1
|
Simmons AD, Baumann C, Zhang X, Kamp TJ, De La Fuente R, Palecek SP. Integrated multi-omics analysis identifies features that predict human pluripotent stem cell-derived progenitor differentiation to cardiomyocytes. J Mol Cell Cardiol 2024; 196:52-70. [PMID: 39222876 PMCID: PMC11534572 DOI: 10.1016/j.yjmcc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.
Collapse
Affiliation(s)
- Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
3
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Okamura A, Yoshioka Y, Saito Y, Ochiya T. Can Extracellular Vesicles as Drug Delivery Systems Be a Game Changer in Cardiac Disease? Pharm Res 2022; 40:889-908. [PMID: 36577860 PMCID: PMC10126064 DOI: 10.1007/s11095-022-03463-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Cardiac diseases such as myocardial infarction and heart failure have been the leading cause of death worldwide for more than 20 years, and new treatments continue to be investigated. Heart transplantation, a curative treatment for severe cardiac dysfunction, is available to only a small number of patients due to the rarity of donors and high costs. Cardiac regenerative medicine using embryonic stem cells and induced pluripotent stem cells is expected to be a new alternative to heart transplantation, but it has problems such as induction of immune response, tumor formation, and low survival rate of transplanted cells. On the other hand, there has been a focus on cell-free therapy using extracellular vesicles (EVs) due to their high biocompatibility and target specificity. Exosomes, one type of EV, play a role in the molecular transport system in vivo and can be considered a drug delivery system (DDS) innate to all living things. Exosomes contain nucleic acids and proteins, which are transported from secretory cells to recipient cells. Molecules in exosomes are encapsulated in a lipid bilayer, which allows them to exist stably in body fluids without being affected by nuclease degradation enzymes. Therefore, the therapeutic use of exosomes as DDSs has been widely explored and is being used in clinical trials and other clinical settings. This review summarizes the current topics of EVs as DDSs in cardiac disease.
Collapse
Affiliation(s)
- Akihiko Okamura
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.,Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
5
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
6
|
Rashid SA, Blanchard AT, Combs JD, Fernandez N, Dong Y, Cho HC, Salaita K. DNA Tension Probes Show that Cardiomyocyte Maturation Is Sensitive to the Piconewton Traction Forces Transmitted by Integrins. ACS NANO 2022; 16:5335-5348. [PMID: 35324164 PMCID: PMC11238821 DOI: 10.1021/acsnano.1c04303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiac muscle cells (CMCs) are the unit cells that comprise the heart. CMCs go through different stages of differentiation and maturation pathways to fully mature into beating cells. These cells can sense and respond to mechanical cues through receptors such as integrins which influence maturation pathways. For example, cell traction forces are important for the differentiation and development of functional CMCs, as CMCs cultured on varying substrate stiffness function differently. Most work in this area has focused on understanding the role of bulk extracellular matrix stiffness in mediating the functional fate of CMCs. Given that stiffness sensing mechanisms are mediated by individual integrin receptors, an important question in this area pertains to the specific magnitude of integrin piconewton (pN) forces that can trigger CMC functional maturation. To address this knowledge gap, we used DNA adhesion tethers that rupture at specific thresholds of force (∼12, ∼56, and ∼160 pN) to test whether capping peak integrin tension to specific magnitudes affects CMC function. We show that adhesion tethers with greater force tolerance lead to functionally mature CMCs as determined by morphology, twitching frequency, transient calcium flux measurements, and protein expression (F-actin, vinculin, α-actinin, YAP, and SERCA2a). Additionally, sarcomeric actinin alignment and multinucleation were significantly enhanced as the mechanical tolerance of integrin tethers was increased. Taken together, the results show that CMCs harness defined pN integrin forces to influence early stage development. This study represents an important step toward biophysical characterization of the contribution of pN forces in early stage cardiac differentiation.
Collapse
Affiliation(s)
- Sk Aysha Rashid
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - J Dale Combs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Natasha Fernandez
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Yixiao Dong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hee Cheol Cho
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Abstract
Cardiovascular diseases top the list of fatal illnesses worldwide. Cardiac tissues is known to be one of te least proliferative in the human body, with very limited regenraive capacity. Stem cell therapy has shown great potential for treatment of cardiovascular diseases in the experimental setting, but success in human trials has been limited. Applications of stem cell therapy for cardiovascular regeneration necessitate understamding of the complex and unique structure of the heart unit, and the embryologic development of the heart muscles and vessels. This chapter aims to provide an insight into cardiac progenitor cells and their potential applications in regenerative medicine. It also provides an overview of the embryological development of cardiac tissue, and the major findings on the development of cardiac stem cells, their characterization, and differentiation, and their regenerative potential. It concludes with clinical applications in treating cardiac disease using different approaches, and concludes with areas for future research.
