1
|
Lydick VN, Mass S, Pepin R, Podicheti R, Klempic E, Rusch DB, Ushijima B, Brown LC, Salomon D, van Kessel JC. Quorum sensing regulates virulence factors in the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 2025; 91:e0114324. [PMID: 39812412 PMCID: PMC11837519 DOI: 10.1128/aem.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
The bacterial pathogen Vibrio coralliilyticus causes disease in coral species worldwide. The mechanisms of V. coralliilyticus coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model Vibrio species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS). Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we identify an active QS signaling pathway in two V. coralliilyticus strains with distinct infection etiologies: type strain BAA-450 and coral isolate OCN008. In V. coralliilyticus, the inter-species AI-2 autoinducer signaling pathway in both strains controls expression of the master QS transcription factor and LuxR/HapR homolog VcpR to regulate >300 genes, including protease production, biofilm formation, and two conserved type VI secretion systems (T6SSs). Activation of T6SS1 by QS results in the secretion of effectors and enables interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is functional and controls the expression of genes involved in relevant bacterial behaviors typically associated with host infection.IMPORTANCEVibrio coralliilyticus infects many marine organisms, including multiple species of corals, and is a primary causative agent of tissue loss diseases and bacterial-induced bleaching. Here, we investigated a common cell-cell communication mechanism called quorum sensing, which is known to be intimately connected to virulence in other Vibrio species. Our genetic and chemical studies of V. coralliilyticus quorum sensing uncovered an active pathway that directly regulates the following key virulence factors: proteases, biofilms, and secretion systems. These findings connect bacterial signaling in communities to the infection of corals, which may lead to novel treatments and earlier diagnoses of coral diseases in reefs.
Collapse
Affiliation(s)
| | - Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Robert Pepin
- Mass Spectrometry Facility, Indiana University, Bloomington, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Emra Klempic
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Laura C. Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
2
|
Zhang XC, Xue K, Salvi M, Schomburg B, Mehrens J, Giller K, Stopp M, Weisenburger S, Böning D, Sandoghdar V, Unden G, Becker S, Andreas LB, Griesinger C. Mechanism of sensor kinase CitA transmembrane signaling. Nat Commun 2025; 16:935. [PMID: 39843904 PMCID: PMC11754779 DOI: 10.1038/s41467-024-55671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA. Citrate binding in the sensory extracytoplasmic PAS domain (PASp) causes the linker to transmembrane helix 2 (TM2) to adopt a helical conformation. This triggers a piston-like pulling of TM2 and a quaternary structure rearrangement in the cytosolic PAS domain (PASc). Crystal structures of PASc reveal both anti-parallel and parallel dimer conformations. An anti-parallel to parallel transition upon citrate binding agrees with interdimer distances measured in the lipid embedded protein using a site-specific 19F label in PASc. These data show how Angstrom scale structural changes in the sensor domain are transmitted across the membrane to be converted and amplified into a nm scale shift in the linker to the phosphorylation subdomain of the kinase.
Collapse
Affiliation(s)
- Xizhou Cecily Zhang
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kai Xue
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michele Salvi
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Schomburg
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jonas Mehrens
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marius Stopp
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Siegfried Weisenburger
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Daniel Böning
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Loren B Andreas
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Johnson GE, Fei C, Wingreen NS, Bassler BL. Cell-scale gene-expression measurements in Vibrio cholerae biofilms reveal spatiotemporal patterns underlying development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603784. [PMID: 39071398 PMCID: PMC11275835 DOI: 10.1101/2024.07.17.603784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacteria commonly exist in multicellular, surface-attached communities called biofilms. Biofilms are central to ecology, medicine, and industry. The Vibrio cholerae pathogen forms biofilms from single founder cells that, via cell division, mature into three-dimensional structures with distinct, yet reproducible, regional architectures. To define mechanisms underlying biofilm developmental transitions, we establish a single-molecule fluorescence in situ hybridization (smFISH) approach that enables accurate quantitation of spatiotemporal gene-expression patterns in biofilms at cell-scale resolution. smFISH analyses of V. cholerae biofilm regulatory and structural genes demonstrate that, as biofilms mature, overall matrix gene expression decreases, and simultaneously, a pattern emerges in which matrix gene expression becomes largely confined to peripheral biofilm cells. Both quorum sensing and c-di-GMP-signaling are required to generate the proper temporal pattern of matrix gene expression. Quorum sensing autoinducer levels are uniform across the biofilm, and thus, c-di-GMP-signaling alone sets the regional matrix gene expression pattern. The smFISH strategy provides insight into mechanisms conferring particular fates to individual biofilm cells.
Collapse
Affiliation(s)
- Grace E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lead Contact
| |
Collapse
|
4
|
Imelio JA, Trajtenberg F, Mondino S, Zarantonelli L, Vitrenko I, Lemée L, Cokelaer T, Picardeau M, Buschiazzo A. Signal-sensing triggers the shutdown of HemKR, regulating heme and iron metabolism in the spirochete Leptospira biflexa. PLoS One 2024; 19:e0311040. [PMID: 39325783 PMCID: PMC11426443 DOI: 10.1371/journal.pone.0311040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Heme and iron metabolic pathways are highly intertwined, both compounds being essential for key biological processes, yet becoming toxic if overabundant. Their concentrations are exquisitely regulated, including via dedicated two-component systems (TCSs) that sense signals and regulate adaptive responses. HemKR is a TCS present in both saprophytic and pathogenic Leptospira species, involved in the control of heme metabolism. However, the molecular means by which HemKR is switched on/off in a signal-dependent way, are still unknown. Moreover, a comprehensive list of HemKR-regulated genes, potentially overlapped with iron-responsive targets, is also missing. Using the saprophytic species Leptospira biflexa as a model, we now show that 5-aminolevulinic acid (ALA) triggers the shutdown of the HemKR pathway in live cells, and does so by stimulating the phosphatase activity of HemK towards phosphorylated HemR. Phospho~HemR dephosphorylation leads to differential expression of multiple genes, including of heme metabolism and transport systems. Besides the heme-biosynthetic genes hemA and the catabolic hmuO, which we had previously reported as phospho~HemR targets, we now extend the regulon identifying additional genes. Finally, we discover that HemR inactivation brings about an iron-deficit tolerant phenotype, synergistically with iron-responsive signaling systems. Future studies with pathogenic Leptospira will be able to confirm whether such tolerance to iron deprivation is conserved among Leptospira spp., in which case HemKR could play a vital role during infection where available iron is scarce. In sum, HemKR responds to abundance of porphyrin metabolites by shutting down and controlling heme homeostasis, while also contributing to integrate the regulation of heme and iron metabolism in the L. biflexa spirochete model.
Collapse
Affiliation(s)
- Juan Andrés Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Felipe Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Iakov Vitrenko
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laure Lemée
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Plateforme Technologique Biomics, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Dept of Microbiology, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Cerna‐Vargas JP, Krell T. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases. Microbiologyopen 2024; 13:e1415. [PMID: 38780167 PMCID: PMC11113362 DOI: 10.1002/mbo3.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 μM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 μM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 μM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 μM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.
