaviors. We discover that chirality can be abolished without affecting single-cell twisting; instead, the degree of chirality was linked to the proportion of highly elongated cells at the colony edge. Inhibiting cell division boosted the degree of chirality during aerobic growth and even introduced chirality to otherwise achiral colonies during anaerobic growth. These findings reveal a fascinating connection between cell division and macroscopic colony patterning.
Collapse
|
18
|
Synergistic Antibacterial and Antibiofilm Activity of the MreB Inhibitor A22 Hydrochloride in Combination with Conventional Antibiotics against Pseudomonas aeruginosa and Escherichia coli Clinical Isolates. Int J Microbiol 2021; 2021:3057754. [PMID: 34484344 PMCID: PMC8413048 DOI: 10.1155/2021/3057754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
In the era of antibiotic resistance, the bacterial cytoskeletal protein MreB is presented as a potential target for the development of novel antimicrobials. Combined treatments of clinical antibiotics with anti-MreB compounds may be promising candidates in combating the resistance crisis, but also in preserving the potency of many conventional drugs. This study aimed to evaluate the synergistic antibacterial and antibiofilm activities of the MreB inhibitor A22 hydrochloride in combination with various antibiotics. The minimum inhibitory concentration (MIC) values of the individual compounds were determined by the broth microdilution method against 66 clinical isolates of Gram-negative bacteria. Synergy was assessed by the checkerboard assay. The fractional inhibitory concentration index was calculated for each of the A22-antibiotic combination. Bactericidal activity of the combinations was evaluated by time-kill curve assays. The antibiofilm activity of the most synergistic combinations was determined by crystal violet stain, methyl thiazol tetrazolium assay, and confocal laser scanning microscopy analysis. The combined cytotoxic and hemolytic activity was also evaluated toward human cells. According to our results, Pseudomonas aeruginosa and Escherichia coli isolates were resistant to conventional antibiotics to varying degrees. A22 inhibited the bacterial growth in a dose-dependent manner with MIC values ranging between 2 and 64 μg/mL. In combination studies, synergism occurred most frequently with A22-ceftazidime and A22-meropemen against Pseudomonas aeruginosa and A22-cefoxitin and A22-azithromycin against Escherichia coli. No antagonism was observed. In time-kill studies, synergism was observed with all expected combinations. Synergistic combinations even at the lowest tested concentrations were able to inhibit biofilm formation and eradicate mature biofilms in both strains. Cytotoxic and hemolytic effects of the same combinations toward human cells were not observed. The findings of the present study support previous research regarding the use of MreB as a novel antibiotic target. The obtained data expand the existing knowledge about the antimicrobial and antibiofilm activity of the A22 inhibitor, and they indicate that A22 can serve as a leading compound for studying potential synergism between MreB inhibitors and antibiotics in the future.
Collapse
|
19
|
Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density. Proc Natl Acad Sci U S A 2021; 118:2021416118. [PMID: 34341116 PMCID: PMC8364103 DOI: 10.1073/pnas.2021416118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular biomass density is an important variable for cellular physiology. It defines the crowded state of the cytoplasm and thus influences macromolecular interactions and transport. To control density during growth, bacteria must expand their cell volumes in synchrony with biomass. The regulation of volume growth and biomass density remain fundamentally not understood—in bacteria or any other organism. Using advanced microscopy, we demonstrate that cells control dry-mass density indirectly through two independent processes. First, cells expand surface area, rather than volume, in proportion with biomass growth. Second, cell width is controlled independently, with an important influence of turgor pressure. Our findings overturn a long-standing paradigm of mass-density constancy in bacteria and reveal fundamental determinants of dry-mass density and shape. During growth, cells must expand their cell volumes in coordination with biomass to control the level of cytoplasmic macromolecular crowding. Dry-mass density, the average ratio of dry mass to volume, is roughly constant between different nutrient conditions in bacteria, but it remains unknown whether cells maintain dry-mass density constant at the single-cell level and during nonsteady conditions. Furthermore, the regulation of dry-mass density is fundamentally not understood in any organism. Using quantitative phase microscopy and an advanced image-analysis pipeline, we measured absolute single-cell mass and shape of the model organisms Escherichia coli and Caulobacter crescentus with improved precision and accuracy. We found that cells control dry-mass density indirectly by expanding their surface, rather than volume, in direct proportion to biomass growth—according to an empirical surface growth law. At the same time, cell width is controlled independently. Therefore, cellular dry-mass density varies systematically with cell shape, both during the cell cycle or after nutrient shifts, while the surface-to-mass ratio remains nearly constant on the generation time scale. Transient deviations from constancy during nutrient shifts can be reconciled with turgor-pressure variations and the resulting elastic changes in surface area. Finally, we find that plastic changes of cell width after nutrient shifts are likely driven by turgor variations, demonstrating an important regulatory role of mechanical forces for width regulation. In conclusion, turgor-dependent cell width and a slowly varying surface-to-mass coupling constant are the independent variables that determine dry-mass density.
