1
|
Huo Y, Karnawat R, Liu L, Knieß RA, Groß M, Chen X, Mayer MP. Modification of Regulatory Tyrosine Residues Biases Human Hsp90α in its Interactions with Cochaperones and Clients. J Mol Biol 2024; 436:168772. [PMID: 39222679 DOI: 10.1016/j.jmb.2024.168772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90β, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90s client specificity.
Collapse
Affiliation(s)
- Yuantao Huo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Rishabh Karnawat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Lixia Liu
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Robert A Knieß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Maike Groß
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Xuemei Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou Avenue North 1838, Tonghe, Guangzhou, Guangdong 510515, P.R.China
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Riedl S, Bilgen E, Agam G, Hirvonen V, Jussupow A, Tippl F, Riedl M, Maier A, Becker CFW, Kaila VRI, Lamb DC, Buchner J. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat Commun 2024; 15:8627. [PMID: 39366960 PMCID: PMC11452706 DOI: 10.1038/s41467-024-52995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Hsp90 is a molecular chaperone of central importance for protein homeostasis in the cytosol of eukaryotic cells, with key functional and structural traits conserved from yeast to man. During evolution, Hsp90 has gained additional functional importance, leading to an increased number of interacting co-chaperones and client proteins. Here, we show that the overall conformational transitions coupled to the ATPase cycle of Hsp90 are conserved from yeast to humans, but cycle timing as well as the dynamics are significantly altered. In contrast to yeast Hsp90, the human Hsp90 is characterized by broad ensembles of conformational states, irrespective of the absence or presence of ATP. The differences in the ATPase rate and conformational transitions between yeast and human Hsp90 are based on two residues in otherwise conserved structural elements that are involved in triggering structural changes in response to ATP binding. The exchange of these two mutations allows swapping of the ATPase rate and of the conformational transitions between human and yeast Hsp90. Our combined results show that Hsp90 evolved to a protein with increased conformational dynamics that populates ensembles of different states with strong preferences for the N-terminally open, client-accepting states.
Collapse
Affiliation(s)
- Stefan Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Ecenaz Bilgen
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ganesh Agam
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Viivi Hirvonen
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Alexander Jussupow
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Franziska Tippl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Andreas Maier
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Don C Lamb
- Department of Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department Bioscience, School of Natural Sciences, Technical University Munich, Garching, Germany.
| |
Collapse
|
3
|
Qu X, Zhao S, Wan C, Zhu L, Ji T, Rossi P, Wang J, Kalodimos CG, Wang C, Xu W, Huang C. Structural basis for the dynamic chaperoning of disordered clients by Hsp90. Nat Struct Mol Biol 2024; 31:1482-1491. [PMID: 38890550 DOI: 10.1038/s41594-024-01337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/28/2024] [Indexed: 06/20/2024]
Abstract
Molecular chaperone heat shock protein 90 (Hsp90) is a ubiquitous regulator that fine-tunes and remodels diverse client proteins, exerting profound effects on normal biology and diseases. Unraveling the mechanistic details of Hsp90's function requires atomic-level insights into its client interactions throughout the adenosine triphosphate-coupled functional cycle. However, the structural details of the initial encounter complex in the chaperone cycle, wherein Hsp90 adopts an open conformation while engaging with the client, remain elusive. Here, using nuclear magnetic resonance spectroscopy, we determined the solution structure of Hsp90 in its open state, bound to a disordered client. Our findings reveal that Hsp90 uses two distinct binding sites, collaborating synergistically to capture discrete hydrophobic segments within client proteins. This bipartite interaction generates a versatile complex that facilitates rapid conformational sampling. Moreover, our investigations spanning various clients and Hsp90 orthologs demonstrate a pervasive mechanism used by Hsp90 orthologs to accommodate the vast array of client proteins. Collectively, our work contributes to establish a unified conceptual and mechanistic framework, elucidating the intricate interplay between Hsp90 and its clients.
Collapse
Affiliation(s)
- Xiaozhan Qu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Shuo Zhao
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Chanjuan Wan
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Lei Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Tuo Ji
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Paolo Rossi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | | | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Li Y, Dong J, Qin JJ. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur J Med Chem 2024; 275:116562. [PMID: 38865742 DOI: 10.1016/j.ejmech.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
As a molecular chaperone, heat shock protein 90 (HSP90) plays important roles in the folding, stabilization, activation, and degradation of over 500 client proteins, and is extensively involved in cell signaling, proliferation, and survival. Thus, it has emerged as an important target in a variety of diseases, including cancer, neurodegenerative diseases, and viral infections. Therefore, targeted inhibition of HSP90 provides a valuable and promising therapeutic strategy for the treatment of HSP90-related diseases. This review aims to systematically summarize the progress of research on HSP90 inhibitors in the last five years, focusing on their structural features, design strategies, and biological activities. It will refer to the natural products and their derivatives (including novobiocin derivatives, deguelin derivatives, quinone derivatives, and terpenoid derivatives), and to synthetic small molecules (including resorcinol derivatives, pyrazoles derivatives, triazole derivatives, pyrimidine derivatives, benzamide derivatives, benzothiazole derivatives, and benzofuran derivatives). In addition, the major HSP90 small-molecule inhibitors that have moved into clinical trials to date are also presented here.
Collapse
Affiliation(s)
- Yulong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
5
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
6
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
7
|
Amankwah YS, Fleifil Y, Unruh E, Collins P, Wang Y, Vitou K, Bates A, Obaseki I, Sugoor M, Alao JP, McCarrick RM, Gewirth DT, Sahu ID, Li Z, Lorigan GA, Kravats AN. Structural transitions modulate the chaperone activities of Grp94. Proc Natl Acad Sci U S A 2024; 121:e2309326121. [PMID: 38483986 PMCID: PMC10962938 DOI: 10.1073/pnas.2309326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.
