1
|
Dong H, Xu B, Guo P, Zhang J, Yang X, Li L, Fu Y, Shi J, Zhang S, Zhu Y, Shi Y, Zhou F, Bian L, You W, Shi F, Yang X, Huang J, He H, Jin Y. Hidden RNA pairings counteract the "first-come, first-served" splicing principle to drive stochastic choice in Dscam1 splice variants. SCIENCE ADVANCES 2022; 8:eabm1763. [PMID: 35080968 PMCID: PMC8791459 DOI: 10.1126/sciadv.abm1763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drosophila melanogaster Dscam1 encodes 38,016 isoforms via mutually exclusive splicing; however, the regulatory mechanism behind this is not fully understood. Here, we found a set of hidden RNA secondary structures that balance the stochastic choice of Dscam1 splice variants (designated balancer RNA secondary structures). In vivo mutational analyses revealed the dual function of these balancer interactions in driving the stochastic choice of splice variants, through enhancement of the inclusion of distal exon 6s by cooperating with docking site–selector pairing to form a stronger multidomain pre-mRNA structure and through simultaneous repression of the inclusion of proximal exon 6s by antagonizing their docking site–selector pairings. Thus, we provide an elegant molecular model based on competition and cooperation between two sets of docking site–selector and balancer pairings, which counteracts the “first-come, first-served” principle. Our findings provide conceptual and mechanistic insight into the dynamics and functions of long-range RNA secondary structures.
Collapse
Affiliation(s)
- Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pengjuan Guo
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haihuai He
- Department of Neurosurgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Hong W, Zhang J, Dong H, Shi Y, Ma H, Zhou F, Xu B, Fu Y, Zhang S, Hou S, Li G, Wu Y, Chen S, Zhu X, You W, Shi F, Yang X, Gong Z, Huang J, Jin Y. Intron-targeted mutagenesis reveals roles for Dscam1 RNA pairing architecture-driven splicing bias in neuronal wiring. Cell Rep 2021; 36:109373. [PMID: 34260933 DOI: 10.1016/j.celrep.2021.109373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam1) can generate 38,016 different isoforms through largely stochastic, yet highly biased, alternative splicing. These isoforms are required for nervous functions. However, the functional significance of splicing bias remains unknown. Here, we provide evidence that Dscam1 splicing bias is required for mushroom body (MB) axonal wiring. We generate mutant flies with normal overall protein levels and an identical number but global changes in exon 4 and 9 isoform bias (DscamΔ4D-/- and DscamΔ9D-/-), respectively. In contrast to DscamΔ4D-/-, DscamΔ9D-/- exhibits remarkable MB defects, suggesting a variable domain-specific requirement for isoform bias. Importantly, changes in isoform bias cause axonal defects but do not influence the self-avoidance of axonal branches. We conclude that, in contrast to the isoform number that provides the molecular basis for neurite self-avoidance, isoform bias may play a role in MB axonal wiring by influencing non-repulsive signaling.
Collapse
Affiliation(s)
- Weiling Hong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Hongru Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Fengyan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shouqing Hou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Guo Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yandan Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Shuo Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaohua Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Wendong You
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Xiaofeng Yang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Zhefeng Gong
- Department of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang ZJ310058, China.
| |
Collapse
|
3
|
Dong H, Li L, Zhu X, Shi J, Fu Y, Zhang S, Shi Y, Xu B, Zhang J, Shi F, Jin Y. Complex RNA Secondary Structures Mediate Mutually Exclusive Splicing of Coleoptera Dscam1. Front Genet 2021; 12:644238. [PMID: 33859670 PMCID: PMC8042237 DOI: 10.3389/fgene.2021.644238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mutually exclusive splicing is an important mechanism for expanding protein diversity. An extreme example is the Down syndrome cell adhesion molecular (Dscam1) gene of insects, containing four clusters of variable exons (exons 4, 6, 9, and 17), which potentially generates tens of thousands of protein isoforms through mutually exclusive splicing, of which regulatory mechanisms are still elusive. Here, we systematically analyzed the variable exon 4, 6, and 9 clusters of Dscam1 in Coleoptera species. Through comparative genomics and RNA secondary structure prediction, we found apparent evidence that the evolutionarily conserved RNA base pairing mediates mutually exclusive splicing in the Dscam1 exon 4 cluster. In contrast to the fly exon 6, most exon 6 selector sequences in Coleoptera species are partially located in the variable exon region. Besides, bidirectional RNA–RNA interactions are predicted to regulate the mutually exclusive splicing of variable exon 9 of Dscam1. Although the docking sites in exon 4 and 9 clusters are clade specific, the docking sites-selector base pairing is conserved in secondary structure level. In short, our result provided a mechanistic framework for the application of long-range RNA base pairings in regulating the mutually exclusive splicing of Coleoptera Dscam1.
Collapse
Affiliation(s)
- Haiyang Dong
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Li
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohua Zhu
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jilong Shi
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying Fu
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shixin Zhang
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Zhang
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feng Shi
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis, Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
De Mandal S, Shakeel M, Prabhakaran VS, Karthi S, Xu X, Jin F. Alternative splicing and insect ryanodine receptor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21590. [PMID: 31218747 DOI: 10.1002/arch.21590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Phylogenetic tree of the ryanodine receptor (RyR) family based on maximum likelihood estimation.