Collapse
|
20
|
Wong F, Wilson S, Helbig R, Hegde S, Aftenieva O, Zheng H, Liu C, Pilizota T, Garner EC, Amir A, Renner LD. Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Front Microbiol 2021; 12:712007. [PMID: 34421870 PMCID: PMC8372035 DOI: 10.3389/fmicb.2021.712007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to β-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating β-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to β-lactams aimed at targeting cellular turgor.
Collapse
Affiliation(s)
- Felix Wong
- Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ralf Helbig
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Smitha Hegde
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Olha Aftenieva
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Hai Zheng
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Center for Systems Biology, Harvard University, Cambridge, MA, United States
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| |
Collapse
|
21
|
Venit T, El Said NH, Mahmood SR, Percipalle P. A dynamic actin-dependent nucleoskeleton and cell identity. J Biochem 2021; 169:243-257. [PMID: 33351909 DOI: 10.1093/jb/mvaa133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.
Collapse
Affiliation(s)
- Tomas Venit
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Nadine Hosny El Said
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates
| | - Syed Raza Mahmood
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), PO Box 129188, Abu Dhabi United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 114 18 Stockholm, Sweden
| |
Collapse
|
22
|
Garner EC. Toward a Mechanistic Understanding of Bacterial Rod Shape Formation and Regulation. Annu Rev Cell Dev Biol 2021; 37:1-21. [PMID: 34186006 DOI: 10.1146/annurev-cellbio-010521-010834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most common bacterial shapes is a rod, yet we have a limited understanding of how this simple shape is constructed. While only six proteins are required for rod shape, we are just beginning to understand how they self-organize to build the micron-sized enveloping structures that define bacterial shape out of nanometer-sized glycan strains. Here, we detail and summarize the insights gained over the last 20 years into this complex problem that have been achieved with a wide variety of different approaches. We also explain and compare both current and past models of rod shape formation and maintenance and then highlight recent insights into how the Rod complex might be regulated. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
23
|
Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell 2021; 81:2201-2215.e9. [PMID: 34019789 PMCID: PMC8484514 DOI: 10.1016/j.molcel.2021.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.
Collapse
Affiliation(s)
- Anthony L Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter I Wu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Gene knockout revealed the role of gene feoA in cell growth and division of Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol 2021; 203:3541-3549. [PMID: 33942158 DOI: 10.1007/s00203-021-02345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Gene feoA plays an important role in cell growth because of its function of transport Fe2+ which is a necessary element for cells. In this study, the recombinant plasmid pUC19-feoA-Tet was successfully constructed using the inserted gene inactivation method. Using the homologous recombination technique, the tet gene was used as a resistance screening marker to knock out the feoA gene of Lactobacillus delbrueckii subsp. bulgaricus 34.5 (strain 34.5). Comparative analysis of growth curves revealed the growth changes in the absence of feoA gene in strain 34.5. The results showed that the growth of the bacteria was prolonged by 2 h and could be restored in the stationary phase. To further study whether feoA is related to the cell division of strain 34.5, the qPCR experiment was carried out. The results showed that, compared with the wild-type strain, the expression of genes related to cell division in the mutant strain was up-regulated in the pre-log phase, down-regulated in the late-log phase, and returned to the original level in the stationary phase. These findings provide ideas for Lactobacillus delbrueckii subsp. bulgaricus to control division and cell cycle.
Collapse
|
25
|
Zhang H, Venkatesan S, Nan B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms 2021; 9:microorganisms9050916. [PMID: 33923279 PMCID: PMC8144978 DOI: 10.3390/microorganisms9050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental question in biology is how cell shapes are genetically encoded and enzymatically generated. Prevalent shapes among walled bacteria include spheres and rods. These shapes are chiefly determined by the peptidoglycan (PG) cell wall. Bacterial division results in two daughter cells, whose shapes are predetermined by the mother. This makes it difficult to explore the origin of cell shapes in healthy bacteria. In this review, we argue that the Gram-negative bacterium Myxococcus xanthus is an ideal model for understanding PG assembly and bacterial morphogenesis, because it forms rods and spheres at different life stages. Rod-shaped vegetative cells of M. xanthus can thoroughly degrade their PG and form spherical spores. As these spores germinate, cells rebuild their PG and reestablish rod shape without preexisting templates. Such a unique sphere-to-rod transition provides a rare opportunity to visualize de novo PG assembly and rod-like morphogenesis in a well-established model organism.
Collapse
|
26
|
Barton B, Grinnell A, Morgenstein RM. Disruption of the MreB Elongasome Is Overcome by Mutations in the Tricarboxylic Acid Cycle. Front Microbiol 2021; 12:664281. [PMID: 33968001 PMCID: PMC8102728 DOI: 10.3389/fmicb.2021.664281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
The bacterial actin homolog, MreB, is highly conserved among rod-shaped bacteria and essential for growth under normal growth conditions. MreB directs the localization of cell wall synthesis and loss of MreB results in round cells and death. Using the MreB depolymerizing drug, A22, we show that changes to central metabolism through deletion of malate dehydrogenase from the tricarboxylic acid (TCA) cycle results in cells with an increased tolerance to A22. We hypothesize that deletion of malate dehydrogenase leads to the upregulation of gluconeogenesis resulting in an increase in cell wall precursors. Consistent with this idea, metabolite analysis revealed that malate dehydrogenase (mdh) deletion cells possess elevated levels of several glycolysis/gluconeogenesis compounds and the cell wall precursor, uridine diphosphate N-acetylglucosamine (UDP-NAG). In agreement with these results, the increased A22 resistance phenotype can be recapitulated through the addition of glucose to the media. Finally, we show that this increase in antibiotic tolerance is not specific to A22 but also applies to the cell wall-targeting antibiotic, mecillinam.