Collapse
Affiliation(s)
- Yaa S. Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Ikponwmosa Obaseki
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Meghana Sugoor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - John Paul Alao
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | | | | | - Indra D. Sahu
- Natural Sciences Division, Campbellsville University, Campbellsville, KY42718
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Gary. A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| |
Collapse
|
8
|
Finci LI, Chakrabarti M, Gulten G, Finney J, Grose C, Fox T, Yang R, Nissley DV, McCormick F, Esposito D, Balius TE, Simanshu DK. Structural dynamics of RAF1-HSP90-CDC37 and HSP90 complexes reveal asymmetric client interactions and key structural elements. Commun Biol 2024; 7:260. [PMID: 38431713 PMCID: PMC10908828 DOI: 10.1038/s42003-024-05959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
RAF kinases are integral to the RAS-MAPK signaling pathway, and proper RAF1 folding relies on its interaction with the chaperone HSP90 and the cochaperone CDC37. Understanding the intricate molecular interactions governing RAF1 folding is crucial for comprehending this process. Here, we present a cryo-EM structure of the closed-state RAF1-HSP90-CDC37 complex, where the C-lobe of the RAF1 kinase domain binds to one side of the HSP90 dimer, and an unfolded N-lobe segment of the RAF1 kinase domain threads through the center of the HSP90 dimer. CDC37 binds to the kinase C-lobe, mimicking the N-lobe with its HxNI motif. We also describe structures of HSP90 dimers without RAF1 and CDC37, displaying only N-terminal and middle domains, which we term the semi-open state. Employing 1 μs atomistic simulations, energetic decomposition, and comparative structural analysis, we elucidate the dynamics and interactions within these complexes. Our quantitative analysis reveals that CDC37 bridges the HSP90-RAF1 interaction, RAF1 binds HSP90 asymmetrically, and that HSP90 structural elements engage RAF1's unfolded region. Additionally, N- and C-terminal interactions stabilize HSP90 dimers, and molecular interactions in HSP90 dimers rearrange between the closed and semi-open states. Our findings provide valuable insight into the contributions of HSP90 and CDC37 in mediating client folding.
Collapse
Affiliation(s)
- Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gulcin Gulten
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph Finney
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carissa Grose
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tara Fox
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Renbin Yang
- Center for Molecular Microscopy, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
9
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
10
|
Feng Z, Lu H, Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front Cell Infect Microbiol 2024; 14:1339501. [PMID: 38404288 PMCID: PMC10884116 DOI: 10.3389/fcimb.2024.1339501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In the last twenty years, there has been a significant increase in invasive fungal infections, which has corresponded with the expanding population of individuals with compromised immune systems. As a result, the mortality rate linked to these infections remains unacceptably high. The currently available antifungal drugs, such as azoles, polyenes, and echinocandins, face limitations in terms of their diversity, the escalating resistance of fungi and the occurrence of significant adverse effects. Consequently, there is an urgent need to develop new antifungal medications. Vaccines and antibodies present a promising avenue for addressing fungal infections due to their targeted antifungal properties and ability to modulate the immune response. This review investigates the structure and function of cell wall proteins, secreted proteins, and functional proteins within C. albicans. Furthermore, it seeks to analyze the current advancements and challenges in macromolecular drugs to identify new targets for the effective management of candidiasis.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Wei H, Zhang Y, Jia Y, Chen X, Niu T, Chatterjee A, He P, Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e470. [PMID: 38283176 PMCID: PMC10811298 DOI: 10.1002/mco2.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a predominant member among Heat shock proteins (HSPs), playing a central role in cellular protection and maintenance by aiding in the folding, stabilization, and modification of diverse protein substrates. It collaborates with various co-chaperones to manage ATPase-driven conformational changes in its dimer during client protein processing. Hsp90 is critical in cellular function, supporting the proper operation of numerous proteins, many of which are linked to diseases such as cancer, Alzheimer's, neurodegenerative conditions, and infectious diseases. Recognizing the significance of these client proteins across diverse diseases, there is a growing interest in targeting Hsp90 and its co-chaperones for potential therapeutic strategies. This review described biological background of HSPs and the structural characteristics of HSP90. Additionally, it discusses the regulatory role of heat shock factor-1 (HSF-1) in modulating HSP90 and sheds light on the dynamic chaperone cycle of HSP90. Furthermore, the review discusses the specific contributions of HSP90 in various disease contexts, especially in cancer. It also summarizes HSP90 inhibitors for cancer treatment, offering a thoughtful analysis of their strengths and limitations. These advancements in research expand our understanding of HSP90 and open up new avenues for considering HSP90 as a promising target for therapeutic intervention in a range of diseases.
Collapse
Affiliation(s)
- Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yingying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Yilin Jia
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Xunan Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tengda Niu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Aniruddha Chatterjee
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Pengxing He
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationSchool of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of PathologyDunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
12
|
Sun S, Zhu R, Zhu M, Wang Q, Li N, Yang B. Visualization of conformational transition of GRP94 in solution. Life Sci Alliance 2024; 7:e202302051. [PMID: 37949474 PMCID: PMC10638095 DOI: 10.26508/lsa.202302051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
GRP94, an ER paralog of the heat-shock protein 90 family, binds and hydrolyses ATP to chaperone the folding and maturation of its selected clients. Compared with other hsp90 proteins, the in-solution conformational dynamics of GRP94 along the ATP hydrolysis cycle are less understood, hindering our understanding of its chaperoning mechanism. Leveraging small-angle X-ray scattering, negative-staining EM, and hydrogen-deuterium exchange coupled mass-spec, here we show that in its apo form, ∼60% of mouse GRP94 (mGRP94) populates an "extended" conformation, whereas the rest exist in either "close V" or "twist V" like "compact" conformations. Different from other hsp90 proteins, the presence of AMPPNP only impacts the relative abundance of the two compact conformations, rather than shifting the equilibrium between the "extended" and "compact" conformations of mGRP94. HDX-MS study of apo, AMPPNP-bound, and ADP-bound mGRP94 suggests a conformational transition from "twist V" to "close V" upon ATP binding and a back transition from "close V" to "twist V" upon ATP hydrolysis. These results illustrate the dissimilarities of GRP94 in conformation transition during ATP hydrolysis from other hsp90 paralogs.
Collapse
Affiliation(s)
- Shangwu Sun
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rui Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengyao Zhu
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Wang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- https://ror.org/030bhh786 Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- https://ror.org/030bhh786 Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
13
|
Liu J, Shu H, Xia Q, You Q, Wang L. Recent developments of HSP90 inhibitors: an updated patent review (2020-present). Expert Opin Ther Pat 2024; 34:1-15. [PMID: 38441084 DOI: 10.1080/13543776.2024.2327295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION The 90-kDa heat shock protein (HSP90) functions as a molecular chaperone, it assumes a significant role in diseases such as cancer, inflammation, neurodegeneration, and infection. Therefore, the research and development of HSP90 inhibitors have garnered considerable attention. AREAS COVERED The primary references source for this review is patents obtained from SciFinder, encompassing patents on HSP90 inhibitors from the period of 2020 to 2023.This review includes a thorough analysis of their structural attributes, pharmacological properties, and potential clinical utilities. EXPERT OPINION In the past few years, HSP90 inhibitors targeting ATP binding pocket are still predominate and one of them has been launched, besides, novel drug design strategies like C-terminal targeting, isoform selective inhibiting and bifunctional molecules are booming, aiming to improve the efficacy and safety. With expanded drug types and applications, HSP90 inhibitors may gradually becoming a sagacious option for treating various diseases.