Collapse
Affiliation(s)
- Jean Paul Cerna‐Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones CientíficasParque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de AlarcónMadridSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
6
|
Itoh T, Ogawa T, Hibi T, Kimoto H. Characterization of the extracellular domain of sensor histidine kinase NagS from Paenibacillus sp. str. FPU-7: nagS interacts with oligosaccharide binding protein NagB1 in complexes with N, N'-diacetylchitobiose. Biosci Biotechnol Biochem 2024; 88:294-304. [PMID: 38059852 DOI: 10.1093/bbb/zbad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Tomoki Ogawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
7
|
Mukherjee P, Agarwal S, Mallick SB, Dasgupta J. PAS domain of flagellar histidine kinase FlrB has a unique architecture and binds heme as a sensory ligand in an unconventional fashion. Structure 2024; 32:200-216.e5. [PMID: 38157857 DOI: 10.1016/j.str.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Phosphorylation of the σ54-dependent transcription activator FlrC by the sensor histidine kinase FlrB is essential for flagellar synthesis of Vibrio cholerae. Despite that, the structure, sensory signal, and mechanistic basis of function of FlrB were elusive. Here, we report the crystal structure of the sensory PAS domain of FlrB in its functional dimeric state that exhibits a unique architecture. Series of biochemical/biophysical experiments on different constructs and mutants established that heme binds hydrophobically as sensory ligand in the shallow ligand-binding cleft of FlrB-PAS without axial coordination. Intriguingly, ATP binding to the C-terminal ATP-binding (CA) domain assists PAS domain to bind heme, vis-à-vis, heme binding to the PAS facilitates ATP binding to the CA domain. We hypothesize that synergistic binding of heme and ATP triggers conformational signaling in FlrB, leading to downstream flagellar gene transcription. Enhanced swimming motility of V. cholerae with increased heme uptake supports this proposition.
Collapse
Affiliation(s)
- Peeali Mukherjee
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Shubhangi Agarwal
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Sritapa Basu Mallick
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India
| | - Jhimli Dasgupta
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
8
|
Chowdhury G, Biswas S, Dholey Y, Panja P, Das S, Adak S. Importance of aspartate 4 in the Mg 2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140964. [PMID: 37726028 DOI: 10.1016/j.bbapap.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
Collapse
Affiliation(s)
- Gaurab Chowdhury
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Yuthika Dholey
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Puja Panja
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
9
|
Arkhipov DV, Lomin SN, Romanov GA. A Model of the Full-Length Cytokinin Receptor: New Insights and Prospects. Int J Mol Sci 2023; 25:73. [PMID: 38203244 PMCID: PMC10779265 DOI: 10.3390/ijms25010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined.
Collapse
Affiliation(s)
| | | | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia; (D.V.A.); (S.N.L.)
| |
Collapse
|
10
|
Li J, Liu H, Zhao C, Zhang J, He W. Autoinducer-2 quorum sensing regulates biofilm formation and chain elongation metabolic pathways to enhance caproate synthesis in microbial electrochemical system. CHEMOSPHERE 2023; 344:140384. [PMID: 37806331 DOI: 10.1016/j.chemosphere.2023.140384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Quorum sensing (QS) have been explored extensively. However, most studies focused on N-acyl homoserine lactones (AHLs) participating in intraspecies QS. In this study, autoinducer-2 (AI-2, participating in interspecies QS) with different concentration was investigated for chain elongation in microbial electrosynthesis (MES). The results demonstrated that the R3 treatment, which involved adding 10 μM of 4,5-dihydroxy-2,3-pentanedione (DPD) in the reactor, exhibited the best performance. The concentration of caproate was increased by 66.88% and the redox activity of cathodic electroactive biofilms (EABs) was enhanced. Meanwhile, microbial community data indicated that Negativicutes relative abundance was increased obviously in R3 treatment. In this study, the transcriptome Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases were used to analyze the metabolic pathway of chain elongation involving fatty acid biosynthesis (FAB) pathway and reverse β-oxidization (RBO) pathway. KEGG analysis revealed that fatty acid elongation metabolism (p < 0.001), tryptophan metabolism (p < 0.01), arginine and proline metabolism (p < 0.05) were significantly improved in R3 treatment. GO analysis suggested that R3 treatment mainly upregulated significantly transmembrane signaling receptor activity (p < 0.01), oxidoreductase activity (p < 0.05), and phosphorelay signal transduction (p < 0.05). Moreover, metatranscriptomic analyses also showed that R3 treatment could upregulate the LuxP extracellular receptor, LuxO transcriptional activator, LsrB periplasmic protein, and were beneficial to both FAB and RBO pathways. These findings provided a new insight into chain elongation in MES system.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu Province, PR China.
| | - Chao Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Jie Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| | - Wanying He
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, Jiangsu Province, PR China
| |
Collapse
|
11
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
12
|
Liu F, Wang F, Yuan Y, Li X, Zhong X, Yang M. Quorum sensing signal synthases enhance Vibrio parahaemolyticus swarming motility. Mol Microbiol 2023; 120:241-257. [PMID: 37330634 DOI: 10.1111/mmi.15113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Vibrio parahaemolyticus is a significant food-borne pathogen that is found in diverse aquatic habitats. Quorum sensing (QS), a signaling system for cell-cell communication, plays an important role in V. parahaemolyticus persistence. We characterized the function of three V. parahaemolyticus QS signal synthases, CqsAvp , LuxMvp , and LuxSvp , and show that they are essential to activate QS and regulate swarming. We found that CqsAvp , LuxMvp , and LuxSvp activate a QS bioluminescence reporter through OpaR. However, V. parahaemolyticus exhibits swarming defects in the absence of CqsAvp , LuxMvp , and LuxSvp , but not OpaR. The swarming defect of this synthase mutant (termed Δ3AI) was recovered by overexpressing either LuxOvp D47A , a mimic of dephosphorylated LuxOvp mutant, or the scrABC operon. CqsAvp , LuxMvp , and LuxSvp inhibit lateral flagellar (laf) gene expression by inhibiting the phosphorylation of LuxOvp and the expression of scrABC. Phosphorylated LuxOvp enhances laf gene expression in a mechanism that involves modulating c-di-GMP levels. However, enhancing swarming requires phosphorylated and dephosphorylated LuxOvp which is regulated by the QS signals that are synthesized by CqsAvp , LuxMvp , and LuxSvp . The data presented here suggest an important strategy of swarming regulation by the integration of QS and c-di-GMP signaling pathways in V. parahaemolyticus.