Collapse
Affiliation(s)
- Brody Barton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Addison Grinnell
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Randy M Morgenstein
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
27
|
Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments. Nat Commun 2021; 12:1975. [PMID: 33785742 PMCID: PMC8009875 DOI: 10.1038/s41467-021-22092-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
The steady-state size of bacterial cells correlates with nutrient-determined growth rate. Here, we explore how rod-shaped bacterial cells regulate their morphology during rapid environmental changes. We quantify cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation. We find that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V), which are conserved across genetic and chemical perturbations as well as across species and growth temperatures. A mathematical model with a single fitting parameter (the time delay between surface and volume synthesis) is quantitatively consistent with our SA/V experimental observations. The model supports that this time delay is due to differential expression of volume and surface-related genes, and that the first division after dilution occurs at a tightly controlled SA/V. Our minimal model thus provides insight into the connections between bacterial growth rate and cell shape in dynamic environments. Bacterial cells actively change their size and shape in response to external environments. Here, Shi et al. explore how cells regulate their morphology during rapid environmental changes, showing that the characteristic dynamics of surface area-to-volume ratio are conserved across genetic and chemical perturbations, as well as across species and growth temperatures.
Collapse
|
28
|
A CRISPR interference platform for selective downregulation of gene expression in Borrelia burgdorferi. Appl Environ Microbiol 2021; 87:AEM.02519-20. [PMID: 33257311 PMCID: PMC7851697 DOI: 10.1128/aem.02519-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The spirochete Borrelia burgdorferi causes Lyme disease, an increasingly prevalent infection. While previous studies have provided important insight into B. burgdorferi biology, many aspects, including basic cellular processes, remain underexplored. To help speed up the discovery process, we adapted a CRISPR interference (CRISPRi) platform for use in B. burgdorferi For efficiency and flexibility of use, we generated various CRISPRi template constructs that produce different basal and induced levels of dcas9 and carry different antibiotic resistance markers. We characterized the effectiveness of our CRISPRi platform by targeting the motility and cell morphogenesis genes flaB, mreB, rodA, and ftsI, whose native expression levels span two orders of magnitude. For all four genes, we obtained gene repression efficiencies of at least 95%. We showed by darkfield microscopy and cryo-electron tomography that flagellin (FlaB) depletion reduced the length and number of periplasmic flagella, which impaired cellular motility and resulted in cell straightening. Depletion of FtsI caused cell filamentation, implicating this protein in cell division in B. burgdorferi Finally, localized cell bulging in MreB- and RodA-depleted cells matched the locations of new peptidoglycan insertion specific to spirochetes of the Borrelia genus. These results therefore implicate MreB and RodA in the particular mode of cell wall elongation of these bacteria. Collectively, our results demonstrate the efficiency and ease of use of our B. burgdorferi CRISPRi platform, which should facilitate future genetic studies of this important pathogen.IMPORTANCE Gene function studies are facilitated by the availability of rapid and easy-to-use genetic tools. Homologous recombination-based methods traditionally used to genetically investigate gene function remain cumbersome to perform in B. burgdorferi, as they often are relatively inefficient. In comparison, our CRISPRi platform offers an easy and fast method to implement as it only requires a single plasmid transformation step and IPTG addition to obtain potent (>95%) downregulation of gene expression. To facilitate studies of various genes in wild-type and genetically modified strains, we provide over 30 CRISPRi plasmids that produce distinct levels of dcas9 expression and carry different antibiotic resistance markers. Our CRISPRi platform represents a useful and efficient complement to traditional genetic and chemical methods to study gene function in B. burgdorferi.
Collapse
|
29
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
30
|
Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Fröhlich KS, Schröger L, Bramkamp M, Drescher K, Papenfort K. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat Commun 2020; 11:6067. [PMID: 33247102 PMCID: PMC7695739 DOI: 10.1038/s41467-020-19890-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae, the cause of cholera disease, exhibits a characteristic curved rod morphology, which promotes infectivity and motility in dense hydrogels. Periplasmic protein CrvA determines cell curvature in V. cholerae, yet the regulatory factors controlling CrvA are unknown. Here, we discover the VadR small RNA (sRNA) as a post-transcriptional inhibitor of the crvA mRNA. Mutation of vadR increases cell curvature, whereas overexpression has the inverse effect. We show that vadR transcription is activated by the VxrAB two-component system and triggered by cell-wall-targeting antibiotics. V. cholerae cells failing to repress crvA by VadR display decreased survival upon challenge with penicillin G indicating that cell shape maintenance by the sRNA is critical for antibiotic resistance. VadR also blocks the expression of various key biofilm genes and thereby inhibits biofilm formation in V. cholerae. Thus, VadR is an important regulator for synchronizing peptidoglycan integrity, cell shape, and biofilm formation in V. cholerae.