Collapse
Affiliation(s)
- Surajit De Mandal
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, Department of Entomology, South China Agricultural University, Guangzhou, People's Republic of China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, Department of Entomology, South China Agricultural University, Guangzhou, People's Republic of China
| | | | - Sengodan Karthi
- Department of Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, Department of Entomology, South China Agricultural University, Guangzhou, People's Republic of China
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Agriculture, Department of Entomology, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Xu B, Shi Y, Wu Y, Meng Y, Jin Y. Role of RNA secondary structures in regulating Dscam alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194381. [DOI: 10.1016/j.bbagrm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
|
7
|
Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1468. [PMID: 29423937 DOI: 10.1002/wrna.1468] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Pre-mRNA alternative splicing is an important mechanism used to expand protein diversity in higher eukaryotes, and mutually exclusive splicing is a specific type of alternative splicing in which only one of the exons in a cluster is included in functional transcripts. The most extraordinary example of this is the Drosophila melanogaster Down's syndrome cell adhesion molecule gene (Dscam), which potentially encodes 38,016 different isoforms through mutually exclusive splicing. Mutually exclusive splicing is a unique and challenging model that can be used to elucidate the evolution, regulatory mechanism, and function of alternative splicing. The use of new approaches has not only greatly expanded the mutually exclusive exome, but has also enabled the systematic analyses of single-cell alternative splicing during development. Furthermore, the identification of long-range RNA secondary structures provides a mechanistic framework for the regulation of mutually exclusive splicing (i.e., Dscam splicing). This article reviews recent insights into the identification, underlying mechanism, and roles of mutually exclusive splicing. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haiyang Dong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Hatje K, Rahman RU, Vidal RO, Simm D, Hammesfahr B, Bansal V, Rajput A, Mickael ME, Sun T, Bonn S, Kollmar M. The landscape of human mutually exclusive splicing. Mol Syst Biol 2017; 13:959. [PMID: 29242366 PMCID: PMC5740500 DOI: 10.15252/msb.20177728] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA‐Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold. The data provide strong evidence for the existence of large and multi‐cluster MXEs in higher vertebrates and offer new insights into MXE evolution. More than 82% of the MXE clusters are conserved in mammals, and five clusters have homologous clusters in Drosophila. Finally, MXEs are significantly enriched in pathogenic mutations and their spatio‐temporal expression might predict human disease pathology.
Collapse
Affiliation(s)
- Klas Hatje
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Raza-Ur Rahman
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ramon O Vidal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science Georg-August-University, Göttingen, Germany
| | - Björn Hammesfahr
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vikas Bansal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ashish Rajput
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel Edwar Mickael
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany .,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
9
|
Yue Y, Hou S, Wang X, Zhan L, Cao G, Li G, Shi Y, Zhang P, Hong W, Lin H, Liu B, Shi F, Yang Y, Jin Y. Role and convergent evolution of competing RNA secondary structures in mutually exclusive splicing. RNA Biol 2017; 14:1399-1410. [PMID: 28277933 DOI: 10.1080/15476286.2017.1294308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exon or cassette duplication is an important means of expanding protein and functional diversity through mutually exclusive splicing. However, the mechanistic basis of this process in non-arthropod species remains poorly understood. Here, we demonstrate that MRP1 genes underwent tandem exon duplication in Nematoda, Platyhelminthes, Annelida, Mollusca, Arthropoda, Echinodermata, and early-diverging Chordata but not in late-diverging vertebrates. Interestingly, these events were of independent origin in different phyla, suggesting convergent evolution of alternative splicing. Furthermore, we showed that multiple sets of clade-conserved RNA pairings evolved to guide species-specific mutually exclusive splicing in Arthropoda. Importantly, we also identified a similar structural code in MRP exon clusters of the annelid, Capitella teleta, and chordate, Branchiostoma belcheri, suggesting an evolutionarily conserved competing pairing-guided mechanism in bilaterians. Taken together, these data reveal the molecular determinants and RNA pairing-guided evolution of species-specific mutually exclusive splicing spanning more than 600 million years of bilaterian evolution. These findings have a significant impact on our understanding of the evolution of and mechanism underpinning isoform diversity and complex gene structure.
Collapse
Affiliation(s)
- Yuan Yue
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Shouqing Hou
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Xiu Wang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China.,b Institute of Ecology, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Leilei Zhan
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Guozheng Cao
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Guoli Li
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yang Shi
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Peng Zhang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Weiling Hong
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Hao Lin
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Baoping Liu
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Feng Shi
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yun Yang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yongfeng Jin
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| |
Collapse
|
10
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Yue Y, Yang Y, Dai L, Cao G, Chen R, Hong W, Liu B, Shi Y, Meng Y, Shi F, Xiao M, Jin Y. Long-range RNA pairings contribute to mutually exclusive splicing. RNA (NEW YORK, N.Y.) 2016; 22:96-110. [PMID: 26554032 PMCID: PMC4691838 DOI: 10.1261/rna.053314.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 05/16/2023]
Abstract
Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks.