Collapse
Affiliation(s)
- Fuwen Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yixuan Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaoran Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
13
|
Hu M, Zhang Y, Huang X, He M, Zhu J, Zhang Z, Cui Y, He S, Shi X. PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. mBio 2023:e0339522. [PMID: 37184399 DOI: 10.1128/mbio.03395-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhen Huang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mu He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Shoukui He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Nieves M, Buschiazzo A, Trajtenberg F. Structural features of sensory two component systems: a synthetic biology perspective. Biochem J 2023; 480:127-140. [PMID: 36688908 DOI: 10.1042/bcj20210798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
All living organisms include a set of signaling devices that confer the ability to dynamically perceive and adapt to the fluctuating environment. Two-component systems are part of this sensory machinery that regulates the execution of different genetic and/or biochemical programs in response to specific physical or chemical signals. In the last two decades, there has been tremendous progress in our molecular understanding on how signals are detected, the allosteric mechanisms that control intramolecular information transmission and the specificity determinants that guarantee correct wiring. All this information is starting to be exploited in the development of new synthetic networks. Connecting multiple molecular players, analogous to programming lines of code, can provide the resources to build new sophisticated biocomputing systems. The Synthetic Biology field is starting to revolutionize several scientific fields, such as biomedicine and agriculture, propelling the development of new solutions. Expanding the spectrum of available nanodevices in the toolbox is key to unleash its full potential. This review aims to discuss, from a structural perspective, how to take advantage of the vast array of sensor and effector protein modules involved in two-component systems for the construction of new synthetic circuits.
Collapse
Affiliation(s)
- Marcos Nieves
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Département de Microbiologie, Institut Pasteur, Paris, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
15
|
Rodrigues MV, Kis P, Xavier KB, Ventura MR. Synthesis and potential of Autoinducer‐2 and analogs to manipulate inter‐species Quorum Sensing. Isr J Chem 2023. [DOI: 10.1002/ijch.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Miguel V. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Peter Kis
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
- Institute of Chemistry Slovak Academy of Sciences 845 38 Bratislava Slovakia
| | | | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
16
|
Preet G, Astakala RV, Gomez-Banderas J, Rajakulendran JE, Hasan AH, Ebel R, Jaspars M. Virtual Screening of a Library of Naturally Occurring Anthraquinones for Potential Anti-Fouling Agents. Molecules 2023; 28:molecules28030995. [PMID: 36770663 PMCID: PMC9920117 DOI: 10.3390/molecules28030995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Marine biofouling is the undesired accumulation of organic molecules, microorganisms, macroalgae, marine invertebrates, and their by-products on submerged surfaces. It is a serious challenge for marine vessels and the oil, gas, and renewable energy industries, as biofouling can cause economic losses for these industries. Natural products have been an abundant source of therapeutics since the start of civilisation. Their use as novel anti-fouling agents is a promising approach for replacing currently used, harmful anti-fouling agents. Anthraquinones (AQs) have been used for centuries in the food, pharmaceutical, cosmetics, and paint industries. Citreorosein and emodin are typical additives used in the anti-fouling paint industry to help improve the global problem of biofouling. This study is based on our previous study, in which we presented the promising activity of structurally related anthraquinone compounds against biofilm-forming marine bacteria. To help uncover the anti-fouling potential of other AQ-related structures, 2194 compounds from the COCONUT natural products database were analysed. Molecular docking analysis was performed to assess the binding strength of these compounds to the LuxP protein in Vibrio carchariae. The LuxP protein is a vital binding protein responsible for the movements of autoinducers within the quorum sensing system; hence, interrupting the process at an early stage could be an effective strategy. Seventy-six AQ structures were found to be highly docked, and eight of these structures were used in structure-based pharmacophore modelling, resulting in six unique pharmacophore features.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Jessica Gomez-Banderas
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The National Decommissioning Centre, University of Aberdeen, Aberdeen AB41 6AA, UK
| | - Joy Ebenezer Rajakulendran
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Department of Chemistry, Eastern University, Chenkaladi 30350, Sri Lanka
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The Medicinal Chemistry and Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence:
| |
Collapse
|
17
|
Wahlgren WY, Claesson E, Tuure I, Trillo-Muyo S, Bódizs S, Ihalainen JA, Takala H, Westenhoff S. Structural mechanism of signal transduction in a phytochrome histidine kinase. Nat Commun 2022; 13:7673. [PMID: 36509762 PMCID: PMC9744887 DOI: 10.1038/s41467-022-34893-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Phytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory systems. Despite the availability of three-dimensional structures of phytochromes and other two-component proteins, the conformational changes, which lead to activation of the protein, are not understood. We reveal cryo electron microscopy structures of the complete phytochrome from Deinoccocus radiodurans in its resting and photoactivated states at 3.6 Å and 3.5 Å resolution, respectively. Upon photoactivation, the photosensory core module hardly changes its tertiary domain arrangement, but the connector helices between the photosensory and the histidine kinase modules open up like a zipper, causing asymmetry and disorder in the effector domains. The structures provide a framework for atom-scale understanding of signaling in phytochromes, visualize allosteric communication over several nanometers, and suggest that disorder in the dimeric arrangement of the effector domains is important for phosphatase activity in a two-component system. The results have implications for the development of optogenetic applications.
Collapse
Affiliation(s)
- Weixiao Yuan Wahlgren
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Elin Claesson
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Iida Tuure
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sergio Trillo-Muyo
- grid.8761.80000 0000 9919 9582Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Szabolcs Bódizs
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Janne A. Ihalainen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Heikki Takala
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland ,grid.7737.40000 0004 0410 2071Faculty of Medicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Sebastian Westenhoff
- grid.8761.80000 0000 9919 9582Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden ,grid.8993.b0000 0004 1936 9457Department of Chemistry—BMC, Biochemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
The role of sensory kinase proteins in two-component signal transduction. Biochem Soc Trans 2022; 50:1859-1873. [DOI: 10.1042/bst20220848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Two-component systems (TCSs) are modular signaling circuits that regulate diverse aspects of microbial physiology in response to environmental cues. These molecular circuits comprise a sensor histidine kinase (HK) protein that contains a conserved histidine residue, and an effector response regulator (RR) protein with a conserved aspartate residue. HKs play a major role in bacterial signaling, since they perceive specific stimuli, transmit the message across the cytoplasmic membrane, and catalyze their own phosphorylation, and the trans-phosphorylation and dephosphorylation of their cognate response regulator. The molecular mechanisms by which HKs co-ordinate these functions have been extensively analyzed by genetic, biochemical, and structural approaches. Here, we describe the most common modular architectures found in bacterial HKs, and address the operation mode of the individual functional domains. Finally, we discuss the use of these signaling proteins as drug targets or as sensing devices in whole-cell biosensors with medical and biotechnological applications.
Collapse
|
19
|
Yusof NAM, Razali SA, Mohd Padzil A, Lau BYC, Baharum SN, Nor Muhammad NA, Raston NHA, Chong CM, Ikhsan NFM, Situmorang ML, Fei LC. Computationally Designed Anti-LuxP DNA Aptamer Suppressed Flagellar Assembly- and Quorum Sensing-Related Gene Expression in Vibrio parahaemolyticus. BIOLOGY 2022; 11:1600. [PMID: 36358301 PMCID: PMC9687752 DOI: 10.3390/biology11111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2023]
Abstract
(1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.