Collapse
Affiliation(s)
- Nikolai Peschek
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Roman Herzog
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | - Fabian Meyer
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luise Schröger
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany.
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany.
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
31
|
Li H, Gao T. MreB and MreC act as the geometric moderators of the cell wall synthetic machinery in Thermus thermophiles. Microbiol Res 2020; 243:126655. [PMID: 33279728 DOI: 10.1016/j.micres.2020.126655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
How cell morphology is maintained in thermophilic bacteria is unknown. In this study, the functions and mechanisms of the potential cell shape determinants (e.g. MreB, MreC, MreD and RodA homologues) of the model extremely thermophilic bacterium Thermus thermophilus were initially analyzed. Deletion of mreC, mreD or rodA only resulted in heterozygous mutants indicating that these genes are all essential. In the MreB-inhibited (by A22) strain and the heterozygous mreC, mreD or rodA mutant, cell morphologies were drastically changed, and enlarged spherical cells were eventually dead indicating that they are vital for cell shape maintenance. When fused to sGFP, MreB, MreC, MreD, RodA, and the enzymes involved in peptidoglycan synthesis (e.g. PBP2 and MurG) exhibited similar subcellular localization pattern, appearing as patches, or bands slightly angled to the cell length. The localizations and functions of all the 6 proteins required a natural peptidoglycan synthesis pattern, additionally those of MreD, RodA and MurG were dependent on MreB polymerization. Consistently, through comprehensive bacterial two-hybrid analyses, it was revealed that MreB could interact with itself, MreC, MreD, RodA and MurG, and MreC could associate with PBP2. In conclusion, in T. thermophilus, MreB, MreC, MreD, RodA and the peptidoglycan synthesis enzymes probably form a network of interactions centered with MreB and bridged with MreC, thereby maintaining cell morphology.
Collapse
Affiliation(s)
- Haijuan Li
- College of Biological and Environmental Engineering, Xi'an University, No. 168 South Taibai Road, Xi'an, 710065, China.
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi'an University, No. 168 South Taibai Road, Xi'an, 710065, China
| |
Collapse
|
32
|
Higuchi-Takeuchi M, Miyamoto T, Foong CP, Goto M, Morisaki K, Numata K. Peptide-Mediated Gene Transfer into Marine Purple Photosynthetic Bacteria. Int J Mol Sci 2020; 21:ijms21228625. [PMID: 33207642 PMCID: PMC7697693 DOI: 10.3390/ijms21228625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/22/2022] Open
Abstract
Use of photosynthetic organisms is one of the sustainable ways to produce high-value products. Marine purple photosynthetic bacteria are one of the research focuses as microbial production hosts. Genetic transformation is indispensable as a biotechnology technique. However, only conjugation has been determined to be an applicable method for the transformation of marine purple photosynthetic bacteria so far. In this study, for the first time, a dual peptide-based transformation method combining cell penetrating peptide (CPP), cationic peptide and Tat-derived peptide (dTat-Sar-EED) (containing D-amino acids of Tat and endosomal escape domain (EED) connected by sarcosine linkers) successfully delivered plasmid DNA into Rhodovulum sulfidophilum, a marine purple photosynthetic bacterium. The plasmid delivery efficiency was greatly improved by dTat-Sar-EED. The concentrations of dTat-Sar-EED, cell growth stage and recovery duration affected the efficiency of plasmid DNA delivery. The delivery was inhibited at 4 °C and by A22, which is an inhibitor of the actin homolog MreB. This suggests that the plasmid DNA delivery occurred via MreB-mediated energy dependent process. Additionally, this peptide-mediated delivery method was also applicable for E. coli cells. Thus, a wide range of bacteria could be genetically transformed by using this novel peptide-based transformation method.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Correspondence: (M.H.-T.); (K.N.)
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Choon Pin Foong
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Kumiko Morisaki
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
- Correspondence: (M.H.-T.); (K.N.)