Collapse
Affiliation(s)
- Yuan Yue
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yun Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Lanzhi Dai
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Guozheng Cao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Ran Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Weiling Hong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Baoping Liu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yang Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yijun Meng
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Feng Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Mu Xiao
- Institute of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| | - Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, China
| |
Collapse
|
12
|
Yang Y, Sun F, Wang X, Yue Y, Wang W, Zhang W, Zhan L, Tian N, shi F, Jin Y. Conservation and regulation of alternative splicing by dynamic inter- and intra-intron base pairings in Lepidoptera 14-3-3z pre-mRNAs. RNA Biol 2014; 9:691-700. [DOI: 10.4161/rna.20205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Kuroyanagi H, Takei S, Suzuki Y. Comprehensive analysis of mutually exclusive alternative splicing in C. elegans. WORM 2014; 3:e28459. [PMID: 25254147 PMCID: PMC4165533 DOI: 10.4161/worm.28459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/03/2022]
Abstract
Mutually exclusive selection of one exon in a cluster of exons is a rare form of alternative pre-mRNA splicing, yet suggests strict regulation. However, the repertoires of regulation mechanisms for the mutually exclusive (ME) splicing in vivo are still unknown. Here, we experimentally explore putative ME exons in C. elegans to demonstrate that 29 ME exon clusters in 27 genes are actually selected in a mutually exclusive manner. Twenty-two of the clusters consist of homologous ME exons. Five clusters have too short intervening introns to be excised between the ME exons. Fidelity of ME splicing relies at least in part on nonsense-mediated mRNA decay for 14 clusters. These results thus characterize all the repertoires of ME splicing in this organism.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Laboratory of Gene Expression; Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo, Japan
| | - Satomi Takei
- Laboratory of Gene Expression; Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science; University of Tokyo; Kashiwa, Chiba, Japan
| |
Collapse
|
14
|
Yue Y, Li G, Yang Y, Zhang W, Pan H, Chen R, Shi F, Jin Y. Regulation of Dscam exon 17 alternative splicing by steric hindrance in combination with RNA secondary structures. RNA Biol 2013; 10:1822-33. [PMID: 24448213 DOI: 10.4161/rna.27176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gene Down syndrome cell adhesion molecule (Dscam) potentially encodes 38 016 distinct isoforms in Drosophila melanogaster via mutually exclusive splicing. Here we reveal a combinatorial mechanism of regulation of Dscam exon 17 mutually exclusive splicing through steric hindrance in combination with RNA secondary structure. This mutually exclusive behavior is enforced by steric hindrance, due to the close proximity of the exon 17.2 branch point to exon 17.1 in Diptera, and the interval size constraint in non-Dipteran species. Moreover, intron-exon RNA structures are evolutionarily conserved in 36 non-Drosophila species of six distantly related orders (Diptera, Lepidoptera, Coleoptera, Hymenoptera, Hemiptera, and Phthiraptera), which regulates the selection of exon 17 variants via masking the splice site. By contrast, a previously uncharacterized RNA structure specifically activated exon 17.1 by bringing splice sites closer together in Drosophila, while the other moderately suppressed exon 17.1 selection by hindering the accessibility of polypyrimidine sequences. Taken together, these data suggest a phylogeny of increased complexity in regulating alternative splicing of Dscam exon 17 spanning more than 300 million years of insect evolution. These results also provide models of the regulation of alternative splicing through steric hindrance in combination with dynamic structural codes.
Collapse
Affiliation(s)
- Yuan Yue
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Guoli Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Yun Yang
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Wenjing Zhang
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Huawei Pan
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Ran Chen
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Feng Shi
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| | - Yongfeng Jin
- Institute of Biochemistry; College of Life Sciences; Zhejiang University (Zijingang Campus); Hangzhou; Zhejiang, PR China
| |
Collapse
|
15
|
Alternative splicing of mutually exclusive exons—A review. Biosystems 2013; 114:31-8. [DOI: 10.1016/j.biosystems.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
16
|
|
17
|
Wang X, Li G, Yang Y, Wang W, Zhang W, Pan H, Zhang P, Yue Y, Lin H, Liu B, Bi J, Shi F, Mao J, Meng Y, Zhan L, Jin Y. An RNA architectural locus control region involved in Dscam mutually exclusive splicing. Nat Commun 2013; 3:1255. [PMID: 23212384 PMCID: PMC3535345 DOI: 10.1038/ncomms2269] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/07/2012] [Indexed: 11/25/2022] Open
Abstract
The most striking example of alternative splicing in a Drosophila melanogaster gene is observed in the Down syndrome cell adhesion molecule, which can generate 38,016 different isoforms. RNA secondary structures are thought to direct the mutually exclusive splicing of Down syndrome cell adhesion molecule, but the underlying mechanisms are poorly understood. Here we describe a locus control region that can activate the exon 6 cluster and specifically allow for the selection of only one exon variant in combination with docking site selector sequence interactions. Combining comparative genomic studies of 63 species with mutational analysis reveals that intricate, tandem multi-‘subunit’ RNA structures within the locus control region activate species-appropriate alternative variants. Importantly, strengthening the weak splice sites of the target exon can remove the locus control region dependence. Our findings not only provide a locus control region-dependent mechanism for mutually exclusive splicing, but also suggest a model for the evolution of increased complexity in a long-range RNA molecular machine. Alternative splicing at the Drosophila Down syndrome cell adhesion molecule gene generates 38,016 isoforms, and underlies self-avoidance of growing neurons. Wang et al. identify a structure in the DSCAM mRNA that ensures mutually exclusive splicing and observe expansion of the structure with increasing number of exons during arthropod evolution.