Collapse
Affiliation(s)
- Jianfeng Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Huangliang Shu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinxin Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Castelli M, Magni A, Bonollo G, Pavoni S, Frigerio F, Oliveira ASF, Cinquini F, Serapian SA, Colombo G. Molecular mechanisms of chaperone-directed protein folding: Insights from atomistic simulations. Protein Sci 2023; 33:e4880. [PMID: 38145386 PMCID: PMC10895457 DOI: 10.1002/pro.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Molecular chaperones, a family of proteins of which Hsp90 and Hsp70 are integral members, form an essential machinery to maintain healthy proteomes by controlling the folding and activation of a plethora of substrate client proteins. This is achieved through cycles in which Hsp90 and Hsp70, regulated by task-specific co-chaperones, process ATP and become part of a complex network that undergoes extensive compositional and conformational variations. Despite impressive advances in structural knowledge, the mechanisms that regulate the dynamics of functional assemblies, their response to nucleotides, and their relevance for client remodeling are still elusive. Here, we focus on the glucocorticoid receptor (GR):Hsp90:Hsp70:co-chaperone Hop client-loading and the GR:Hsp90:co-chaperone p23 client-maturation complexes, key assemblies in the folding cycle of glucocorticoid receptor (GR), a client strictly dependent upon Hsp90/Hsp70 for activity. Using a combination of molecular dynamics simulation approaches, we unveil with unprecedented detail the mechanisms that underpin function in these chaperone machineries. Specifically, we dissect the processes by which the nucleotide-encoded message is relayed to the client and how the distinct partners of the assemblies cooperate to (pre)organize partially folded GR during Loading and Maturation. We show how different ligand states determine distinct dynamic profiles for the functional interfaces defining the interactions in the complexes and modulate their overall flexibility to facilitate progress along the chaperone cycle. Finally, we also show that the GR regions engaged by the chaperone machinery display peculiar energetic signatures in the folded state, which enhance the probability of partial unfolding fluctuations. From these results, we propose a model where a dynamic cross-talk emerges between the chaperone dynamics states and remodeling of client-interacting regions. This factor, coupled to the highly dynamic nature of the assemblies and the conformational heterogeneity of their interactions, provides the basis for regulating the functions of distinct assemblies during the chaperoning cycle.
Collapse
Affiliation(s)
| | - Andrea Magni
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy
| | | | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Fabrizio Cinquini
- Upstream & Technical Services - TECS/STES - Eni Spa, San Donato Milanese, Italy
| | | | | |
Collapse
|
15
|
Sohmen B, Beck C, Frank V, Seydel T, Hoffmann I, Hermann B, Nüesch M, Grimaldo M, Schreiber F, Wolf S, Roosen‐Runge F, Hugel T. The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304262. [PMID: 37984887 PMCID: PMC10754087 DOI: 10.1002/advs.202304262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
Collapse
Affiliation(s)
- Benedikt Sohmen
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Beck
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Veronika Frank
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Tilo Seydel
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Ingo Hoffmann
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Bianca Hermann
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Mark Nüesch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
| | - Marco Grimaldo
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Frank Schreiber
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of PhysicsUniversity of FreiburgHermann‐Herder‐Strasse 379104FreiburgGermany
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms‐Research Center for Biointerfaces (BRCB)Malmö University20506MalmöSweden
- Division of Physical ChemistryLund UniversityNaturvetarvägen 1422100LundSweden
| | - Thorsten Hugel
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| |
Collapse
|
16
|
Peng S, Matts R, Deng J. Structural basis of the key residue W320 responsible for Hsp90 conformational change. J Biomol Struct Dyn 2023; 41:9745-9755. [PMID: 36373326 PMCID: PMC10183053 DOI: 10.1080/07391102.2022.2146197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
The 90-kDa heat shock protein (Hsp90) is a homodimeric molecular chaperone with ATPase activity, which has become an intensely studied target for the development of drugs for the treatment of cancer, neurodegenerative and infectious diseases. The equilibrium between Hsp90 dimers and oligomers is important for modulating its function. In the absence of ATP, the passive chaperone activity of Hsp90 dimers and oligomers has been shown to stabilize client proteins as a holdase, which enhances substrate binding and prevents irreversible aggregation and precipitation of the substrate proteins. In the presence of ATP and its associated cochaperones, Hsp90 homodimers act as foldases with the binding and hydrolysis of ATP driving conformational changes that mediate client folding. Crystal structures of both wild type and W320A mutant Hsp90αMC (middle/C-terminal domain) have been determined, which displayed a preference for hexameric and dimeric states, respectively. Structural analysis showed that W320 is a key residue for Hsp90 oligomerization by forming intermolecular interactions at the Hsp90 hexameric interface through cation-π interactions with R367. W320A substitution results in the formation of a more open conformation of Hsp90, which has not previously been reported, and the induction of a conformational change in the catalytic loop. The structures provide new insights into the mechanism by which W320 functions as a key switch for conformational changes in Hsp90 self-oligomerization, and binding cochaperones and client proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert Matts
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
17
|
Gollapalli P, Rudrappa S, Kumar V, Santosh Kumar HS. Domain Architecture Based Methods for Comparative Functional Genomics Toward Therapeutic Drug Target Discovery. J Mol Evol 2023; 91:598-615. [PMID: 37626222 DOI: 10.1007/s00239-023-10129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Genes duplicate, mutate, recombine, fuse or fission to produce new genes, or when genes are formed from de novo, novel functions arise during evolution. Researchers have tried to quantify the causes of these molecular diversification processes to know how these genes increase molecular complexity over a period of time, for instance protein domain organization. In contrast to global sequence similarity, protein domain architectures can capture key structural and functional characteristics, making them better proxies for describing functional equivalence. In Prokaryotes and eukaryotes it has proven that, domain designs are retained over significant evolutionary distances. Protein domain architectures are now being utilized to categorize and distinguish evolutionarily related proteins and find homologs among species that are evolutionarily distant from one another. Additionally, structural information stored in domain structures has accelerated homology identification and sequence search methods. Tools for functional protein annotation have been developed to discover, protein domain content, domain order, domain recurrence, and domain position as all these contribute to the prediction of protein functional accuracy. In this review, an attempt is made to summarise facts and speculations regarding the use of protein domain architecture and modularity to identify possible therapeutic targets among cellular activities based on the understanding their linked biological processes.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sushmitha Rudrappa
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - Vadlapudi Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India
| | - Hulikal Shivashankara Santosh Kumar
- Department of Biotechnology and Bioinformatics, Jnana Sahyadri Campus, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| |
Collapse
|
18
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
19
|
Mondol T, Silbermann LM, Schimpf J, Vollmar L, Hermann B, Tych KK, Hugel T. Aha1 regulates Hsp90's conformation and function in a stoichiometry-dependent way. Biophys J 2023; 122:3458-3468. [PMID: 37515325 PMCID: PMC10502475 DOI: 10.1016/j.bpj.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/05/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone, which plays a key role in eukaryotic protein homeostasis. Co-chaperones assist Hsp90 in client maturation and in regulating essential cellular processes such as cell survival, signal transduction, gene regulation, hormone signaling, and neurodegeneration. Aha1 (activator of Hsp90 ATPase) is a unique co-chaperone known to stimulate the ATP hydrolysis of Hsp90, but the mechanism of their interaction is still unclear. In this report, we show that one or two Aha1 molecules can bind to one Hsp90 dimer and that the binding stoichiometry affects Hsp90's conformation, kinetics, ATPase activity, and stability. In particular, a coordination of two Aha1 molecules can be seen in stimulating the ATPase activity of Hsp90 and the unfolding of the middle domain, whereas the conformational equilibrium and kinetics are hardly affected by the stoichiometry of bound Aha1. Altogether, we show a regulation mechanism through the stoichiometry of Aha1 going far beyond a regulation of Hsp90's conformation.