| |
Collapse
|
33
|
Dersch S, Reimold C, Stoll J, Breddermann H, Heimerl T, Defeu Soufo HJ, Graumann PL. Polymerization of Bacillus subtilis MreB on a lipid membrane reveals lateral co-polymerization of MreB paralogs and strong effects of cations on filament formation. BMC Mol Cell Biol 2020; 21:76. [PMID: 33148162 PMCID: PMC7641798 DOI: 10.1186/s12860-020-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MreB is a bacterial ortholog of actin and forms mobile filaments underneath the cell membrane, perpendicular to the long axis of the cell, which play a crucial role for cell shape maintenance. We wished to visualize Bacillus subtilis MreB in vitro and therefore established a protocol to obtain monomeric protein, which could be polymerized on a planar membrane system, or associated with large membrane vesicles. RESULTS Using a planar membrane system and electron microscopy, we show that Bacillus subtilis MreB forms bundles of filaments, which can branch and fuse, with an average width of 70 nm. Fluorescence microscopy of non-polymerized YFP-MreB, CFP-Mbl and mCherry-MreBH proteins showed uniform binding to the membrane, suggesting that 2D diffusion along the membrane could facilitate filament formation. After addition of divalent magnesium and calcium ions, all three proteins formed highly disordered sheets of filaments that could split up or merge, such that at high protein concentration, MreB and its paralogs generated a network of filaments extending away from the membrane. Filament formation was positively affected by divalent ions and negatively by monovalent ions. YFP-MreB or CFP-Mbl also formed filaments between two adjacent membranes, which frequently has a curved appearance. New MreB, Mbl or MreBH monomers could add to the lateral side of preexisting filaments, and MreB paralogs co-polymerized, indicating direct lateral interaction between MreB paralogs. CONCLUSIONS Our data show that B. subtilis MreB paralogs do not easily form ordered filaments in vitro, possibly due to extensive lateral contacts, but can co-polymerise. Monomeric MreB, Mbl and MreBH uniformly bind to a membrane, and form irregular and frequently split up filamentous structures, facilitated by the addition of divalent ions, and counteracted by monovalent ions, suggesting that intracellular potassium levels may be one important factor to counteract extensive filament formation and filament splitting in vivo.
Collapse
Affiliation(s)
- Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Christian Reimold
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Joshua Stoll
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany
| | | | - Thomas Heimerl
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany.,Fachbereich Biologie, Karl-von-Frisch-Straße 10, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Hervé Joel Defeu Soufo
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO) Hans-Meerwein Strasse 6, Philipps-Universität Marburg, 35032, Marburg, Germany. .,Fachbereich Chemie, Hans-Meerwein Strasse, Philipps-Universität Marburg, 35032, Marburg, Germany.
| |
Collapse
|
34
|
AimB Is a Small Protein Regulator of Cell Size and MreB Assembly. Biophys J 2020; 119:593-604. [PMID: 32416080 DOI: 10.1016/j.bpj.2020.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The MreB actin-like cytoskeleton assembles into dynamic polymers that coordinate cell shape in many bacteria. In contrast to most other cytoskeleton systems, few MreB-interacting proteins have been well characterized. Here, we identify a small protein from Caulobacter crescentus, an assembly inhibitor of MreB (AimB). AimB overexpression mimics inhibition of MreB polymerization, leading to increased cell width and MreB delocalization. Furthermore, aimB appears to be essential, and its depletion results in decreased cell width and increased resistance to A22, a small-molecule inhibitor of MreB assembly. Molecular dynamics simulations suggest that AimB binds MreB at its monomer-monomer protofilament interaction cleft and that this interaction is favored for C. crescentus MreB over Escherichia coli MreB because of a closer match in the degree of opening with AimB size, suggesting coevolution of AimB with MreB conformational dynamics in C. crescentus. We support this model through functional analysis of point mutants in both AimB and MreB, photo-cross-linking studies with site-specific unnatural amino acids, and species-specific activity of AimB. Together, our findings are consistent with AimB promoting MreB dynamics by inhibiting monomer-monomer assembly interactions, representing a new mechanism for regulating actin-like polymers and the first identification of a non-toxin MreB assembly inhibitor. Because AimB has only 104 amino acids and small proteins are often poorly characterized, our work suggests the possibility of more bacterial cytoskeletal regulators to be found in this class. Thus, like FtsZ and eukaryotic actin, MreB may have a rich repertoire of regulators to tune its precise assembly and dynamics.
Collapse
|
35
|
Zhang M, Qiao C, Luan G, Luo Q, Lu X. Systematic Identification of Target Genes for Cellular Morphology Engineering in Synechococcus elongatus PCC7942. Front Microbiol 2020; 11:1608. [PMID: 32754143 PMCID: PMC7381316 DOI: 10.3389/fmicb.2020.01608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria are serving as promising microbial platforms for development of photosynthetic cell factories. For enhancing the economic competitiveness of the photosynthetic biomanufacturing technology, comprehensive improvements on industrial properties of the cyanobacteria chassis cells and engineered strains are required. Cellular morphology engineering is an up-and-coming strategy for development of microbial cell factories fitting the requirements of industrial application. In this work, we performed systematic evaluation of potential genes for cyanobacterial cellular morphology engineering. Twelve candidate genes participating in cell morphogenesis of an important model cyanobacteria strain, Synechococcus elongatus PCC7942, were knocked out/down and overexpressed, respectively, and the influences on cell sizes and cell shapes were imaged and calculated. Targeting the selected genes with potentials for cellular morphology engineering, the controllable cell lengthening machinery was also explored based on the application of sRNA approaches. The findings in this work not only provided many new targets for cellular morphology engineering in cyanobacteria, but also helped to further understand the cell division process and cell elongation process of Synechococcus elongatus PCC7942.