Collapse
Affiliation(s)
- Xuebin Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang ZJ310058, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zeng XC, Nie Y, Luo X, Wu S, Shi W, Zhang L, Liu Y, Cao H, Yang Y, Zhou J. Molecular and bioinformatical characterization of a novel superfamily of cysteine-rich peptides from arthropods. Peptides 2013; 41:45-58. [PMID: 23099316 DOI: 10.1016/j.peptides.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022]
Abstract
The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuroyanagi H, Watanabe Y, Hagiwara M. CELF family RNA-binding protein UNC-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003337. [PMID: 23468662 PMCID: PMC3585155 DOI: 10.1371/journal.pgen.1003337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/07/2013] [Indexed: 12/19/2022] Open
Abstract
An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V0 complex of vacuolar-type H+-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA–binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of the unc-32 gene. Tissue-specific and mutually exclusive alternative pre–mRNA splicing is a challenging model for elucidating regulation mechanisms. We previously demonstrated that evolutionarily conserved RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a muscle-specific RNA–binding protein SUP-12 cooperatively direct muscle-specific selection of exon 5B of the C. elegans egl-15 gene. Here we demonstrate that two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the unc-32 gene are regulated in tissue-specific manners and that ASD-1 and FOX-1, expressed in a variety of tissues, can regulate the neuron-specific selection of unc-32 exon 7a in combination with the neuron-specific CELF family RNA–binding protein UNC-75. We determine the cis-elements for the RBFOX family and UNC-75, which separately reside in intron 7b and intron 7a, respectively. By analyzing the partially spliced RNA species, we propose the orders of intron removal and the sites of action for the RBFOX family and UNC-75 in the mutually exclusive selection of exon 7a and exon 7b. We also demonstrate that UNC-75 regulates the neuron-specific selection of exon 4b and propose the models of the mutually exclusive selection of exons 4a, 4b, and 4c. These studies thus provide novel modes of regulation for tissue-specific and mutually exclusive alternative splicing in vivo.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
20
|
Abstract
Alternative splicing of pre-mRNA is a major mechanism to increase protein diversity in higher eukaryotes. Dscam, the Drosophila homologue of human DSCAM (Down's syndrome cell adhesion molecule), generates up to 38016 isoforms through mutually exclusive splicing in four variable exon clusters. This enormous molecular diversity is functionally important for wiring of the nervous system and phagocytosis of invading pathogens. Current models explaining this complex splicing regulation include a default repressed state of the variable exon clusters to prevent the splicing together of adjacent exons, the presence of RNA secondary structures important for the release of one specific variable exon from the repressed state and combinatorial interaction of RNA-binding proteins for choosing a specific exon.
Collapse
|
21
|
Hamisch D, Randewig D, Schliesky S, Bräutigam A, Weber APM, Geffers R, Herschbach C, Rennenberg H, Mendel RR, Hänsch R. Impact of SO(2) on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing. THE NEW PHYTOLOGIST 2012; 196:1074-1085. [PMID: 23025405 DOI: 10.1111/j.1469-8137.2012.04331.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/09/2012] [Indexed: 05/11/2023]
Abstract
High concentrations of sulfur dioxide (SO(2) ) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO(2) detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l(-1) SO(2) , using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO(2) detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages.
Collapse
Affiliation(s)
- Domenica Hamisch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Dörte Randewig
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Georges-Köhler Allee 53/54, D-79085, Freiburg, Germany
| | - Simon Schliesky
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Cornelia Herschbach
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Georges-Köhler Allee 53/54, D-79085, Freiburg, Germany
| | - Heinz Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Georges-Köhler Allee 53/54, D-79085, Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh, 11451, Saudi Arabia
| | - Ralf R Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| | - Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstraße 1, D-38106, Braunschweig, Germany
| |
Collapse
|
22
|
Buratti E, Baralle M, Baralle FE. From single splicing events to thousands: the ambiguous step forward in splicing research. Brief Funct Genomics 2012; 12:3-12. [DOI: 10.1093/bfgp/els048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Zubović L, Baralle M, Baralle FE. Mutually exclusive splicing regulates the Nav 1.6 sodium channel function through a combinatorial mechanism that involves three distinct splicing regulatory elements and their ligands. Nucleic Acids Res 2012; 40:6255-69. [PMID: 22434879 PMCID: PMC3401437 DOI: 10.1093/nar/gks249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
Mutually exclusive splicing is a form of alternative pre-mRNA processing that consists in the use of only one of a set of two or more exons. We have investigated the mechanisms involved in this process for exon 18 of the Na(v) 1.6 sodium channel transcript and its significance regarding gene-expression regulation. The 18N exon (neonatal form) has a stop codon in phase and although the mRNA can be detected by amplification methods, the truncated protein has not been observed. The switch from 18N to 18A (adult form) occurs only in a restricted set of neural tissues producing the functional channel while other tissues display the mRNA with the 18N exon also in adulthood. We demonstrate that the mRNA species carrying the stop codon is subjected to Nonsense-Mediated Decay, providing a control mechanism of channel expression. We also map a string of cis-elements within the mutually exclusive exons and in the flanking introns responsible for their strict tissue and temporal specificity. These elements bind a series of positive (RbFox-1, SRSF1, SRSF2) and negative (hnRNPA1, PTB, hnRNPA2/B1, hnRNPD-like JKTBP) splicing regulatory proteins. These splicing factors, with the exception of RbFox-1, are ubiquitous but their levels vary during development and differentiation, ensuing unique sets of tissue and temporal levels of splicing factors. The combinatorial nature of these elements is highlighted by the dominance of the elements that bind the ubiquitous factors over the tissue specific RbFox-1.