Collapse
Affiliation(s)
- Tanumoy Mondol
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany; Speemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany; Speemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bianca Hermann
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katarzyna Kasia Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
20
|
Wickramaratne AC, Liao JY, Doyle SM, Hoskins JR, Puller G, Scott ML, Alao JP, Obaseki I, Dinan JC, Maity TK, Jenkins LM, Kravats AN, Wickner S. J-domain Proteins form Binary Complexes with Hsp90 and Ternary Complexes with Hsp90 and Hsp70. J Mol Biol 2023; 435:168184. [PMID: 37348754 PMCID: PMC10527347 DOI: 10.1016/j.jmb.2023.168184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.
Collapse
Affiliation(s)
- Anushka C Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jui-Yun Liao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabrielle Puller
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison L Scott
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Paul Alao
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ikponwmosa Obaseki
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Jerry C Dinan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Fang X, Feng J, Wang K, Luan Y. Development of VER-50589 analogs as novel Hsp90 inhibitors. Bioorg Med Chem Lett 2023; 91:129375. [PMID: 37315698 DOI: 10.1016/j.bmcl.2023.129375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
As an important target for tumor therapy, heat shock protein 90 has attracted tremendous attention. Through structure analysis, we rationally designed three analogs of VER-50589 which is a known and potent Hsp90 inhibitor. Target inhibitory activity result showed that one compound dubbed as 12-1 exhibited strong inhibitory activity against Hsp90 with an IC50 value of 9 nM. In tumor cell viability experiment, compound 12-1 robustly repressed the proliferation against six human tumor cells with IC50 values all in nanomolar range scoring over VER-50589 and geldanamycin. 12-1 was able to induce apoptosis of tumor cells and arrest the tumor cell cycle in G0/G1 phase. Meanwhile, western blot results showed that 12-1 could significantly downregulated the expression of two Hsp90 client proteins CDK4 and HER2. Finally, molecular dynamic simulation showed that compound 12-1 could fit well with ATP binding site on N-terminal of Hsp90.
Collapse
Affiliation(s)
- Xixi Fang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Ji' nan, Shandong, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
22
|
Binder MJ, Pedley AM. The roles of molecular chaperones in regulating cell metabolism. FEBS Lett 2023; 597:1681-1701. [PMID: 37287189 PMCID: PMC10984649 DOI: 10.1002/1873-3468.14682] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Fluctuations in nutrient and biomass availability, often as a result of disease, impart metabolic challenges that must be overcome in order to sustain cell survival and promote proliferation. Cells adapt to these environmental changes and stresses by adjusting their metabolic networks through a series of regulatory mechanisms. Our understanding of these rewiring events has largely been focused on those genetic transformations that alter protein expression and the biochemical mechanisms that change protein behavior, such as post-translational modifications and metabolite-based allosteric modulators. Mounting evidence suggests that a class of proteome surveillance proteins called molecular chaperones also can influence metabolic processes. Here, we summarize several ways the Hsp90 and Hsp70 chaperone families act on human metabolic enzymes and their supramolecular assemblies to change enzymatic activities and metabolite flux. We further highlight how these chaperones can assist in the translocation and degradation of metabolic enzymes. Collectively, these studies provide a new view for how metabolic processes are regulated to meet cellular demand and inspire new avenues for therapeutic intervention.
Collapse
|
23
|
Alao JP, Obaseki I, Amankwah YS, Nguyen Q, Sugoor M, Unruh E, Popoola HO, Tehver R, Kravats AN. Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics. J Phys Chem B 2023; 127:5389-5409. [PMID: 37294929 PMCID: PMC10292203 DOI: 10.1021/acs.jpcb.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Indexed: 06/11/2023]
Abstract
Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.
Collapse
Affiliation(s)
- John Paul Alao
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ikponwmosa Obaseki
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yaa Sarfowah Amankwah
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Quinn Nguyen
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Meghana Sugoor
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Erin Unruh
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | - Riina Tehver
- Department
of Physics, Denison University, Granville, Ohio 43023, United States
| | - Andrea N. Kravats
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
24
|
Yang F, Wang Y, Yan D, Liu Z, Wei B, Chen J, He W. Binding Mechanism of Inhibitors to Heat Shock Protein 90 Investigated by Multiple Independent Molecular Dynamics Simulations and Prediction of Binding Free Energy. Molecules 2023; 28:4792. [PMID: 37375347 DOI: 10.3390/molecules28124792] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The heat shock protein (HSP90) has been an import target of drug design in the treatment of human disease. An exploration of the conformational changes in HSP90 can provide useful information for the development of efficient inhibitors targeting HSP90. In this work, multiple independent all-atom molecular dynamics (AAMD) simulations followed by calculations of the molecular mechanics generalized Born surface area (MM-GBSA) were performed to explore the binding mechanism of three inhibitors (W8Y, W8V, and W8S) to HSP90. The dynamics analyses verified that the presence of inhibitors impacts the structural flexibility, correlated movements, and dynamics behavior of HSP90. The results of the MM-GBSA calculations suggest that the selection of GB models and empirical parameters has important influences on the predicted results and verify that van der Waals interactions are the main forces that determine inhibitor-HSP90 binding. The contributions of separate residues to the inhibitor-HSP90 binding process indicate that hydrogen-bonding interactions (HBIs) and hydrophobic interactions play important roles in HSP90-inhibitor identifications. Moreover, residues L34, N37, D40, A41, D79, I82, G83, M84, F124, and T171 are recognized as hot spots of inhibitor-HSP90 binding and provide significant target sites of for the design of drugs related to HSP90. This study aims to contribute to the development of efficient inhibitors that target HSP90 by providing an energy-based and theoretical foundation.