Collapse
Affiliation(s)
- Mingyi Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuncun Qiao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Dalian National Laboratory for Clean Energy, Dalian, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Shi H, Quint DA, Grason GM, Gopinathan A, Huang KC. Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation. Nat Commun 2020; 11:1408. [PMID: 32179732 PMCID: PMC7075873 DOI: 10.1038/s41467-020-14752-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
In many rod-shaped bacteria, the actin homolog MreB directs cell-wall insertion and maintains cell shape, but it remains unclear how structural changes to MreB affect its organization in vivo. Here, we perform molecular dynamics simulations for Caulobacter crescentus MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that successfully predicts MreB filament properties in vivo. Our analyses indicate that MreB double protofilaments can exhibit left-handed twisting that is dependent on the bound nucleotide and membrane binding; the degree of twisting correlates with the length and orientation of MreB filaments observed in vitro and in vivo. Our molecular dynamics simulations also suggest that membrane binding of MreB double protofilaments induces a stable membrane curvature of similar magnitude to that observed in vivo. Thus, our multiscale modeling correlates cytoskeletal filament size with conformational changes inferred from molecular dynamics simulations, providing a paradigm for connecting protein filament structure and mechanics to cellular organization and function. The actin homolog MreB directs cell-wall insertion and maintains cell shape in many rod-shaped bacteria. Here, Shi et al. perform molecular dynamics simulations for MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that predicts MreB filament properties.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - David A Quint
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ajay Gopinathan
- Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
37
|
Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. NANOSCALE 2020; 12:3731-3749. [PMID: 31993609 DOI: 10.1039/c9nr10700b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The actin cytoskeleton is required for the maintenance of the cell shape and viability of bacteria. It remains unknown to which extent nanoparticles (NPs) can orchestrate the mechanical instability by disrupting the cytoskeletal network in bacterial cells. Our work demonstrates that Au-Ag NPs disrupt the bacterial actin cytoskeleton specifically, fluidize the inner membrane and lead to killing of bacterial cells. In this study, we have tried to emphasize on the key parameters important for NP-cell interactions and found that the shape, specific elemental surface localization and enhanced electrostatic interaction developed due to the acquired partial positive charge by silver atoms in the aggregated NPs are some of the major factors contributing towards better NP interactions and subsequent cell death. In vivo studies in bacterial cells showed that the NPs exerted a mild perturbation of the membrane potential. However, its most striking effect was on the actin cytoskeleton MreB resulting in morphological changes in the bacterial cell shape from rods to predominantly spheres. Exposure to NPs resulted in the delocalization of MreB patches from the membrane but not the tubulin homologue FtsZ. Concomitant with the redistribution of MreB localization, a dramatic increase of membrane fluid regions was observed. Our studies reveal for the first time that Au-Ag NPs can mediate bacterial killing and disrupt the actin cytoskeletal functions in bacteria.
Collapse
Affiliation(s)
- Prajna Jena
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Gourab Bhattacharjee
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Biswarup Satpati
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Prasun Mukherjee
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
38
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
39
|
Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM, DeMeester KE, Kuru E, Gray J, Biboy J, VanNieuwenhze MS, Vollmer W, Grimes CL, Shaevitz JW, Salama NR. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori. eLife 2020; 9:52482. [PMID: 31916938 PMCID: PMC7012605 DOI: 10.7554/elife.52482] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. The helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod H. pylori. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape. Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria’s cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.
Collapse
Affiliation(s)
- Jennifer A Taylor
- Department of Microbiology, University of Washington, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Benjamin P Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Molecular Biology, Princeton University, Princeton, United States
| | - Sophie R Sichel
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States
| | - Kris M Blair
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| | - Holly M Jacobs
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Joe Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States.,Department of Biological Sciences, University of Delaware, Newark, United States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Physics, Princeton University, Princeton, United States
| | - Nina R Salama
- Department of Microbiology, University of Washington, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States
| |
Collapse
|
40
|
Rojas ER. The Mechanical Properties of Bacteria and Why they Matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1267:1-14. [PMID: 32894474 DOI: 10.1007/978-3-030-46886-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
I review recent techniques to measure the mechanical properties of bacterial cells and their subcellular components, and then discuss what these techniques have revealed about the constitutive mechanical properties of whole bacterial cells and subcellular material, as well as the molecular basis for these properties.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
41
|
Enhanced synthesis of alginate oligosaccharides in Pseudomonas mendocina NK-01 by overexpressing MreB. 3 Biotech 2019; 9:344. [PMID: 31497462 DOI: 10.1007/s13205-019-1873-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022] Open
Abstract
This study aimed to investigate the effects of cytoskeleton protein MreB on bacterial cell morphology and the synthesis of alginate oligosaccharides (AO) and polyhydroxyalkanoate (PHA) by Pseudomonas mendocina NK-01. To overexpress the mreB gene, an expression vector encoding MreB-GFP fusion protein was constructed. The scanning electron microscope (SEM) showed that cells expressing MreB were longer than the wild ones, which agrees with MreB's relationship with the synthesis of peptidoglycan. Cells expressing the MreB-GFP fusion protein emitted green fluorescence under a fluorescence microscope, suggesting that MreB was functionally expressed in strain NK-01. Under a confocal laser scanning microscope, MreB was observed as located around the cell membrane. Furthermore, the recombinant strain could synthesize 0.961 g/L AO, which was 5.86-fold higher than wild-type strain. Through the medium optimization test, we finally selected the addition of 20 g/L glucose as the optimal glycogen addition for AO fermentation based on a high AO yield and high substrate transformation efficiency. The results indicated that overexpression of MreB affected the cell morphology, the activity of AO polymerase, and the efficiency of AO secretion. However, the synthesis of PHA for recombinant strain was slightly reduced. The results suggested that the overexpression of this cytoskeleton protein affected the yield of specific intracellular and extracellular products.