Collapse
Affiliation(s)
- Nur Afiqah Md Yusof
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, Kajang 43000, Selangor, Malaysia
| | - Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Natrah Fatin Mohd Ikhsan
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Low Chen Fei
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
20
|
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annu Rev Microbiol 2022; 76:235-257. [PMID: 35609948 PMCID: PMC9463083 DOI: 10.1146/annurev-micro-042922-122020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Jojo A Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
21
|
Kapadia C, Kachhdia R, Singh S, Gandhi K, Poczai P, Alfarraj S, Ansari MJ, Gafur A, Sayyed RZ. Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia amnigena RCE to regulate its virulence factors and biofilm formation. Front Microbiol 2022; 13:977669. [PMID: 36090086 PMCID: PMC9450810 DOI: 10.3389/fmicb.2022.977669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
The quorum-sensing (QS) cascade is responsible for the colonization and phenotypic behavior of the pathogenic organism and the regulation of diverse signal molecules. The disruption of the quorum-sensing system is an effective strategy to overcome the possibility of antibiotic resistance development in the pathogen. The quorum quenching does not kill the microbes. Instead, it hinders the expression of pathogenic traits. In the present experiment, Pseudomonas aeruginosa RKC1 was used to extract the metabolites responsible for quorum-sensing inhibition in soft rot pathogen Lelliottia amnigena RCE. During the initial screening, P. aeruginosa RKC1 was found to be most promising and inhibits violacein of Chromobacterium violaceum MTCC2656 pyocyanin, swarming-swimming motility of P. aeruginosa MTCC2297. The characterization of metabolites produced by the microbes which are responsible for quorum-sensing inhibition through GC-MS is very scarce in scientific literature. The ethyl acetate extract of P. aeruginosa RKC1 inhibits biofilm formation of L. amnigena RCE while inhibiting growth at higher concentrations. The GC-MS analysis suggested that Cyclic dipeptides (CDPs) such as Cyclo (L-prolyl-L-valine), Cyclo (Pro-Leu), and Cyclo(D-phenylalanyl-L-prolyl) were predominantly found in the ethyl acetate extract of the P. aeruginosa RKC1 (93.72%). This diketopiperazine (DKPs) exhibited quorum-sensing inhibition against the pathogen in liquid media during the active growth phase and regulated diverse metabolites of the pathogen. Moreover, the metabolites data from the clear zone around wells showed a higher concentration of DKSs (9.66%) compared to other metabolites. So far, very few reports indicate the role of DKPs or CDPs in inhibiting the quorum-sensing system in plant pathogenic bacteria. This is one such report that exploits metabolites of P. aeruginosa RKC1. The present investigation provided evidence to use quorum-sensing inhibitor metabolites, to suppress microbes' pathogenesis and thus develop an innovative strategy to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
- *Correspondence: Chintan Kapadia
| | - Rinkal Kachhdia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Susheel Singh
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Kelvin Gandhi
- Food Quality Testing Laboratory, N. M. College of Agriculture, Navsari Agricultural University, Navsari, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandals, S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
22
|
Yang X, Kowallis KA, Childers WS. Protein engineering strategies to stimulate the functions of bacterial pseudokinases. Methods Enzymol 2022; 667:275-302. [PMID: 35525544 DOI: 10.1016/bs.mie.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Enzymes orchestrate an array of concerted functions that often culminate in the chemical conversion of substrates into products. In the bacterial kingdom, histidine kinases autophosphorylate, then transfer that phosphate to a second protein called a response regulator. Bacterial genomes can encode large numbers of histidine kinases that provide surveillance of environmental and cytosolic stresses through signal stimulation of histidine kinase activity. Pseudokinases lack these hallmark catalytic functions but often retain binding interactions and allostery. Characterization of bacterial pseudokinases then takes a fundamentally different approach than their enzymatic counterparts. Here we discuss models for how bacterial pseudokinases can utilize protein-protein interactions and allostery to serve as crucial signaling pathway regulators. Then we describe a protein engineering strategy to interrogate these models, emphasizing how signals flow within bacterial pseudokinases. This description includes design considerations, cloning strategies, and the purification of leucine zippers fused to pseudokinases. We then describe two assays to interrogate this approach. First is a C. crescentus swarm plate assay to track motility phenotypes related to a bacterial pseudokinase. Second is an in vitro coupled-enzyme assay that can be applied to test if and how a pseudokinase regulates an active kinase. Together these approaches provide a blueprint for dissecting the mechanisms of cryptic bacterial pseudokinases.
Collapse
Affiliation(s)
- Xiaole Yang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimberly A Kowallis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Imelio JA, Trajtenberg F, Buschiazzo A. Allostery and protein plasticity: the keystones for bacterial signaling and regulation. Biophys Rev 2022; 13:943-953. [PMID: 35059019 DOI: 10.1007/s12551-021-00892-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/31/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria sense intracellular and environmental signals using an array of proteins as antennas. The information is transmitted from such sensory modules to other protein domains that act as output effectors. Sensor and effector can be part of the same polypeptide or instead be separate diffusible proteins that interact specifically. The output effector modules regulate physiologic responses, allowing the cells to adapt to the varying conditions. These biological machineries are known as signal transduction systems (STSs). Despite the captivating architectural diversity exhibited by STS proteins, a universal feature is their allosteric regulation: signal binding at one site modifies the activity at a physically distant site. Allostery requires protein plasticity, precisely encoded within their 3D structures, and implicating programmed molecular motions. This review summarizes how STS proteins connect stimuli to specific responses by exploiting allostery and protein plasticity. Illustrative examples spanning a wide variety of protein folds will focus on one- and two-component systems (TCSs). The former encompass the entire transmission route within a single polypeptide, whereas TCSs have evolved as separate diffusible proteins that interact specifically, sometimes including additional intermediary proteins in the pathway. Irrespective of their structural diversity, STS proteins are able to modulate their own molecular motions, which can be relatively slow, rigid-body movements, all the way to fast fluctuations in the form of macromolecular flexibility, thus spanning a continuous protein dynamics spectrum. In sum, STSs rely on allostery to steer information transmission, going from simple two-state switching to rich multi-state conformational order/disorder transitions.