Collapse
Affiliation(s)
- Fen Yang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Yiwen Wang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| | - Dongliang Yan
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Zhongtao Liu
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Weikai He
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
25
|
Ausili A. Despite their structural similarities, the cytosolic isoforms of human Hsp90 show different behaviour in thermal unfolding due to their conformation: An FTIR study. Arch Biochem Biophys 2023; 740:109599. [PMID: 37028636 DOI: 10.1016/j.abb.2023.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Heat shock proteins 90 (Hsp90) are chaperones that promote the proper folding of other proteins under high temperature stress situations. Hsp90s are highly conserved and ubiquitous proteins, and in mammalian cells, they are localized in the cytoplasm, endoplasmic reticulum, and mitochondria. Cytoplasmic Hsp90 are named Hsp90α and Hsp90β and differ mainly in their expression pattern: Hsp90α is expressed under stress conditions, while Hsp90β is a constitutive protein. Structurally, both share the same characteristics by presenting three well-conserved domains, one of which, the N-terminal domain, has a binding site for ATP to which various drugs targeting this protein, including radicicol, can bind. The protein is mainly found in dimeric form and adopts different conformations depending on the presence of ligands, co-chaperones and client proteins. In this study, some aspects of structure and thermal unfolding of cytoplasmic human Hsp90 were analysed by infrared spectroscopy. The effect on Hsp90β of binding with a non-hydrolysable ATP analogue and radicicol was also examined. The results obtained showed that despite the high similarity in secondary structure the two isoforms exhibit substantial differences in their behaviour during thermal unfolding, as Hsp90α exhibits higher thermal stability, slower denaturation process and different event sequence during unfolding. Ligand binding strongly stabilizes Hsp90β and slightly modifies the secondary structure of the protein as well. Most likely, these structural and thermostability characteristics are closely related to the conformational cycling of the chaperone and its propensity to exist in monomer or dimer form.
Collapse
Affiliation(s)
- Alessio Ausili
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
| |
Collapse
|
26
|
Abstract
The chaperone system (CS) of an organism is composed of molecular chaperones, chaperone co-factors, co-chaperones, and chaperone receptors and interactors. It is present throughout the body but with distinctive features for each cell and tissue type. Previous studies pertaining to the CS of the salivary glands have determined the quantitative and distribution patterns for several members, the chaperones, in normal and diseased glands, focusing on tumors. Chaperones are cytoprotective, but can also be etiopathogenic agents causing diseases, the chaperonopathies. Some chaperones such as Hsp90 potentiate tumor growth, proliferation, and metastasization. Quantitative data available on this chaperone in salivary gland tissue with inflammation, and benign and malignant tumors suggest that assessing tissue Hsp90 levels and distribution patterns is useful for differential diagnosis-prognostication, and patient follow up. This, in turn, will reveal clues for developing specific treatment centered on the chaperone, for instance by inhibiting its pro-carcinogenic functions (negative chaperonotherapy). Here, we review data on the carcinogenic mechanisms of Hsp90 and their inhibitors. Hsp90 is the master regulator of the PI3K-Akt-NF-kB axis that promotes tumor cell proliferation and metastasization. We discuss pathways and interactions involving these molecular complexes in tumorigenesis and review Hsp90 inhibitors that have been tested in search of an efficacious anti-cancer agent. This targeted therapy deserves extensive investigation in view of its theoretical potential and some positive practical results and considering the need of novel treatments for tumors of the salivary glands as well as other tissues.
Collapse
|
27
|
Colautti J, Bullen NP, Whitney JC. Lack of evidence that Pseudomonas aeruginosa AmpDh3-PA0808 constitute a type VI secretion system effector-immunity pair. Mol Microbiol 2023; 119:262-274. [PMID: 36577706 DOI: 10.1111/mmi.15021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Type VI secretion systems (T6SSs) are cell envelope-spanning protein complexes that Gram-negative bacteria use to inject a diverse arsenal of antibacterial toxins into competitor cells. Recently, Wang et al. reported that the H2-T6SS of Pseudomonas aeruginosa delivers the peptidoglycan recycling amidase, AmpDh3, into the periplasm of recipient cells where it is proposed to act as a peptidoglycan degrading toxin. They further reported that PA0808, the open reading frame downstream of AmpDh3, encodes an immunity protein that localizes to the periplasm where it binds to and inactivates intercellularly delivered AmpDh3, thus protecting against its toxic activity. Given that AmpDh3 has an established role in cell wall homeostasis and that no precedent exists for cytosolic enzymes moonlighting as T6SS effectors, we attempted to replicate these findings. We found that cells lacking PA0808 are not susceptible to bacterial killing by AmpDh3 and that PA0808 and AmpDh3 do not physically interact in vitro or in vivo. Additionally, we found no evidence that AmpDh3 is exported from cells, including by strains with a constitutively active H2-T6SS. Finally, subcellular fractionation experiments and a 1.97 Å crystal structure reveal that PA0808 does not contain a canonical signal peptide or localize to the correct cellular compartment to confer protection against a cell wall targeting toxin. Taken together, these results cast doubt on the assertion that AmpDh3-PA0808 constitutes an H2-T6SS effector-immunity pair.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
29
|
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem 2023; 101:319-350. [PMID: 36520312 PMCID: PMC10077965 DOI: 10.1007/978-3-031-14740-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA. .,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
30
|
Kang S, Kang BH. Structure, Function, and Inhibitors of the Mitochondrial Chaperone TRAP1. J Med Chem 2022; 65:16155-16172. [PMID: 36507721 DOI: 10.1021/acs.jmedchem.2c01633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone modulating cellular metabolism and signaling pathways by altering the conformation, activity, and stability of numerous substrate proteins called clients. It exerts its chaperone function as an adaptive response to counter cellular stresses instead of maintaining housekeeping protein homeostasis. However, the stress-adaptive machinery becomes dysregulated to support the progression and maintenance of human diseases, such as cancers; therefore, TRAP1 has been proposed as a promising target protein for anticancer drug development. In this review, by collating recent reports on high-resolution TRAP1 structures and structure-activity relationships of inhibitors, we aimed to provide better insights into the chaperoning mechanism of the emerging drug target and to suggest an efficient strategy for the development of potent TRAP1 inhibitors.