Collapse
Affiliation(s)
| | | | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB) 34012, Trieste, Italy
| |
Collapse
|
24
|
Wang Z, Chatterjee D, Jeon HY, Akerman M, Vander Heiden MG, Cantley LC, Krainer AR. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J Mol Cell Biol 2011; 4:79-87. [PMID: 22044881 DOI: 10.1093/jmcb/mjr030] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of the pyruvate kinase M gene (PK-M) can generate the M2 isoform and promote aerobic glycolysis and tumor growth. However, the cancer-specific alternative splicing regulation of PK-M is not completely understood. Here, we demonstrate that PK-M is regulated by reciprocal effects on the mutually exclusive exons 9 and 10, such that exon 9 is repressed and exon 10 is activated in cancer cells. Strikingly, exonic, rather than intronic, cis-elements are key determinants of PK-M splicing isoform ratios. Using a systematic sub-exonic duplication approach, we identify a potent exonic splicing enhancer in exon 10, which differs from its homologous counterpart in exon 9 by only two nucleotides. We identify SRSF3 as one of the cognate factors, and show that this serine/arginine-rich protein activates exon 10 and mediates changes in glucose metabolism. These findings provide mechanistic insights into the complex regulation of alternative splicing of a key regulator of the Warburg effect, and also have implications for other genes with a similar pattern of alternative splicing.
Collapse
Affiliation(s)
- Zhenxun Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, Laurent-Chabalier S, Desprat R, Méchali M. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 2011; 21:1438-49. [PMID: 21750104 DOI: 10.1101/gr.121830.111] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In metazoans, thousands of DNA replication origins (Oris) are activated at each cell cycle. Their genomic organization and their genetic nature remain elusive. Here, we characterized Oris by nascent strand (NS) purification and a genome-wide analysis in Drosophila and mouse cells. We show that in both species most CpG islands (CGI) contain Oris, although methylation is nearly absent in Drosophila, indicating that this epigenetic mark is not crucial for defining the activated origin. Initiation of DNA synthesis starts at the borders of CGI, resulting in a striking bimodal distribution of NS, suggestive of a dual initiation event. Oris contain a unique nucleotide skew around NS peaks, characterized by G/T and C/A overrepresentation at the 5' and 3' of Ori sites, respectively. Repeated GC-rich elements were detected, which are good predictors of Oris, suggesting that common sequence features are part of metazoan Oris. In the heterochromatic chromosome 4 of Drosophila, Oris correlated with HP1 binding sites. At the chromosome level, regions rich in Oris are early replicating, whereas Ori-poor regions are late replicating. The genome-wide analysis was coupled with a DNA combing analysis to unravel the organization of Oris. The results indicate that Oris are in a large excess, but their activation does not occur at random. They are organized in groups of site-specific but flexible origins that define replicons, where a single origin is activated in each replicon. This organization provides both site specificity and Ori firing flexibility in each replicon, allowing possible adaptation to environmental cues and cell fates.
Collapse
|
26
|
Olson S, Blanchette M, Park J, Savva Y, Yeo GW, Yeakley JM, Rio DC, Graveley BR. A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol 2011; 14:1134-40. [PMID: 21188797 DOI: 10.1038/nsmb1339] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Down syndrome cell adhesion molecule (Dscam) gene has essential roles in neural wiring and pathogen recognition in Drosophila melanogaster. Dscam encodes 38,016 distinct isoforms via extensive alternative splicing. The 95 alternative exons in Dscam are organized into clusters that are spliced in a mutually exclusive manner. The exon 6 cluster contains 48 variable exons and uses a complex system of competing RNA structures to ensure that only one variable exon is included. Here we show that the heterogeneous nuclear ribonucleoprotein hrp36 acts specifically within, and throughout, the exon 6 cluster to prevent the inclusion of multiple exons. Moreover, hrp36 prevents serine/arginine-rich proteins from promoting the ectopic inclusion of multiple exon 6 variants. Thus, the fidelity of mutually exclusive splicing in the exon 6 cluster is governed by an intricate combination of alternative RNA structures and a globally acting splicing repressor.
Collapse
Affiliation(s)
- Sara Olson
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang ZZ, Sharma S, Zheng S, Chawla G, Nikolic J, Black DL. Regulation of the mutually exclusive exons 8a and 8 in the CaV1.2 calcium channel transcript by polypyrimidine tract-binding protein. J Biol Chem 2011; 286:10007-16. [PMID: 21282112 PMCID: PMC3060452 DOI: 10.1074/jbc.m110.208116] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca2+ homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.