Collapse
Affiliation(s)
- J A Imelio
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - F Trajtenberg
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - A Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiol Spectr 2021; 9:e0102621. [PMID: 34937179 PMCID: PMC8694187 DOI: 10.1128/spectrum.01026-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAS domains are omnipresent building blocks of multidomain proteins in all domains of life. Bacteria possess a variety of PAS domains in intracellular proteins and the related Cache domains in periplasmic or extracellular proteins. PAS and Cache domains are predominant in sensory systems, often carry cofactors or bind ligands, and serve as dimerization domains in protein association. To aid our understanding of the wide distribution of these domains, we analyzed the proteome of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 in silico. The ability of this bacterium to survive under different environmental conditions, to switch between planktonic and sessile/biofilm lifestyle, or to evade stresses, notably involves c-di-GMP regulatory proteins or depends on sensory pathways involving multidomain proteins that possess PAS or Cache domains. Maximum likelihood phylogeny was used to group PAS and Cache domains on the basis of amino acid sequence. Conservation of cofactor- or ligand-coordinating amino acids aided by structure-based comparison was used to inform function. The resulting classification presented here includes PAS domains that are candidate binders of carboxylic acids, amino acids, fatty acids, flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, and heme. These predictions are put in context to previously described phenotypic data, often generated from deletion mutants. The analysis predicts novel functions for sensory proteins and sheds light on functional diversification in a large set of proteins with similar architecture. IMPORTANCE To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to affect movement. Environmental cues also regulate intracellular levels of cyclic-di-GMP, a universal bacterial secondary messenger that is a key determinant of bacterial lifestyle and virulence. We study Pseudomonas aeruginosa, an organism known to colonize a broad range of environments that can switch lifestyle between the sessile biofilm and the planktonic swimming form. We have investigated the PAS and Cache domains, of which we identified 101 in 70 Pseudomonas aeruginosa PAO1 proteins, and have grouped these by phylogeny with domains of known structure. The resulting data set integrates sequence analysis and structure prediction to infer ligand or cofactor binding. With this data set, functional predictions for PAS and Cache domain-containing proteins are made.
Collapse
|
25
|
Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases. Biomolecules 2021; 11:biom11101524. [PMID: 34680156 PMCID: PMC8534201 DOI: 10.3390/biom11101524] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates for novel drug targets. TCSs consist of a sensor histidine kinase (HK) and its cognate response regulator (RR). Upon perception of a signal, HKs autophosphorylate their conserved histidine residues, followed by phosphotransfer to their partner RRs. The phosphorylated RRs mostly function as transcriptional regulators and control the expression of genes necessary for stress response. HKs sense their specific signals not only in their extracytoplasmic sensor domain but also in their cytoplasmic and transmembrane domains. The signals are sensed either directly or indirectly via cofactors and accessory proteins. Accumulating evidence shows that a single HK can sense and respond to multiple signals in different domains. The underlying molecular mechanisms of how HK activity is controlled by these signals have been extensively studied both biochemically and structurally. In this article, we introduce the wide diversity of signal perception in different domains of HKs, together with their recently clarified structures and molecular mechanisms.
Collapse
|
26
|
Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:486-514. [PMID: 34567177 PMCID: PMC8457738 DOI: 10.22037/ijpr.2020.113470.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, most of the developed and developing countries are facing the problem of infectious diseases. The genius way of an exaggerated application of antibiotics led the infectious agents to respond by bringing a regime of persisters to resist antibiotics attacks prolonging their survival. Persisters have the dexterity to communicate among themself using signal molecules via the process of Quorum Sensing (QS), which regulates virulence gene expression and biofilms formation, making them more vulnerable to antibiotic attack. Our review aims at the different approaches applied in the ordeal to solve the riddle for QS inhibitors. QS inhibitors, their origin, structures and key interactions for QS inhibitory activity have been summarized. Solicitation of a potent QS inhibitor molecule would be beneficial, giving new life to the simplest antibiotics in adjuvant therapy.
Collapse
Affiliation(s)
- Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini-211007, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
27
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
28
|
Chandravanshi M, Kant Tripathi S, Prasad Kanaujia S. An updated classification and mechanistic insights into ligand binding of the substrate-binding proteins. FEBS Lett 2021; 595:2395-2409. [PMID: 34379808 DOI: 10.1002/1873-3468.14174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Substrate-binding proteins (SBPs) mediate ligand translocation and have been classified into seven clusters (A-G). Although the substrate specificities of these clusters are known to some extent, their ligand-binding mechanism(s) remain(s) incompletely understood. In this study, the list of SBPs belonging to different clusters was updated (764 SBPs) compared to the previously reported study (504 SBPs). Furthermore, a new cluster referred to as cluster H was identified. Results reveal that SBPs follow different ligand-binding mechanisms. Intriguingly, the majority of the SBPs follow the "one domain movement" rather than the well-known "Venus Fly-trap" mechanism. Moreover, SBPs of a few clusters display subdomain conformational movement rather than the complete movement of the N- and C-terminal domains.
Collapse
Affiliation(s)
- Monika Chandravanshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Sisir Kant Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
29
|
Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. BIOLOGY 2021; 10:638. [PMID: 34356493 PMCID: PMC8301110 DOI: 10.3390/biology10070638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Bioluminescent bacteria are mainly found in marine habitats. Vibrio qinghaiensis sp.-Q67 (Q67), a nonpathogenic freshwater bacterium, has been a focus due to its wide use in the monitoring of environmental pollution and the assessment of toxicity. However, the lack of available crystal structures limits the elucidation of the structures of the functional proteins of the quorum-sensing (QS) system that regulates bacterial luminescence in Q67. In this study, 19 functional proteins were built through monomer and oligomer modeling based on their coding proteins in the QS system of Q67 using MODELLER. Except for the failure to construct LuxM due to the lack of a suitable template, 18 functional proteins were successfully constructed. Furthermore, the relationships between the function and predicted structures of 19 functional proteins were explored one by one according to the three functional classifications: autoinducer synthases and receptors, signal transmission proteins (phosphotransferases, an RNA chaperone, and a transcriptional regulator), and enzymes involved in bacterial bioluminescence reactions. This is the first analysis of the whole process of bioluminescence regulation from the perspective of nonpathogenic freshwater bacteria at the molecular level. It provides a theoretical basis for the explanation of applications of Q67 in which luminescent inhibition is used as the endpoint.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
30
|
Sensor Domain of Histidine Kinase VxrA of Vibrio cholerae- A Hairpin-swapped Dimer and its Conformational Change. J Bacteriol 2021; 203:JB.00643-20. [PMID: 33753465 PMCID: PMC8117521 DOI: 10.1128/jb.00643-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
VxrA and VxrB are cognate histidine kinase (HK) - response regulator (RR) pairs of a two-component signaling system (TCS) found in Vibrio cholerae, a bacterial pathogen that causes cholera. The VxrAB TCS positively regulates virulence, the Type VI Secretion System, biofilm formation, and cell wall homeostasis in V. cholerae, providing protection from environmental stresses and contributing to the transmission and virulence of the pathogen. The VxrA HK has a unique periplasmic sensor domain (SD) and, remarkably, lacks a cytoplasmic linker domain between the second transmembrane helix and the dimerization and histidine phosphotransfer (DHp) domain, indicating that this system may utilize a potentially unique signal sensing and transmission TCS mechanism. In this study, we have determined several crystal structures of VxrA-SD and its mutants. These structures reveal a novel structural fold forming an unusual β hairpin-swapped dimer. A conformational change caused by relative rotation of the two monomers in a VxrA-SD dimer could potentially change the association of transmembrane helices and, subsequently, the pairing of cytoplasmic DHp domains. Based on the structural observation, we propose a putative scissor-like closing regulation mechanism for the VxrA HK.IMPORTANCE V. cholerae has a dynamic life cycle, which requires rapid adaptation to changing external conditions. Two-component signal transduction (TCS) systems allow V. cholerae to sense and respond to these environmental changes. The VxrAB TCS positively regulates a number of important V. cholerae phenotypes, including virulence, the Type Six Secretion System, biofilm formation, and cell wall homeostasis. Here, we provide the crystal structure of the VxrA sensor histidine kinase sensing domain and propose a mechanism for signal transduction. The cognate signal for VxrAB remains unknown, however, in this work we couple our structural analysis with functional assessments of key residues to further our understanding of this important TCS.