Collapse
Affiliation(s)
- Soosung Kang
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
31
|
Tripathy M, Srivastava A, Sastry S, Rao M. Protein as evolvable functionally constrained amorphous matter. J Biosci 2022. [DOI: 10.1007/s12038-022-00313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Direct observation of Hsp90-induced compaction in a protein chain. Cell Rep 2022; 41:111734. [PMID: 36450251 DOI: 10.1016/j.celrep.2022.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
The chaperone heat shock protein 90 (Hsp90) is well known to undergo important conformational changes, which depend on nucleotide and substrate interactions. Conversely, how the conformations of its unstable and disordered substrates are affected by Hsp90 is difficult to address experimentally yet is central to its function. Here, using optical tweezers, we find that Hsp90 promotes local contractions in unfolded chains that drive their global compaction down to dimensions of folded states. This compaction has a gradual nature while showing small steps, is stimulated by ATP, and performs mechanical work against counteracting forces that expand the chain dimensions. The Hsp90 interactions suppress the formation of larger-scale folded, misfolded, and aggregated structures. The observations support a model in which Hsp90 alters client conformations directly by promoting local intra-chain interactions while suppressing distant ones. We conjecture that chain compaction may be central to how Hsp90 protects unstable clients and cooperates with Hsp70.
Collapse
|
33
|
Gaur D, Kumar N, Ghosh A, Singh P, Kumar P, Guleria J, Kaur S, Malik N, Saha S, Nystrom T, Sharma D. Ydj1 interaction at nucleotide-binding-domain of yeast Ssa1 impacts Hsp90 collaboration and client maturation. PLoS Genet 2022; 18:e1010442. [PMID: 36350833 PMCID: PMC9645627 DOI: 10.1371/journal.pgen.1010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022] Open
Abstract
Hsp90 constitutes one of the major chaperone machinery in the cell. The Hsp70 assists Hsp90 in its client maturation though the underlying basis of the Hsp70 role remains to be explored. In the present study, using S. cerevisiae strain expressing Ssa1 as sole Ssa Hsp70, we identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect the maturation of Hsp90 clients v-Src and Ste11. The identified Ssa1 amino acids critical for Hsp90 function were also found to be conserved across species such as in E.coli DnaK and the constitutive Hsp70 isoform (HspA8) in humans. These mutations are distal to the C-terminus of Hsp70, that primarily mediates Hsp90 interaction through the bridge protein Sti1, and proximal to Ydj1 (Hsp40 co-chaperone of Hsp70 family) binding region. Intriguingly, we found that the bridge protein Sti1 is critical for cellular viability in cells expressing Ssa1-T175N (A1-T175N) or Ssa1-D158N (A1-D158N) as sole Ssa Hsp70. The growth defect was specific for sti1Δ, as deletion of none of the other Hsp90 co-chaperones showed lethality in A1-T175N or A1-D158N. Mass-spectrometry based whole proteome analysis of A1-T175N cells lacking Sti1 showed an altered abundance of various kinases and transcription factors suggesting compromised Hsp90 activity. Further proteomic analysis showed that pathways involved in signaling, signal transduction, and protein phosphorylation are markedly downregulated in the A1-T175N upon repressing Sti1 expression using doxycycline regulatable promoter. In contrast to Ssa1, the homologous mutations in Ssa4 (Ssa4-T175N/D158N), the stress inducible Hsp70 isoform, supported cell growth even in the absence of Sti1. Overall, our data suggest that Ydj1 competes with Hsp90 for binding to Hsp70, and thus regulates Hsp90 interaction with the nucleotide-binding domain of Hsp70. The study thus provides new insight into the Hsp70-mediated regulation of Hsp90 and broadens our understanding of the intricate complexities of the Hsp70-Hsp90 network. Hsp70-Hsp90 constitutes major cellular chaperone machinery in cells. The Hsp70 plays critical role in Hsp90 chaperoning pathway. We have now identified novel mutations in the nucleotide-binding domain of yeast Ssa1 Hsp70 (Ssa1-T175N and Ssa1-D158N) that adversely affect Hsp90 client maturation. As compared to wt Ssa1, the identified Ssa1 mutants bind relatively better with Ydj1, and poorly support growth in the absence of Sti1, when present as the sole source of Ssa Hsp70 in S. cerevisiae. The cells expressing Ssa1-T175N as sole Ssa Hsp70 show downregulation of pathways involved in signaling, signal transduction, and protein phosphorylation upon repressing Sti1. The study shows that Ydj1 interaction at the nucleotide-binding domain of Ssa1 Hsp70 influences Hsp90 function.
Collapse
Affiliation(s)
- Deepika Gaur
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Navinder Kumar
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-Age Cap, University of Gothenburg, Gothenburg, Sweden
| | - Abhirupa Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Pradeep Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Jyoti Guleria
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Satinderdeep Kaur
- Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Nikhil Malik
- Department of Biochemistry, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Mahendergarh, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-Age Cap, University of Gothenburg, Gothenburg, Sweden
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific & Innovative Research, Ghaziabad, India
- * E-mail:
| |
Collapse
|
34
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
35
|
Uncoupling the Hsp90 and DnaK chaperone activities revealed the in vivo relevance of their collaboration in bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201779119. [PMID: 36070342 PMCID: PMC9478669 DOI: 10.1073/pnas.2201779119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperone proteins are essential in all living cells to ensure protein homeostasis. Hsp90 is a major adenosine triphosphate (ATP)-dependent chaperone highly conserved from bacteria to eukaryotes. Recent studies have shown that bacterial Hsp90 is essential in some bacteria in stress conditions and that it participates in the virulence of pathogenic bacteria. In vitro, bacterial Hsp90 directly interacts and collaborates with the Hsp70 chaperone DnaK to reactivate model substrate proteins; however, it is still unknown whether this collaboration is relevant in vivo with physiological substrates. Here, we used site-directed mutagenesis on Hsp90 to impair DnaK binding, thereby uncoupling the chaperone activities. We tested the mutants in vivo in two bacterial models in which Hsp90 has known physiological functions. We found that the Hsp90 point mutants were defective to support (1) growth under heat stress and activation of an essential Hsp90 client in the aquatic bacterium Shewanella oneidensis and (2) biosynthesis of the colibactin toxin involved in the virulence of pathogenic Escherichia coli. Our study therefore demonstrates the essentiality of the direct collaboration between Hsp90 and DnaK in vivo in bacteria to support client folding. It also suggests that this collaboration already functional in bacteria has served as an evolutionary basis for a more complex Hsp70-Hsp90 collaboration found in eukaryotes.