Collapse
|
8
|
Okubo C, Narita M, Inagaki A, Nishikawa M, Hotta A, Yamanaka S, Yoshida Y. Expression dynamics of HAND1/2 in in vitro human cardiomyocyte differentiation. Stem Cell Reports 2021; 16:1906-1922. [PMID: 34297940 PMCID: PMC8365100 DOI: 10.1016/j.stemcr.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
Hand1 and Hand2 are transcriptional factors, and knockout mice of these genes show left and right ventricular hypoplasia, respectively. However, their function and expression in human cardiogenesis are not well studied. To delineate their expressions and assess their functions in human cardiomyocytes (CMs) in vitro, we established two triple-reporter human induced pluripotent stem cell lines that express HAND1mCherry, HAND2EGFP and either MYH6-driven iRFP670 or tagBFP constitutively and investigated their expression dynamics during cardiac differentiation. On day 5 of the differentiation, HAND1 expression marked cardiac progenitor cells. We profiled the CM subpopulations on day 20 with RNA sequencing and found that mCherry+ CMs showed higher proliferative ability than mCherry− CMs and identified a gene network of LEF1, HAND1, and HAND2 to regulate proliferation in CMs. Finally, we identified CD105 as a surface marker of highly proliferative CMs. Expression of HAND1 marks cardiovascular progenitor cells LEF1 is a key regulator of proliferating cardiomyocytes CD105 expression marks highly proliferative cardiomyocytes
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Azusa Inagaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Misato Nishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell 2021; 27:50-63.e5. [PMID: 32619518 DOI: 10.1016/j.stem.2020.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3β inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3β inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.
Collapse
|
10
|
Extracellular Vesicle-Based Therapeutics for Heart Repair. NANOMATERIALS 2021; 11:nano11030570. [PMID: 33668836 PMCID: PMC7996323 DOI: 10.3390/nano11030570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy. Furthermore, the natural origin of EVs makes them exceptional vehicles for drug delivery. EVs may overcome many of the limitations associated with current drug delivery systems (DDS), as they can travel long distances in body fluids, cross biological barriers, and deliver their cargo to recipient cells, among others. Here, we provide an overview of the most recent discoveries regarding the therapeutic potential of EVs for addressing cardiac damage after MI. In addition, we review the use of bioengineered EVs for targeted cardiac delivery and present some recent advances for exploiting EVs as DDS. Finally, we also discuss some of the most crucial aspects that should be addressed before a widespread translation to the clinical arena.
Collapse
|
11
|
Rossi F, Josey B, Sayitoglu EC, Potens R, Sultu T, Duru AD, Beljanski V. Characterization of zika virus infection of human fetal cardiac mesenchymal stromal cells. PLoS One 2020; 15:e0239238. [PMID: 32941515 PMCID: PMC7498051 DOI: 10.1371/journal.pone.0239238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a single-stranded RNA virus belonging to the family Flaviviridae. ZIKV predominantly enters cells using the TAM-family protein tyrosine kinase receptor AXL, which is expressed on a range of cell types, including neural progenitor cells, keratinocytes, dendritic cells, and osteoblasts. ZIKV infections have been associated with fetal brain damage, which prompted the World Health Organization to declare a public health emergency in 2016. ZIKV infection has also been linked to birth defects in other organs. Several studies have reported congenital heart defects (CHD) in ZIKV infected infants and cardiovascular complications in adults infected with ZIKV. To develop a better understanding of potential causes for these pathologies at a cellular level, we characterized ZIKV infection of human fetal cardiac mesenchymal stromal cells (fcMSCs), a cell type that is known to contribute to both embryological development as well as adult cardiac physiology. Total RNA, supernatants, and/or cells were collected at various time points post-infection to evaluate ZIKV replication, cell death, and antiviral responses. We found that ZIKV productively infected fcMSCs with peak (~70%) viral mRNA detected at 48 h. Use of an antibody blocking the AXL receptor decreased ZIKV infection (by ~50%), indicating that the receptor is responsible to a large extent for viral entry into the cell. ZIKV also altered protein expression of several mesenchymal cell markers, which suggests that ZIKV could affect fcMSCs’ differentiation process. Gene expression analysis of fcMSCs exposed to ZIKV at 6, 12, and 24 h post-infection revealed up-regulation of genes/pathways associated with interferon-stimulated antiviral responses. Stimulation of TLR3 (using poly I:C) or TLR7 (using Imiquimod) prior to ZIKV infection suppressed viral replication in a dose-dependent manner. Overall, fcMSCs can be a target for ZIKV infection, potentially resulting in CHD during embryological development and/or cardiovascular issues in ZIKV infected adults.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Benjamin Josey