Collapse
|
31
|
Yi L, Dong X, Grenier D, Wang K, Wang Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143031. [PMID: 33129525 DOI: 10.1016/j.scitotenv.2020.143031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The microbial community is an important part of the natural ecosystem, and the quorum sensing system is a momentous communication tool for the microbial community to connect to the surrounding environment. Quorum sensing is a process of cell-cell communication that relies on the production, release, and detection of extracellular signaling molecules, which are called autoinducers. Quorum sensing systems in bacteria consist of two main components: a receptor protein and an autoinducer. The binding of autoinducer to its receptor activates the target gene, which then performs the corresponding function in bacteria. In a natural environment, different bacterial species possess quorum sensing receptors that are structurally and functionally different. So far, many bacterial quorum sensing receptors have been identified and the structure and function of some receptors have been characterized. There are many reviews about quorum sensing and quorum sensing receptors, but there are few reviews that describe various types of quorum sensing in different environments with receptors as the core. Therefore, we summarize the well-defined quorum sensing receptors involved in intra-species and inter-species cell-cell communication, and describe the structure, function, and characteristics of typical receptors for different types of quorum sensing. A systematic understanding of quorum sensing receptors will help researchers to further explore the signaling mechanism and regulation mechanism of quorum sensing system, provide help to clarify the role and function of quorum sensing in natural ecosystems, then provide theoretical basis for the discovery or synthesis of new targeted drugs that block quorum sensing.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Xiao Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
32
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
33
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
34
|
Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2021; 167. [PMID: 33620307 DOI: 10.1099/mic.0.001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.
Collapse
Affiliation(s)
- Veronica Jazmín Sánchez-Ortiz
- Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
35
|
Poddar N, Badilla C, Maghool S, Osborne TH, Santini JM, Maher MJ. Structural and Functional Investigation of the Periplasmic Arsenate-Binding Protein ArrX from Chrysiogenes arsenatis. Biochemistry 2021; 60:465-476. [PMID: 33538578 DOI: 10.1021/acs.biochem.0c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43-) as the terminal electron acceptor, where it is reduced to arsenite (AsO33-) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.
Collapse
Affiliation(s)
- Nilakhi Poddar
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia
| | - Consuelo Badilla
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Shadi Maghool
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia
| | - Thomas H Osborne
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Megan J Maher
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3052, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| |
Collapse
|
36
|
Yang M, Tang Y, Weng J, Liu Z, Wang W. The Role of Calcium in Regulating the Conformational Dynamics of d-Galactose/d-Glucose-Binding Protein Revealed by Markov State Model Analysis. J Chem Inf Model 2021; 61:891-900. [PMID: 33445873 DOI: 10.1021/acs.jcim.0c01119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The d-glucose/d-galactose-binding protein (GGBP) from Escherichia coli is a substrate-binding protein (SBP) associated with sugar transport and chemotaxis. It is also a calcium-binding protein, which makes it unique in the SBP family. However, the functional importance of Ca2+ binding is not fully understood. Here, the calcium-dependent properties of GGBP were explored by all-atom molecular dynamics simulations and Markov state model (MSM) analysis as well as single-molecule Förster resonance energy transfer (smFRET) measurements. In agreement with previous experimental studies, we observed the structure stabilization effect of Ca2+ binding on the C-terminal domain of GGBP, especially the Ca2+-binding site. Interestingly, the MSMs of calcium-depleted GGBP and calcium-bound GGBP (GGBP/Ca2+) demonstrate that Ca2+ greatly stabilizes the open conformation, and smFRET measurements confirmed this result. Further analysis reveals that Ca2+ binding disturbs the local hydrogen bonding interactions and the conformational dynamics of the hinge region, thereby weakening the long-range interdomain correlations to favor the open conformation. These results suggest an active regulatory role of Ca2+ binding in GGBP, which finely tunes the conformational distribution. The work sheds new light on the study of calcium-binding proteins in prokaryotes.
Collapse
Affiliation(s)
- Maohua Yang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yegen Tang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
37
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
38
|
Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020; 11:1582-1599. [PMID: 33172314 PMCID: PMC7671094 DOI: 10.1080/21505594.2020.1845039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Interface switch mediates signal transmission in a two-component system. Proc Natl Acad Sci U S A 2020; 117:30433-30440. [PMID: 33199635 DOI: 10.1073/pnas.1912080117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems (TCS), which typically consist of a membrane-embedded histidine kinase and a cytoplasmic response regulator, are the dominant signaling proteins for transduction of environmental stimuli into cellular response pathways in prokaryotic cells. HptRSA is a recently identified TCS consisting of the G6P-associated sensor protein (HptA), transmembrane histidine kinase (HptS), and cytoplasmic effector (HptR). HptRSA mediates glucose-6-phosphate (G6P) uptake to support Staphylococcus aureus growth and multiplication within various host cells. How the mechanism by which HptRSA perceives G6P and triggers a downstream response has remained elusive. Here, we solved the HptA structures in apo and G6P-bound states. G6P binding in the cleft between two HptA domains caused a conformational closing movement. The solved structures of HptA in complex with the periplasmic domain of HptS showed that HptA interacts with HptS through both constitutive and switchable interfaces. The G6P-free form of HptA binds to the membrane-distal side of the HptS periplasmic domain (HptSp), resulting in a parallel conformation of the HptSp protomer pair. However, once HptA associates with G6P, its intramolecular domain closure switches the HptA-HptSp contact region into the membrane-proximal domain, which causes rotation and closure of the C termini of each HptSp protomer. Through biochemical and growth assays of HptA and HptS mutant variants, we proposed a distinct mechanism of interface switch-mediated signaling transduction. Our results provide mechanistic insights into bacterial nutrient sensing and expand our understanding of the activation modes by which TCS communicates external signals.
Collapse
|
40
|
Xie M, Wu M, Han A. Structural insights into the signal transduction mechanism of the K +-sensing two-component system KdpDE. Sci Signal 2020; 13:13/643/eaaz2970. [PMID: 32753477 DOI: 10.1126/scisignal.aaz2970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two-component systems (TCSs), which consist of a histidine kinase (HK) sensor and a response regulator (RR), are important for bacteria to quickly sense and respond to various environmental signals. HKs and RRs typically function as a cognate pair, interacting only with one another to transduce signaling. Precise signal transduction in a TCS depends on the specific interactions between the receiver domain (RD) of the RR and the dimerization and histidine phosphorylation domain (DHp) of the HK. Here, we determined the complex structure of KdpDE, a TCS consisting of the HK KdpD and the RR KdpE, which is responsible for K+ homeostasis. Both the RD and the DNA binding domain (DBD) of KdpE interacted with KdpD. Although the RD of KdpE and the DHp of KdpD contributed to binding specificity, the DBD mediated a distinct interaction with the catalytic ATP-binding (CA) domain of KdpD that was indispensable for KdpDE-mediated signal transduction. Moreover, the DBD-CA interface largely overlapped with that of the DBD-DNA complex, leading to competition between KdpD and its target promoter in a KdpE phosphorylation-dependent manner. In addition, the extended C-terminal tail of the CA domain was critical for stabilizing the interaction with KdpDE and for signal transduction. Together, these data provide a molecular basis for specific KdpD and KdpE interactions that play key roles in efficient signal transduction and transcriptional regulation by this TCS.