Collapse
|
36
|
Yingsunthonwattana W, Junprung W, Supungul P, Tassanakajon A. Heat shock protein 90 of Pacific white shrimp (Litopenaeus vannamei) is possibly involved in promoting white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:405-418. [PMID: 35964878 DOI: 10.1016/j.fsi.2022.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Viruses cause up to 60% of disease-associated losses in shrimp aquaculture, and the white spot syndrome virus (WSSV) is a major viral pathogen in shrimp. Heat shock proteins (HSPs) are host chaperones that help promote many viral infections. We investigated the involvement of Litopenaeus vannamei (Lv) HSP90 in WSSV infections. Expression of LvHSP90 at the transcript and protein levels were upregulated after WSSV infection. Silencing LvHSP90 resulted in the increased cumulative mortality rate and the reduction of circulating hemocytes. The inhibition of LvHSP90 also induced the expression of apoptosis-related genes which indicated the induction of apoptotic pathway and might lead to shrimp death. However, lower the number of WSSV-infected cells and viral copy numbers were detected in the LvHSP90-silenced shrimp compared with those of the controls, corresponding with significantly decreased expressions of viral genes, including the immediate-early genes WSV083 and WSV249 and viral DNA polymerase. Conversely, injecting shrimp with WSSV that had been co-incubated with a recombinant LvHSP90 (rLvHSP90) promoted WSSV infection as evidenced by an increased cumulative mortality rate and viral copy numbers at 40-48 h post infection (hpi). Subcellular localization of LvHSP90 in WSSV-infected hemocytes at 3, 6 and 12 hpi demonstrated increased expression and translocation of LvHSP90 into the nucleus where WSSV DNA can replicate. Thus, LvHSP90 might be involved in the WSSV pathogenesis by promoting WSSV replication.
Collapse
Affiliation(s)
- Warumporn Yingsunthonwattana
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Ruggiero A, Choi HG, Barra G, Squeglia F, Back YW, Kim HJ, Berisio R. Structure based design of effective HtpG-derived vaccine antigens against M. tuberculosis. Front Mol Biosci 2022; 9:964645. [PMID: 36032688 PMCID: PMC9403545 DOI: 10.3389/fmolb.2022.964645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette–Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
| | - Young Woo Back
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Napoli, Italy
- *Correspondence: Hwa-Jung Kim, ; Rita Berisio,
| |
Collapse
|
38
|
Somogyvári M, Khatatneh S, Sőti C. Hsp90: From Cellular to Organismal Proteostasis. Cells 2022; 11:cells11162479. [PMID: 36010556 PMCID: PMC9406713 DOI: 10.3390/cells11162479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.
Collapse
|
39
|
Fiedler W, Freisleben F, Wellbrock J, Kirschner KN. Mebendazole's Conformational Space and Its Predicted Binding to Human Heat-Shock Protein 90. J Chem Inf Model 2022; 62:3604-3617. [PMID: 35867562 DOI: 10.1021/acs.jcim.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent experimental evidence suggests that mebendazole, a popular antiparasitic drug, binds to heat shock protein 90 (Hsp90) and inhibits acute myeloid leukemia cell growth. In this study we use quantum mechanics (QM), molecular similarity, and molecular dynamics (MD) calculations to predict possible binding poses of mebendazole to the adenosine triphosphate (ATP) binding site of Hsp90. Extensive conformational searches and minimization of the five mebendazole tautomers using the MP2/aug-cc-pVTZ theory level resulted in 152 minima. Mebendazole-Hsp90 complex models were subsequently created using the QM optimized conformations and protein coordinates obtained from experimental crystal structures that were chosen through similarity calculations. Nine different poses were identified from a total of 600 ns of explicit solvent, all-atom MD simulations using two different force fields. All simulations support the hypothesis that mebendazole is able to bind to the ATP binding site of Hsp90.
Collapse
Affiliation(s)
- Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Fabian Freisleben
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Karl N Kirschner
- Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
40
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
41
|
Joshi A, Ito T, Picard D, Neckers L. The Mitochondrial HSP90 Paralog TRAP1: Structural Dynamics, Interactome, Role in Metabolic Regulation, and Inhibitors. Biomolecules 2022; 12:biom12070880. [PMID: 35883436 PMCID: PMC9312948 DOI: 10.3390/biom12070880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
The HSP90 paralog TRAP1 was discovered more than 20 years ago; yet, a detailed understanding of the function of this mitochondrial molecular chaperone remains elusive. The dispensable nature of TRAP1 in vitro and in vivo further complicates an understanding of its role in mitochondrial biology. TRAP1 is more homologous to the bacterial HSP90, HtpG, than to eukaryotic HSP90. Lacking co-chaperones, the unique structural features of TRAP1 likely regulate its temperature-sensitive ATPase activity and shed light on the alternative mechanisms driving the chaperone’s nucleotide-dependent cycle in a defined environment whose physiological temperature approaches 50 °C. TRAP1 appears to be an important bioregulator of mitochondrial respiration, mediating the balance between oxidative phosphorylation and glycolysis, while at the same time promoting mitochondrial homeostasis and displaying cytoprotective activity. Inactivation/loss of TRAP1 has been observed in several neurodegenerative diseases while TRAP1 expression is reported to be elevated in multiple cancers and, as with HSP90, evidence of addiction to TRAP1 has been observed. In this review, we summarize what is currently known about this unique HSP90 paralog and why a better understanding of TRAP1 structure, function, and regulation is likely to enhance our understanding of the mechanistic basis of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Abhinav Joshi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Takeshi Ito
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
| | - Didier Picard
- Department of Molecular and Cellular Biology, Université de Genève, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland;
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA; (A.J.); (T.I.)
- Correspondence: ; Tel.: +1-240-858-3918
| |
Collapse
|
42
|
Jussupow A, Lopez A, Baumgart M, Mader SL, Sattler M, Kaila VRI. Extended conformational states dominate the Hsp90 chaperone dynamics. J Biol Chem 2022; 298:102101. [PMID: 35667441 PMCID: PMC9251789 DOI: 10.1016/j.jbc.2022.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a β-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.