Collapse
Affiliation(s)
- Zhen Zhi Tang
- Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yang Y, Zhan L, Zhang W, Sun F, Wang W, Tian N, Bi J, Wang H, Shi D, Jiang Y, Zhang Y, Jin Y. RNA secondary structure in mutually exclusive splicing. Nat Struct Mol Biol 2011; 18:159-68. [PMID: 21217700 DOI: 10.1038/nsmb.1959] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/19/2010] [Indexed: 12/24/2022]
Abstract
Mutually exclusive splicing is a regulated means to generate protein diversity, but the underlying mechanisms are poorly understood. Here comparative genome analysis revealed the built-in intronic elements for controlling mutually exclusive splicing of the 14-3-3ξ pre-mRNA. These elements are clade specific but are evolutionarily conserved at the secondary structure level. Combined evidence revealed the triple functions of these inter-intronic RNA pairings in synergistically ensuring the selection of only one of multiple exons, through activation of the proximal variable exon outside the loop by the approximation of cis elements, and simultaneous repression of the exon within the loop, in combination with the physical competition of RNA pairing. Additionally, under this model, we also deciphered a similar structural code in exon clusters 4 and 9 of Dscam (38,016 isoforms) and Mhc (480 isoforms). Our findings suggest a broadly applicable mechanism to ensure mutually exclusive splicing.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CWJ. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 2010; 17:1114-23. [PMID: 20711188 PMCID: PMC2933513 DOI: 10.1038/nsmb.1881] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A 2010; 107:1894-9. [PMID: 20133837 DOI: 10.1073/pnas.0914845107] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer cells preferentially metabolize glucose by aerobic glycolysis, characterized by increased lactate production. This distinctive metabolism involves expression of the embryonic M2 isozyme of pyruvate kinase, in contrast to the M1 isozyme normally expressed in differentiated cells, and it confers a proliferative advantage to tumor cells. The M1 and M2 pyruvate-kinase isozymes are expressed from a single gene through alternative splicing of a pair of mutually exclusive exons. We measured the expression of M1 and M2 mRNA and protein isoforms in mouse tissues, tumor cell lines, and during terminal differentiation of muscle cells, and show that alternative splicing regulation is sufficient to account for the levels of expressed protein isoforms. We further show that the M1-specific exon is actively repressed in cancer-cell lines--although some M1 mRNA is expressed in cell lines derived from brain tumors--and demonstrate that the related splicing repressors hnRNP A1 and A2, as well as the polypyrimidine-tract-binding protein PTB, contribute to this control. Downregulation of these splicing repressors in cancer-cell lines using shRNAs rescues M1 isoform expression and decreases the extent of lactate production. These findings extend the links between alternative splicing and cancer, and begin to define some of the factors responsible for the switch to aerobic glycolysis.
Collapse
|
31
|
Peng T, Li Y. Tandem exon duplication tends to propagate rather than to create de novo alternative splicing. Biochem Biophys Res Commun 2009; 383:163-6. [PMID: 19351527 DOI: 10.1016/j.bbrc.2009.03.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/22/2009] [Indexed: 11/15/2022]
Abstract
Tandem gene duplication is one of the most prevalent ways of generating genes with new function. Similarly, tandem exon duplication is an important source of new exons. Tandem exon duplication is often associated with alternative splicing to reduce the possible deleterious impacts on transcript/protein structure. However, how alternative splicing is established on two new exons from duplication remains controversial. By analyzing the duplication of human-mouse conserved exons, we illustrated that newly duplicated exons tend to preserve the splicing status of their parent exon. That is, the exons duplicated from an alternative exon are usually alternatively spliced, while those from constitutive parents are more likely to be constitutively spliced. Newly generated, constitutively spliced exons showed a higher percentage of frame preservation and protein domain preference, indicating some evolutionary scenarios other than alternative splicing operates for the relief of negative selection pressure. These results suggest that alternative splicing is usually established before the tandem duplication. The duplication therefore propagates, rather than creates de novo, alternative splicing.
Collapse
Affiliation(s)
- Tao Peng
- TNLIST/Department of Automation, Bioinformatics Division, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | | |
Collapse
|
32
|
Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Ladomery MR, Harper SJ, Bates DO. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 2009; 121:3487-95. [PMID: 18843117 DOI: 10.1242/jcs.016410] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA; hereafter referred to as VEGF) is a key regulator of physiological and pathological angiogenesis. Two families of VEGF isoforms are generated by alternate splice-site selection in the terminal exon. Proximal splice-site selection (PSS) in exon 8 results in pro-angiogenic VEGFxxx isoforms (xxx is the number of amino acids), whereas distal splice-site selection (DSS) results in anti-angiogenic VEGFxxxb isoforms. To investigate control of PSS and DSS, we investigated the regulation of isoform expression by extracellular growth factor administration and intracellular splicing factors. In primary epithelial cells VEGFxxxb formed the majority of VEGF isoforms (74%). IGF1, and TNFalpha treatment favoured PSS (increasing VEGFxxx) whereas TGFbeta1 favoured DSS, increasing VEGFxxxb levels. TGFbeta1 induced DSS selection was prevented by inhibition of p38 MAPK and the Clk/sty (CDC-like kinase, CLK1) splicing factor kinase family, but not ERK1/2. Clk phosphorylates SR protein splicing factors ASF/SF2, SRp40 and SRp55. To determine whether SR splicing factors alter VEGF splicing, they were overexpressed in epithelial cells, and VEGF isoform production assessed. ASF/SF2, and SRp40 both favoured PSS, whereas SRp55 upregulated VEGFxxxb (DSS) isoforms relative to VEGFxxx. SRp55 knockdown reduced expression of VEGF165b. Moreover, SRp55 bound to a 35 nucleotide region of the 3'UTR immediately downstream of the stop codon in exon 8b. These results identify regulation of splicing by growth and splice factors as a key event in determining the relative pro-versus anti-angiogenic expression of VEGF isoforms, and suggest that p38 MAPK-Clk/sty kinases are responsible for the TGFbeta1-induced DSS selection, and identify SRp55 as a key regulatory splice factor.