Collapse
Affiliation(s)
- Mingquan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyuan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
41
|
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, Gordeliy V. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. Int J Mol Sci 2020; 21:E3110. [PMID: 32354084 PMCID: PMC7247690 DOI: 10.3390/ijms21093110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane-embedded sensor histidine kinases (HKs) and chemoreceptors are used ubiquitously by bacteria and archaea to percept the environment, and are often crucial for their survival and pathogenicity. The proteins can transmit the signal from the sensor domain to the catalytic kinase domain reliably over the span of several hundreds of angstroms, and regulate the activity of the cognate response regulator proteins, with which they form two-component signaling systems (TCSs). Several mechanisms of transmembrane signal transduction in TCS receptors have been proposed, dubbed (swinging) piston, helical rotation, and diagonal scissoring. Yet, despite decades of studies, there is no consensus on whether these mechanisms are common for all TCS receptors. Here, we extend our previous work on Escherichia coli nitrate/nitrite sensor kinase NarQ. We determined a crystallographic structure of the sensor-TM-HAMP fragment of the R50S mutant, which, unexpectedly, was found in a ligand-bound-like conformation, despite an inability to bind nitrate. Subsequently, we reanalyzed the structures of the ligand-free and ligand-bound NarQ and NarX sensor domains, and conducted extensive molecular dynamics simulations of ligand-free and ligand-bound wild type and mutated NarQ. Based on the data, we show that binding of nitrate to NarQ causes, first and foremost, helical rotation and diagonal scissoring of the α-helices at the core of the sensor domain. These conformational changes are accompanied by a subtle piston-like motion, which is amplified by a switch in the secondary structure of the linker between the sensor and TM domains. We conclude that helical rotation, diagonal scissoring, and piston are simply different degrees of freedom in coiled-coil proteins and are not mutually exclusive in NarQ, and likely in other nitrate sensors and TCS proteins as well.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Igor Melnikov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vitaly Polovinkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Anastasia Yuzhakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
42
|
Biswas S, Adhikari A, Mukherjee A, Das S, Adak S. Regulation of Leishmania major PAS domain-containing phosphoglycerate kinase by cofactor Mg 2+ ion at neutral pH. FEBS J 2020; 287:5183-5195. [PMID: 32196942 DOI: 10.1111/febs.15305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/26/2022]
Abstract
Recently, we described the PAS domain-containing phosphoglycerate kinase (PGK) from Leishmania major (LmPAS-PGK) that shows acidic pH (5.5)-dependent optimum catalytic activity. The PAS domain of LmPAS-PGK is expected to regulate PGK activity during catalysis, but the mechanism of regulation by PAS domain at the molecular level is uncharacterized. In this work, we have utilized the full-length, PAS domain-deleted, and mutant enzymes to measure the enzymatic activity in the presence of divalent cation at various pH values. Catalytic activity measurement indicates that Mg2+ binding through PAS domain inhibits the PGK activity at pH 7.5, and this inhibition is withdrawn at pH 5.5. To identify the Mg2+ binding residues of the PAS domain, we exploited a systematic mutational analysis of all (four) His residues in the PAS domain for potential divalent cation binding. Replacement of His-57 with alanine resulted in depression in the presence of Mg2+ at pH 7.5, but H71A, H89A, and H111A showed similar characteristics with respect to the wild-type protein. Fluorescence and isothermal titration calorimetry studies revealed that H57 is responsible for Mg2+ binding in the absence of substrates. Thus, the protonated form of His57 at acidic pH 5.5 destabilizes the Mg2+ binding in the PAS domain, which is an essential requirement in the wild-type LmPAS-PGK for a conformational alteration in the sensor domain that, sequentially, activates the PGK domain, resulting in the synthesis of higher amounts of ATP.
Collapse
Affiliation(s)
- Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ayan Adhikari
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aditi Mukherjee
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
43
|
Zhao X, Yu Z, Ding T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020; 8:E425. [PMID: 32192182 PMCID: PMC7143945 DOI: 10.3390/microorganisms8030425] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing is a cell-to-cell communication system that exists widely in the microbiome and is related to cell density. The high-density colony population can generate a sufficient number of small molecule signals, activate a variety of downstream cellular processes including virulence and drug resistance mechanisms, tolerate antibiotics, and harm the host. This article gives a general introduction to the current research status of microbial quorum-sensing systems, focuses on the role of quorum-sensing systems in regulating microbial resistance mechanisms, such as drug efflux pump and microbial biofilm formation regulation, and discusses a new strategy for the treatment of drug-resistant bacteria proposed by using quorum quenching to prevent microbial resistance.
Collapse
Affiliation(s)
- Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (Z.Y.)
| | - Zixuan Yu
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Z.); (Z.Y.)
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Bouillet S, Wu T, Chen S, Stock AM, Gao R. Structural asymmetry does not indicate hemiphosphorylation in the bacterial histidine kinase CpxA. J Biol Chem 2020; 295:8106-8117. [PMID: 32094228 DOI: 10.1074/jbc.ra120.012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Indexed: 11/06/2022] Open
Abstract
Histidine protein kinases (HKs) are prevalent prokaryotic sensor kinases that are central to phosphotransfer in two-component signal transduction systems, regulating phosphorylation of response regulator proteins that determine the output responses. HKs typically exist as dimers and can potentially autophosphorylate at each conserved histidine residue in the individual protomers, leading to diphosphorylation. However, analyses of HK phosphorylation in biochemical assays in vitro suggest negative cooperativity, whereby phosphorylation in one protomer of the dimer inhibits phosphorylation in the second protomer, leading to ∼50% phosphorylation of the available sites in dimers. This negative cooperativity is often correlated with an asymmetric domain arrangement, a common structural characteristic of autophosphorylation states in many HK structures. In this study, we engineered covalent dimers of the cytoplasmic domains of Escherichia coli CpxA, enabling us to quantify individual species: unphosphorylated, monophosphorylated, and diphosphorylated dimers. Together with mathematical modeling, we unambiguously demonstrate no cooperativity in autophosphorylation of CpxA despite its asymmetric structures, indicating that these asymmetric domain arrangements are not linked to negative cooperativity and hemiphosphorylation. Furthermore, the modeling indicated that many parameters, most notably minor amounts of ADP generated during autophosphorylation reactions or present in ATP preparations, can produce ∼50% total phosphorylation that may be mistakenly attributed to negative cooperativity. This study also establishes that the engineered covalent heterodimer provides a robust experimental system for investigating cooperativity in HK autophosphorylation and offers a useful tool for testing how symmetric or asymmetric structural features influence HK functions.