Collapse
Affiliation(s)
- Alexander Jussupow
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abraham Lopez
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany); Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Mona Baumgart
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany)
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Michael Sattler
- Center of Integrated Protein Science, Department Chemie, Technische Universität München Lichtenbergstr. 4, 85747 Garching (Germany); Institute of Structural Biology, Helmholtz Zentrum Mu¨nchen, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
43
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
44
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
45
|
Keramisanou D, Vasantha Kumar M, Boose N, Abzalimov RR, Gelis I. Assembly mechanism of early Hsp90-Cdc37-kinase complexes. SCIENCE ADVANCES 2022; 8:eabm9294. [PMID: 35294247 PMCID: PMC8926337 DOI: 10.1126/sciadv.abm9294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Molecular chaperones have an essential role for the maintenance of a balanced protein homeostasis. Here, we investigate how protein kinases are recruited and loaded to the Hsp90-Cdc37 complex, the first step during Hsp90-mediated chaperoning that leads to enhanced client kinase stability and activation. We show that conformational dynamics of all partners is a critical feature of the underlying loading mechanism. The kinome co-chaperone Cdc37 exists primarily in a dynamic extended conformation but samples a low-populated, well-defined compact structure. Exchange between these two states is maintained in an assembled Hsp90-Cdc37 complex and is necessary for substrate loading. Breathing motions at the N-lobe of a free kinase domain partially expose the kinase segment trapped in the Hsp90 dimer downstream in the cycle. Thus, client dynamics poise for chaperone dependence. Hsp90 is not directly involved during loading, and Cdc37 is assigned the task of sensing clients by stabilizing the preexisting partially unfolded client state.
Collapse
Affiliation(s)
| | | | - Nicole Boose
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Rinat R. Abzalimov
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
46
|
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Int J Mol Sci 2022; 23:ijms23052485. [PMID: 35269628 PMCID: PMC8910466 DOI: 10.3390/ijms23052485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.
Collapse
|
47
|
Clay MC, Saleh T, Kamatham S, Rossi P, Kalodimos CG. Progress toward automated methyl assignments for methyl-TROSY applications. Structure 2022; 30:69-79.e2. [PMID: 34914892 PMCID: PMC8741727 DOI: 10.1016/j.str.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
Methyl-TROSY spectroscopy has extended the reach of solution-state NMR to supra-molecular machineries over 100 kDa in size. Methyl groups are ideal probes for studying structure, dynamics, and protein-protein interactions in quasi-physiological conditions with atomic resolution. Successful implementation of the methodology requires accurate methyl chemical shift assignment, and the task still poses a significant challenge in the field. In this work, we outline the current state of technology for methyl labeling, data collection, data analysis, and nuclear Overhauser effect (NOE)-based automated methyl assignment approaches. We present MAGIC-Act and MAGIC-View, two Python extensions developed as part of the popular NMRFAM-Sparky package, and MAGIC-Net a standalone structure-based network analysis program. MAGIC-Act conducts statistically driven amino acid typing, Leu/Val pairing guided by 3D HMBC-HMQC, and NOESY cross-peak symmetry checking. MAGIC-Net provides model-based NOE statistics to aid in selection of a methyl labeling scheme. The programs provide a versatile, semi-automated framework for rapid methyl assignment.
Collapse
Affiliation(s)
- Mary C. Clay
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Tamjeed Saleh
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Samuel Kamatham
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Paolo Rossi
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN, United States,Corresponding authors: ,
| | - Charalampos G. Kalodimos
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN, United States,Lead Contact,Corresponding authors: ,
| |
Collapse
|
48
|
Giannoulis A, Feintuch A, Unger T, Amir S, Goldfarb D. Monitoring the Conformation of the Sba1/Hsp90 Complex in the Presence of Nucleotides with Mn(II)-Based Double Electron-Electron Resonance. J Phys Chem Lett 2021; 12:12235-12241. [PMID: 34928609 PMCID: PMC8724802 DOI: 10.1021/acs.jpclett.1c03641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Hsp90 is an important molecular chaperone that facilitates the maturation of client proteins. It is a homodimer, and its function depends on a conformational cycle controlled by ATP hydrolysis and co-chaperones binding. We explored the binding of co-chaperone Sba1 to yeast Hsp90 (yHsp90) and the associated conformational change of yHsp90 in the pre- and post-ATP hydrolysis states by double electron-electron resonance (DEER) distance measurements. We substituted the Mg(II) cofactor at the ATPase site with paramagnetic Mn(II) and established the binding of Sba1 by measuring the distance between Mn(II) and a nitroxide (NO) spin-label on Sba1. Then, Mn(II)-NO DEER measurements on yHsp90 labeled with NO at the N-terminal domain detected the shift toward the closed conformation for both hydrolysis states. Finally, Mn(II)-Mn(II) DEER showed that Sba1 induced a closed conformation different from those with just bound Mn(II)·nucleotides. Our results provide structural experimental evidence for the binding of Sba1 tuning the closed conformation of yHsp90.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tamar Unger
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shiran Amir
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
49
|
Lopez A, Dahiya V, Delhommel F, Freiburger L, Stehle R, Asami S, Rutz D, Blair L, Buchner J, Sattler M. Client binding shifts the populations of dynamic Hsp90 conformations through an allosteric network. SCIENCE ADVANCES 2021; 7:eabl7295. [PMID: 34919431 PMCID: PMC8682993 DOI: 10.1126/sciadv.abl7295] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 05/31/2023]
Abstract
Hsp90 is a molecular chaperone that interacts with a specific set of client proteins and assists their folding. The underlying molecular mechanisms, involving dynamic transitions between open and closed conformations, are still enigmatic. Combining nuclear magnetic resonance, small-angle x-ray scattering, and biochemical experiments, we have identified a key intermediate state of Hsp90 induced by adenosine triphosphate (ATP) binding, in which rotation of the Hsp90 N-terminal domain (NTD) yields a domain arrangement poised for closing. This ATP-stabilized NTD rotation is allosterically communicated across the full Hsp90 dimer, affecting distant client sites. By analyzing the interactions of four distinct clients, i.e., steroid hormone receptors (glucocorticoid receptor and mineralocorticoid receptor), p53, and Tau, we show that client-specific interactions with Hsp90 select and enhance the NTD-rotated state and promote closing of the full-length Hsp90 dimer. The p23 co-chaperone shifts the population of Hsp90 toward the closed state, thereby enhancing client interaction and processing.
Collapse
Affiliation(s)
- Abraham Lopez
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Vinay Dahiya
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Florent Delhommel
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Lee Freiburger
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ralf Stehle
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Sam Asami
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Daniel Rutz
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Laura Blair
- USF Health Byrd Institute, Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Johannes Buchner
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
50
|
TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10111829. [PMID: 34829705 PMCID: PMC8614808 DOI: 10.3390/antiox10111829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.
Collapse
|