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Ece Canan Sayitoglu
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Renee Potens
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Tolga Sultu
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Adil Doganay Duru
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:696-711. [PMID: 32769060 PMCID: PMC7412763 DOI: 10.1016/j.omtn.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Cardiomyocyte differentiation derived from embryonic stem cells (ESCs) is a complex process involving molecular regulation of multiple levels. In this study, we first identify and compare differentially expressed gene (DEG) signatures of ESC-derived cardiomyocyte differentiation (ESCDCD) in humans and mice. Then, the multiscale embedded gene co-expression network analysis (MEGENA) of the human ESCDCD dataset is performed to identify 212 significantly co-expressed gene modules, which capture well the regulatory information of cardiomyocyte differentiation. Three modules respectively involved in the regulation of stem cell pluripotency, Wnt, and calcium pathways are enriched in the DEG signatures of the differentiation phase transition in the two species. Three human-specific cardiomyocyte differentiation phase transition modules are identified. Moreover, the potential regulation mechanisms of transcription factors during cardiomyocyte differentiation are also illustrated. Finally, several novel key drivers of ESCDCD are identified with the evidence of their expression during mouse embryonic cardiomyocyte differentiation. Using an integrative network analysis, the core molecular signatures and gene subnetworks (modules) underlying cardiomyocyte lineage commitment are identified in both humans and mice. Our findings provide a global picture of gene-gene co-regulation and identify key regulators during ESCDCD.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hanyu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junfang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
13
|
Alonzo M, Kumar SA, Allen S, Delgado M, Alvarez-Primo F, Suggs L, Joddar B. Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. Prog Biomater 2020; 9:125-137. [PMID: 32978746 PMCID: PMC7544760 DOI: 10.1007/s40204-020-00137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shane Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Fabian Alvarez-Primo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
14
|
Abstract
Stem cell therapy offers a breakthrough opportunity for the improvement of ischemic heart diseases. Numerous clinical trials and meta-analyses appear to confirm its positive but variable effects on heart function. Whereas these trials widely differed in design, cell type, source, and doses reinjected, cell injection route and timing, and type of cardiac disease, crucial key factors that may favour the success of cell therapy emerge from the review of their data. Various types of cell have been delivered. Injection of myoblasts does not improve heart function and is often responsible for severe ventricular arrythmia occurrence. Using bone marrow mononuclear cells is a misconception, as they are not stem cells but mainly a mix of various cells of hematopoietic lineages and stromal cells, only containing very low numbers of cells that have stem cell-like features; this likely explain the neutral results or at best the modest improvement in heart function reported after their injection. The true existence of cardiac stem cells now appears to be highly discredited, at least in adults. Mesenchymal stem cells do not repair the damaged myocardial tissue but attenuate post-infarction remodelling and contribute to revascularization of the hibernated zone surrounding the scar. CD34+ stem cells - likely issued from pluripotent very small embryonic-like (VSEL) stem cells - emerge as the most convincing cell type, inducing structural and functional repair of the ischemic myocardial area, providing they can be delivered in large amounts via intra-myocardial rather than intra-coronary injection, and preferentially after myocardial infarct rather than chronic heart failure.
Collapse
Affiliation(s)
- Philippe Hénon
- CellProthera SAS and Institut de Recherche en Hématologie et Transplantation, CellProthera SAS 12 rue du Parc, 68100, Mulhouse, France.