Collapse
|
42
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
43
|
Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nat Commun 2019; 10:2731. [PMID: 31227690 PMCID: PMC6588578 DOI: 10.1038/s41467-019-10650-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Many bacteria and most archaea possess a crystalline protein surface layer (S-layer), which surrounds their growing and topologically complicated outer surface. Constructing a macromolecular structure of this scale generally requires localized enzymatic machinery, but a regulatory framework for S-layer assembly has not been identified. By labeling, superresolution imaging, and tracking the S-layer protein (SLP) from C. crescentus, we show that 2D protein self-assembly is sufficient to build and maintain the S-layer in living cells by efficient protein crystal nucleation and growth. We propose a model supported by single-molecule tracking whereby randomly secreted SLP monomers diffuse on the lipopolysaccharide (LPS) outer membrane until incorporated at the edges of growing 2D S-layer crystals. Surface topology creates crystal defects and boundaries, thereby guiding S-layer assembly. Unsupervised assembly poses challenges for therapeutics targeting S-layers. However, protein crystallization as an evolutionary driver rationalizes S-layer diversity and raises the potential for biologically inspired self-assembling macromolecular nanomaterials. Bacteria assemble the surface layer (S-layer), a crystalline protein coat surrounding the curved surface, using protein self-assembly. Here authors image native and purified RsaA, the S-layer protein from C. crescentus, and show that protein crystallization alone is sufficient to assemble and maintain the S-layer in vivo.
Collapse
|
44
|
Random Chromosome Partitioning in the Polyploid Bacterium Thermus thermophilus HB27. G3-GENES GENOMES GENETICS 2019; 9:1249-1261. [PMID: 30792193 PMCID: PMC6469415 DOI: 10.1534/g3.119.400086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about chromosome segregation in polyploid prokaryotes. In this study, whether stringent or variable chromosome segregation occurs in polyploid thermophilic bacterium Thermus thermophilus was analyzed. A stable heterozygous strain (HL01) containing two antibiotic resistance markers at one gene locus was generated. The inheritance of the two alleles in the progeny of the heterozygous strain was then followed. During incubation without selection pressure, the fraction of heterozygous cells decreased and that of homozygous cells increased, while the relative abundance of each allele in the whole population remained constant, suggesting chromosome segregation had experienced random event. Consistently, in comparison with Bacillus subtilis in which the sister chromosomes were segregated equally, the ratios of DNA content in two daughter cells of T. thermophilus had a broader distribution and a larger standard deviation, indicating that the DNA content in the two daughter cells was not always identical. Further, the protein homologs (i.e., ParA and MreB) which have been suggested to be involved in bacterial chromosome partitioning did not actively participate in the chromosome segregation in T. thermophilus. Therefore, it seems that protein-based chromosome segregation machineries are less critical for the polyploid T. thermophilus, and chromosome segregation in this bacterium are not stringently controlled but tend to be variable, and random segregation can occur.
Collapse
|
45
|
Mechanical property of the helical configuration for a twisted intrinsically straight biopolymer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:329-340. [PMID: 30918999 DOI: 10.1007/s00249-019-01357-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
We explore the effects of two typical torques on the mechanical property of the helical configuration for an intrinsically straight filament or biopolymer either in three-dimensional space or on a cylinder. One torque is parallel to the direction of a uniaxial applied force, and is coupled to the cross section of the filament. We obtain some algebraic equations for the helical configuration and find that the boundary conditions are crucial. In three-dimensional space, we show that the extension is always a monotonic function of the applied force. On the other hand, for a filament confined on a cylinder, the twisting rigidity and torque coupled to the cross section are irrelevant in forming a helix if the filament is isotropic and under free boundary condition. However, the twisting rigidity and the torque coupled to the cross section become crucial when the Euler angle at two ends of the filament are fixed. Particularly, the extension of a helix can subject to a first-order transition so that in such a condition a biopolymer can act as a switch or sensor in some biological processes. We also present several phase diagrams to provide the conditions to form a helix.
Collapse
|
46
|
Awuni E, Mu Y. Effect of A22 on the Conformation of Bacterial Actin MreB. Int J Mol Sci 2019; 20:ijms20061304. [PMID: 30875875 PMCID: PMC6471442 DOI: 10.3390/ijms20061304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanism of the antibiotic molecule A22 is yet to be clearly understood. In a previous study, we carried out molecular dynamics simulations of a monomer of the bacterial actin-like MreB in complex with different nucleotides and A22, and suggested that A22 impedes the release of Pi from the active site of MreB after the hydrolysis of ATP, resulting in filament instability. On the basis of the suggestion that Pi release occurs on a similar timescale to polymerization and that polymerization can occur in the absence of nucleotides, we sought in this study to investigate a hypothesis that A22 impedes the conformational change in MreB that is required for polymerization through molecular dynamics simulations of the MreB protofilament in the apo, ATP+, and ATP-A22+ states. We suggest that A22 inhibits MreB in part by antagonizing the ATP-induced structural changes required for polymerization. Our data give further insight into the polymerization/depolymerization dynamics of MreB and the mechanism of A22.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast 00233, Ghana.