Collapse
Affiliation(s)
- Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shaoxing Chen
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
45
|
Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog 2020; 16:e1008313. [PMID: 32059031 PMCID: PMC7046293 DOI: 10.1371/journal.ppat.1008313] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/27/2020] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Many bacteria use quorum sensing (QS) to regulate virulence factor production in response to changes in population density. QS is mediated through the production, secretion, and detection of signaling molecules called autoinducers (AIs) to modulate population-wide behavioral changes. Four histidine kinases, LuxPQ, CqsS, CqsR and VpsS, have been identified in Vibrio cholerae as QS receptors to activate virulence gene expression at low cell density. Detection of AIs by these receptors leads to virulence gene repression at high cell density. The redundancy among these receptors is puzzling since any one of the four receptors is sufficient to support colonization of V. cholerae in the host small intestine. It is believed that one of the functions of such circuit architecture is to prevent interference on any single QS receptor. However, it is unclear what natural molecules can interfere V. cholerae QS and in what environment interference is detrimental. We show here mutants expressing only CqsR without the other three QS receptors are defective in colonizing the host large intestine. We identified ethanolamine, a common intestinal metabolite that can function as a chemical source of QS interference. Ethanolamine specifically interacts with the ligand-binding CACHE domain of CqsR and induces a premature QS response in V. cholerae mutants expressing only CqsR without the other three QS receptors. The effect of ethanolamine on QS gene expression and host colonization is abolished by mutations that disrupt CqsR signal sensing. V. cholerae defective in producing ethanolamine is still proficient in QS, therefore, ethanolamine functions only as an external cue for CqsR. Our findings suggest the inhibitory effect of ethanolamine on CqsR could be a possible source of QS interference but is masked by the presence of the other parallel QS pathways, allowing V. cholerae to robustly colonize the host. Many pathogens use quorum sensing (QS) to regulate virulence gene expression for their survival and adaptation inside hosts. QS depends on the production and detection of chemical signals called autoinducers made endogenously by the bacteria. However, chemicals present in the surrounding environment could potentially lead to quorum signal interference, resulting in mis-regulation of virulence factor production and preventing effective host colonization. We show here ethanolamine, a metabolite commonly found inside the mammalian intestine, modulates the activity of one of the QS receptors in Vibrio cholerae, the etiological agent of the disease cholera. Despite the abundance of this common metabolite inside the host, by integrating multiple parallel signal inputs into its QS system, V. cholerae has evolved to maintain QS fidelity and avoids signal interference to allow robust colonization of the host.
Collapse
|
46
|
Trajtenberg F, Buschiazzo A. Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. Methods Mol Biol 2020; 2077:1-18. [PMID: 31707648 DOI: 10.1007/978-1-4939-9884-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein-protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator's allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
47
|
Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol 2019; 17:e3000429. [PMID: 31710602 PMCID: PMC6872173 DOI: 10.1371/journal.pbio.3000429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/21/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Vibrio cholerae possesses multiple quorum-sensing (QS) systems that control virulence and biofilm formation among other traits. At low cell densities, when QS autoinducers are absent, V. cholerae forms biofilms. At high cell densities, when autoinducers have accumulated, biofilm formation is repressed, and dispersal occurs. Here, we focus on the roles of two well-characterized QS autoinducers that function in parallel. One autoinducer, called cholerae autoinducer-1 (CAI-1), is used to measure Vibrio abundance, and the other autoinducer, called autoinducer-2 (AI-2), is widely produced by different bacterial species and presumed to enable V. cholerae to assess the total bacterial cell density of the vicinal community. The two V. cholerae autoinducers funnel information into a shared signal relay pathway. This feature of the QS system architecture has made it difficult to understand how specific information can be extracted from each autoinducer, how the autoinducers might drive distinct output behaviors, and, in turn, how the bacteria use QS to distinguish kin from nonkin in bacterial communities. We develop a live-cell biofilm formation and dispersal assay that allows examination of the individual and combined roles of the two autoinducers in controlling V. cholerae behavior. We show that the QS system works as a coincidence detector in which both autoinducers must be present simultaneously for repression of biofilm formation to occur. Within that context, the CAI-1 QS pathway is activated when only a few V. cholerae cells are present, whereas the AI-2 pathway is activated only at much higher cell density. The consequence of this asymmetry is that exogenous sources of AI-2, but not CAI-1, contribute to satisfying the coincidence detector to repress biofilm formation and promote dispersal. We propose that V. cholerae uses CAI-1 to verify that some of its kin are present before committing to the high-cell–density QS mode, but it is, in fact, the broadly made autoinducer AI-2 that sets the pace of the V. cholerae QS program. This first report of unique roles for the different V. cholerae autoinducers suggests that detection of kin fosters a distinct outcome from detection of nonkin. The pathogenic bacterium Vibrio cholerae uses both kin and nonkin quorum-sensing autoinducer molecules to control its biofilm life cycle; this study shows that each autoinducer plays a unique role in regulating biofilm formation and dispersal.
Collapse
Affiliation(s)
- Andrew A. Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019; 28:1923-1946. [PMID: 31397927 PMCID: PMC6798134 DOI: 10.1002/pro.3705] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
Collapse
Affiliation(s)
- Andreas Möglich
- Department of BiochemistryUniversität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular BiologyUniversität BayreuthBayreuthGermany
- North‐Bavarian NMR CenterUniversität BayreuthBayreuthGermany
| |
Collapse
|
49
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|
50
|
Heckler I, Boon EM. Insights Into Nitric Oxide Modulated Quorum Sensing Pathways. Front Microbiol 2019; 10:2174. [PMID: 31608029 PMCID: PMC6769237 DOI: 10.3389/fmicb.2019.02174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
The emerging threat of drug resistant bacteria has prompted the investigation into bacterial signaling pathways responsible for pathogenesis. One such mechanism by which bacteria regulate their physiology during infection of a host is through a process known as quorum sensing (QS). Bacteria use QS to regulate community-wide gene expression in response to changes in population density. In order to sense these changes in population density, bacteria produce, secrete and detect small molecules called autoinducers. The most common signals detected by Gram-negative and Gram-positive bacteria are acylated homoserine lactones and autoinducing peptides (AIPs), respectively. However, increasing evidence has supported a role for the small molecule nitric oxide (NO) in influencing QS-mediated group behaviors like bioluminescence, biofilm production, and virulence. In this review, we discuss three bacteria that have an established role for NO in influencing bacterial physiology through QS circuits. In two Vibrio species, NO has been shown to affect QS pathways upon coordination of hemoprotein sensors. Further, NO has been demonstrated to serve a protective role against staphylococcal pneumonia through S-nitrosylation of a QS regulator of virulence.
Collapse
|