| |
Collapse
|
15
|
Thabassum Akhtar Iqbal S, Tirupathi Pichiah PB, Raja S, Arunachalam S. Paeonol Reverses Adriamycin Induced Cardiac Pathological Remodeling through Notch1 Signaling Reactivation in H9c2 Cells and Adult Zebrafish Heart. Chem Res Toxicol 2020; 33:312-323. [PMID: 31307187 DOI: 10.1021/acs.chemrestox.9b00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adriamycin is a commonly prescribed chemotherapeutic drug for a wide range of cancers. Adriamycin causes cardiotoxicity as an adverse effect that limits its clinical application in cancer treatment. Several mechanisms have been proposed to explain the toxicity it causes in heart cells. Disruption of inherent cardiac repair mechanism is the least understood mechanism of Adriamycin-induced cardiotoxicity. Adriamycin induces pathological remodeling in cardiac cells by promoting apoptosis, hypertrophy, and fibrosis. We found that Adriamycin inhibited Notch1 in a time- and dose-dependent manner in H9c2 cells. We used Paeonol, a Notch1 activator, and analyzed the markers of apoptosis, hypertrophy, and fibrosis in H9c2 cells in vitro and in adult zebrafish heart in vivo as model systems to study Adriamycin-induced cardiotoxicity. Paeonol activated Notch1 signaling and expression of its downstream target genes effectively in the Adriamycin-treated condition in vitro and in vivo. Also we detected that Notch activation using Paeonol protected the cells from apoptosis, collagen deposition, and hypertrophy response using functional assays. We conclude that Adriamycin induced cardiotoxicity by promoting the pathological cardiac remodeling through inhibition of Notch1 signaling and that the Notch1 reactivation by Paeonol protected the cells and reversed the cardiotoxicity.
Collapse
Affiliation(s)
- Syeda Thabassum Akhtar Iqbal
- School of Bio-Sciences and Technology , Vellore Institute of Technology , Vellore , Tamilnadu PIN 632014 , India
| | | | - Sudhakaran Raja
- School of Bio-Sciences and Technology , Vellore Institute of Technology , Vellore , Tamilnadu PIN 632014 , India
| | - Sankarganesh Arunachalam
- Department of Biotechnology , Kalasalingam Academy of Research and Education , Krishnankoil , Virudhunagar, Tamilnadu PIN 626126 , India
| |
Collapse
|
16
|
Liu K, Tang M, Jin H, Liu Q, He L, Zhu H, Liu X, Han X, Li Y, Zhang L, Tang J, Pu W, Lv Z, Wang H, Ji H, Zhou B. Triple-cell lineage tracing by a dual reporter on a single allele. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49927-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Mohamed IA, El-Badri N, Zaher A. Wnt Signaling: The double-edged sword diminishing the potential of stem cell therapy in congenital heart disease. Life Sci 2019; 239:116937. [PMID: 31629761 DOI: 10.1016/j.lfs.2019.116937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
Stem cell therapy using bone marrow derived or mesenchymal stem cells has become a popular option for cardiovascular disease treatment, however the administration of embryonic stem cells has been mostly experimental. Remarkably, most of these ongoing clinical trials involve adult patients, but little is known regarding the safety and efficacy of stem cell therapy in newborns and children battling congenital heart diseases. Furthermore, cell delivery methods involve the administration of stem cells without pre-differentiation, and without consideration for the consequent process of cardiac development. Interestingly, in-vitro studies have demonstrated that the differentiation of embryonic stem cells into cardiomyocytes imitates the stages of cardiogenesis. Wnt signaling plays a profound role during the earliest stages of cardiogenesis and cardiac differentiation. In fact inappropriate Wnt signaling is associated with numerous cardiac disorders especially congenital heart disease. Furthermore, cell-extracellular matrix interactions were shown to be critical for stem cell differentiation and adequate cardiogenesis. Since extracellular matrix molecules are fundamental for maintenance and repair during heart disease and congenital heart disease, they may offer a novel approach for therapy. Herein we aim to review the critical role of Wnt signaling, as well as the profound importance of cell extracellular matrix interaction, during cardiogenesis. Both of these processes are crucial for precise stem cell differentiation into cardiomyocytes and developing efficacious regenerative therapy for congenital heart disease.
Collapse
Affiliation(s)
- Iman A Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt
| | - Amr Zaher
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, 12588, Egypt; National Heart Institute, Giza, Egypt.