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
47
|
A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet 2019; 15:e1007897. [PMID: 30707707 PMCID: PMC6373972 DOI: 10.1371/journal.pgen.1007897] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Many bacteria have complex cell shapes, but the mechanisms producing their distinctive morphologies are still poorly understood. Caulobacter crescentus, for instance, exhibits a stalk-like extension that carries an adhesive holdfast mediating surface attachment. This structure forms through zonal peptidoglycan biosynthesis at the old cell pole and elongates extensively under phosphate-limiting conditions. We analyzed the composition of cell body and stalk peptidoglycan and identified significant differences in the nature and proportion of peptide crosslinks, indicating that the stalk represents a distinct subcellular domain with specific mechanical properties. To identify factors that participate in stalk formation, we systematically inactivated and localized predicted components of the cell wall biosynthetic machinery of C. crescentus. Our results show that the biosynthesis of stalk peptidoglycan involves a dedicated peptidoglycan biosynthetic complex that combines specific components of the divisome and elongasome, suggesting that the repurposing of preexisting machinery provides a straightforward means to evolve new morphological traits.
Collapse
|
48
|
Shi H, Bratton BP, Gitai Z, Huang KC. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 2019. [PMID: 29522748 DOI: 10.1016/j.cell.2018.02.050] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Pathway-Directed Screen for Inhibitors of the Bacterial Cell Elongation Machinery. Antimicrob Agents Chemother 2018; 63:AAC.01530-18. [PMID: 30323039 DOI: 10.1128/aac.01530-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
New antibiotics are needed to combat the growing problem of resistant bacterial infections. An attractive avenue toward the discovery of such next-generation therapies is to identify novel inhibitors of clinically validated targets, like cell wall biogenesis. We have therefore developed a pathway-directed whole-cell screen for small molecules that block the activity of the Rod system of Escherichia coli This conserved multiprotein complex is required for cell elongation and the morphogenesis of rod-shaped bacteria. It is composed of cell wall synthases and membrane proteins of unknown function that are organized by filaments of the actin-like MreB protein. Our screen takes advantage of the conditional essentiality of the Rod system and the ability of the beta-lactam mecillinam (also known as amdinocillin) to cause a toxic malfunctioning of the machinery. Rod system inhibitors can therefore be identified as molecules that promote growth in the presence of mecillinam under conditions permissive for the growth of Rod- cells. A screen of ∼690,000 compounds identified 1,300 compounds that were active against E. coli Pathway-directed screening of a majority of this subset of compounds for Rod inhibitors successfully identified eight analogs of the MreB antagonist A22. Further characterization of the A22 analogs identified showed that their antibiotic activity under conditions where the Rod system is essential was strongly correlated with their ability to suppress mecillinam toxicity. This result combined with those from additional biological studies reinforce the notion that A22-like molecules are relatively specific for MreB and suggest that the lipoprotein transport factor LolA is unlikely to be a physiologically relevant target as previously proposed.
Collapse
|
50
|
Kelpsch DJ, Tootle TL. Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken) 2018; 301:1999-2013. [PMID: 30312531 PMCID: PMC6289869 DOI: 10.1002/ar.23959] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 01/02/2023]
Abstract
While actin was discovered in the nucleus over 50 years ago, research lagged for decades due to strong skepticism. The revitalization of research into nuclear actin occurred after it was found that cellular stresses induce the nuclear localization and alter the structure of actin. These studies provided the first hints that actin has a nuclear function. Subsequently, it was established that the nuclear import and export of actin is highly regulated. While the structures of nuclear actin remain unclear, it can function as monomers, polymers, and even rods. Furthermore, even within a given structure, distinct pools of nuclear actin that can be differentially labeled have been identified. Numerous mechanistic studies have uncovered an array of functions for nuclear actin. It regulates the activity of RNA polymerases, as well as specific transcription factors. Actin also modulates the activity of several chromatin remodeling complexes and histone deacetylases, to ultimately impinge on transcriptional programing and DNA damage repair. Further, nuclear actin mediates chromatin movement and organization. It has roles in meiosis and mitosis, and these functions may be functionally conserved from ancient bacterial actin homologs. The structure and integrity of the nuclear envelope and sub-nuclear compartments are also regulated by nuclear actin. Furthermore, nuclear actin contributes to human diseases like cancer, neurodegeneration, and myopathies. Here, we explore the early discovery of actin in the nucleus and discuss the forms and functions of nuclear actin in both normal and disease contexts. Anat Rec, 301:1999-2013, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel J. Kelpsch
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, 51 Newton Rd, 1-500 BSB, Iowa City, IA 52242
| |
Collapse
|