Collapse
Affiliation(s)
- Dawid G Nowak
- Microvascular Research Laboratories, Bristol Heart Institute, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus. J Virol 2009; 83:2839-50. [PMID: 19144709 DOI: 10.1128/jvi.02407-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human cytomegalovirus (HCMV), a member of the beta subgroup of the family Herpesviridae, causes serious health problems worldwide. HCMV gene expression in host cells is a well-defined sequential process: immediate-early (IE) gene expression, early-gene expression, DNA replication, and late-gene expression. The most abundant IE gene, major IE (MIE) gene pre-mRNA, needs to be spliced before being exported to the cytoplasm for translation. In this study, the regulation of MIE gene splicing was investigated; in so doing, we found that polypyrimidine tract binding proteins (PTBs) strongly repressed MIE gene production in cotransfection assays. In addition, we discovered that the repressive effects of PTB could be rescued by splicing factor U2AF. Taken together, the results suggest that PTBs inhibit MIE gene splicing by competing with U2AF65 for binding to the polypyrimidine tract in pre-mRNA. In intron deletion mutation assays and RNA detection experiments (reverse transcription [RT]-PCR and real-time RT-PCR), we further observed that PTBs target all the introns of the MIE gene, especially intron 2, and affect gene splicing, which was reflected in the variation in the ratio of pre-mRNA to mRNA. Using transfection assays, we demonstrated that PTB knockdown cells induce a higher degree of MIE gene splicing/expression. Consistently, HCMV can produce more viral proteins and viral particles in PTB knockdown cells after infection. We conclude that PTB inhibits HCMV replication by interfering with MIE gene splicing through competition with U2AF for binding to the polypyrimidine tract in MIE gene introns.
Collapse
|
34
|
Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD. Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 2008; 295:C414-22. [PMID: 18550706 DOI: 10.1152/ajpcell.00038.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cardiac myocytes there is evidence that activation of some receptors can regulate protein kinase A (PKA)-dependent responses by stimulating cAMP production that is limited to discrete intracellular domains. We previously developed a computational model of compartmentalized cAMP signaling to investigate the feasibility of this idea. The model was able to reproduce experimental results demonstrating that both beta(1)-adrenergic and M(2) muscarinic receptor-mediated cAMP changes occur in microdomains associated with PKA signaling. However, the model also suggested that the cAMP concentration throughout most of the cell could be significantly higher than that found in PKA-signaling domains. In the present study we tested this counterintuitive hypothesis using a freely diffusible fluorescence resonance energy transfer-based biosensor constructed from the type 2 exchange protein activated by cAMP (Epac2-camps). It was determined that in adult ventricular myocytes the basal cAMP concentration detected by the probe is approximately 1.2 muM, which is high enough to maximally activate PKA. Furthermore, the probe detected responses produced by both beta(1) and M(2) receptor activation. Modeling suggests that responses detected by Epac2-camps mainly reflect what is happening in a bulk cytosolic compartment with little contribution from microdomains where PKA signaling occurs. These results support the conclusion that even though beta(1) and M(2) receptor activation can produce global changes in cAMP, compartmentation plays an important role by maintaining microdomains where cAMP levels are significantly below that found throughout most of the cell. This allows receptor stimulation to regulate cAMP activity over concentration ranges appropriate for modulating both higher (e.g., PKA) and lower affinity (e.g., Epac) effectors.
Collapse
Affiliation(s)
- Radu V Iancu
- Dept. of Physiology and Biophysics, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106-4970, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Peng T, Xue C, Bi J, Li T, Wang X, Zhang X, Li Y. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse. BMC Genomics 2008; 9:191. [PMID: 18439302 PMCID: PMC2432081 DOI: 10.1186/1471-2164-9-191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 04/26/2008] [Indexed: 12/19/2022] Open
Abstract
Background Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Results Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. Conclusion We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.
Collapse
Affiliation(s)
- Tao Peng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, PRoC.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ohno G, Hagiwara M, Kuroyanagi H. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev 2008; 22:360-74. [PMID: 18230701 PMCID: PMC2216695 DOI: 10.1101/gad.1620608] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
Abstract
Alternative splicing of pre-mRNAs greatly contributes to the spatiotemporal diversity of gene expression in metazoans. However, the molecular basis of developmental regulation and the precise sequence of alternative pre-mRNA processing in vivo are poorly understood. In the present study, we focus on the developmental switching of the mutually exclusive alternative splicing of the let-2 gene of Caenorhabditis elegans from the exon 9 form in embryos to the exon 10 form in adults. By visualizing the usage of the let-2 mutually exclusive exons through differential expression of green fluorescent protein (GFP) and red fluorescent protein (RFP), we isolated several switching-defective mutants and identified the alternative splicing defective-2 (asd-2) gene, encoding a novel member of the evolutionarily conserved STAR (signal transduction activators of RNA) family of RNA-binding proteins. Comparison of the amounts of partially spliced let-2 RNAs in synchronized wild-type and asd-2 mutant worms suggested that either of the introns downstream from the let-2 mutually exclusive exons is removed prior to the removal of the upstream ones, and that asd-2 promotes biased excision of intron 10 in the late larval stages. We propose that the developmental switching between alternative sequences of intron removal determines the ratio between the mature let-2 mRNA isoforms.
Collapse
Affiliation(s)
- Genta Ohno
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masatoshi Hagiwara
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
37
|
Gooding C, Smith CWJ. Tropomyosin exons as models for alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:27-42. [PMID: 19209811 DOI: 10.1007/978-0-387-85766-4_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Three of the four mammalian tropomyosin (Tm) genes are alternatively spliced, most commonly by mutually exclusive selection from pairs of internal or 3' end exons. Alternative splicing events in the TPM1, 2 and 3 genes have been analysed experimentally in various levels ofdetail. In particular, mutually exclusive exon pairs in the betaTm (TPM2) and alphaTm (TPM1) genes are among the most intensively studied models for striated and smooth muscle specific alternative splicing, respectively. Analysis of these model systems has provided important insights into general mechanisms and strategies of splicing regulation.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | | |
Collapse
|
38
|
Buratti E, Dhir A, Lewandowska MA, Baralle FE. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Res 2007; 35:4369-83. [PMID: 17580311 PMCID: PMC1935003 DOI: 10.1093/nar/gkm447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5′ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5′ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5′ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting.
Collapse
|
39
|
Chang WC, Chen YC, Lee KM, Tarn WY. Alternative splicing and bioinformatic analysis of human U12-type introns. Nucleic Acids Res 2007; 35:1833-41. [PMID: 17332017 PMCID: PMC1874599 DOI: 10.1093/nar/gkm026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.
Collapse
Affiliation(s)
- Wen-Cheng Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Institute of Biomedical Sciences, Academia Sinica, Institute of Microbiology and Immunology, College of Life Science, National Yang-Ming University and Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Yung-Chia Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Institute of Biomedical Sciences, Academia Sinica, Institute of Microbiology and Immunology, College of Life Science, National Yang-Ming University and Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Kuo-Ming Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Institute of Biomedical Sciences, Academia Sinica, Institute of Microbiology and Immunology, College of Life Science, National Yang-Ming University and Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Woan-Yuh Tarn
- Graduate Institute of Life Sciences, National Defense Medical Center, Institute of Biomedical Sciences, Academia Sinica, Institute of Microbiology and Immunology, College of Life Science, National Yang-Ming University and Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
- *To whom correspondence should be addressed. 8862 2652 30528862 2782 9142
| |
Collapse
|
40
|
Buratti E, Baralle M, Baralle FE. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 2006; 34:3494-510. [PMID: 16855287 PMCID: PMC1524908 DOI: 10.1093/nar/gkl498] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 12/25/2022] Open
Abstract
The number of aberrant splicing processes causing human disease is growing exponentially and many recent studies have uncovered some aspects of the unexpectedly complex network of interactions involved in these dysfunctions. As a consequence, our knowledge of the various cis- and trans-acting factors playing a role on both normal and aberrant splicing pathways has been enhanced greatly. However, the resulting information explosion has also uncovered the fact that many splicing systems are not easy to model. In fact we are still unable, with certainty, to predict the outcome of a given genomic variation. Nonetheless, in the midst of all this complexity some hard won lessons have been learned and in this survey we will focus on the importance of the wide sequence context when trying to understand why apparently similar mutations can give rise to different effects. The examples discussed in this summary will highlight the fine 'balance of power' that is often present between all the various regulatory elements that define exon boundaries. In the final part, we shall then discuss possible therapeutic targets and strategies to rescue genetic defects of complex splicing systems.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Marco Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 9934012 Trieste, Italy
| |
Collapse
|
41
|
Gaur RK. RNA interference: a potential therapeutic tool for silencing splice isoforms linked to human diseases. Biotechniques 2006; Suppl:15-22. [PMID: 16629383 DOI: 10.2144/000112165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is one of the most important sources of protein diversity in vertebrates. An estimated 35%-70% of human genes generate transcripts that are alternatively spliced, and defects in this process are linked to numerous human genetic diseases and various forms of cancer. The discovery that 21-23 nucleotide RNA duplexes, known as small interfering RNAs (siRNAs), can knockdown the homologous mRNAs in mammalian cells has revolutionized many aspects of drug discovery including down-regulation of disease-associated splicing isoforms. In addition, RNA interference (RNAi)-mediated silencing of splicing regulators has the potential to define the complex network of alternative splicing regulation and to analyze gene function. In this review, I first provide a brief introduction to mRNA splicing and its relationship to human diseases. This is followed by a brief overview of RNAi. Finally I discuss the therapeutic potential of RNAi in targeting disease-linked splicing isoforms.
Collapse
Affiliation(s)
- Rajesh K Gaur
- Division of Molecular Biology, Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|