| |
Collapse
|
18
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
19
|
Samak M, Hinkel R. Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells 2019; 8:cells8121530. [PMID: 31783680 PMCID: PMC6952821 DOI: 10.3390/cells8121530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the developed world, accounting for more than 30% of all deaths. In a large proportion of these patients, acute myocardial infarction is usually the first manifestation, which might further progress to heart failure. In addition, the human heart displays a low regenerative capacity, leading to a loss of cardiomyocytes and persistent tissue scaring, which entails a morbid pathologic sequela. Novel therapeutic approaches are urgently needed. Stem cells, such as induced pluripotent stem cells or embryonic stem cells, exhibit great potential for cell-replacement therapy and an excellent tool for disease modeling, as well as pharmaceutical screening of novel drugs and their cardiac side effects. This review article covers not only the origin of stem cells but tries to summarize their translational potential, as well as potential risks and clinical translation.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
20
|
Liu K, Tang M, Jin H, Liu Q, He L, Zhu H, Liu X, Han X, Li Y, Zhang L, Tang J, Pu W, Lv Z, Wang H, Ji H, Zhou B. Triple-cell lineage tracing by a dual reporter on a single allele. J Biol Chem 2019; 295:690-700. [PMID: 31771978 DOI: 10.1074/jbc.ra119.011349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic lineage tracing is widely used to study organ development and tissue regeneration. Multicolor reporters are a powerful platform for simultaneously tracking discrete cell populations. Here, combining Dre-rox and Cre-loxP systems, we generated a new dual-recombinase reporter system, called Rosa26 traffic light reporter (R26-TLR), to monitor red, green, and yellow fluorescence. Using this new reporter system with the three distinct fluorescent reporters combined on one allele, we found that the readouts of the two recombinases Cre and Dre simultaneously reflect Cre+Dre-, Cre-Dre+, and Cre+Dre+ cell lineages. As proof of principle, we show specific labeling in three distinct progenitor/stem cell populations, including club cells, AT2 cells, and bronchoalveolar stem cells, in Sftpc-DreER;Scgb1a1-CreER;R26-TLR mice. By using this new dual-recombinase reporter system, we simultaneously traced the cell fate of these three distinct cell populations during lung repair and regeneration, providing a more comprehensive picture of stem cell function in distal airway repair and regeneration. We propose that this new reporter system will advance developmental and regenerative research by facilitating a more sophisticated genetic approach to studying in vivo cell fate plasticity.
Collapse
Affiliation(s)
- Kuo Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Muxue Tang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Hengwei Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Qiaozhen Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Lingjuan He
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Libo Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Juan Tang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Haixiao Wang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Chinese Academic of Sciences, Shanghai 200031, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
21
|
Vahdat S, Pahlavan S, Mahmoudi E, Barekat M, Ansari H, Bakhshandeh B, Aghdami N, Baharvand H. Expansion of Human Pluripotent Stem Cell-derived Early Cardiovascular Progenitor Cells by a Cocktail of Signaling Factors. Sci Rep 2019; 9:16006. [PMID: 31690816 PMCID: PMC6831601 DOI: 10.1038/s41598-019-52516-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular progenitor cells (CPCs) derived from human pluripotent stem cells (hPSCs) are proposed to be invaluable cell sources for experimental and clinical studies. This wide range of applications necessitates large-scale production of CPCs in an in vitro culture system, which enables both expansion and maintenance of these cells. In this study, we aimed to develop a defined and efficient culture medium that uses signaling factors for large-scale expansion of early CPCs, called cardiogenic mesodermal cells (CMCs), which were derived from hPSCs. Chemical screening resulted in a medium that contained a reproducible combination of three factors (A83-01, bFGF, and CHIR99021) that generated 1014 CMCs after 10 passages without the propensity for tumorigenicity. Expanded CMCs retained their gene expression pattern, chromosomal stability, and differentiation tendency through several passages and showed both the safety and possible cardio-protective potentials when transplanted into the infarcted rat myocardium. These CMCs were efficiently cryopreserved for an extended period of time. This culture medium could be used for both adherent and suspension culture conditions, for which the latter is required for large-scale CMC production. Taken together, hPSC-derived CMCs exhibited self-renewal capacity in our simple, reproducible, and defined medium. These cells might ultimately be potential, promising cell sources for cardiovascular studies.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
22
|
Ai S, Xiong H, Li CC, Luo Y, Shi Q, Liu Y, Yu X, Li C, He A. Profiling chromatin states using single-cell itChIP-seq. Nat Cell Biol 2019; 21:1164-1172. [DOI: 10.1038/s41556-019-0383-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
|
23
|
Charbe NB, Zacconi FC, Amnerkar N, Pardhi D, Shukla P, Mukattash TL, McCarron PA, Tambuwala MM. Emergence of Three Dimensional Printed Cardiac Tissue: Opportunities and Challenges in Cardiovascular Diseases. Curr Cardiol Rev 2019; 15:188-204. [PMID: 30648518 PMCID: PMC6719392 DOI: 10.2174/1573403x15666190112154710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, was developed originally for engineering applications. Since its early advancements, there has been a relentless de-velopment in enthusiasm for this innovation in biomedical research. It allows for the fabrication of structures with both complex geometries and heterogeneous material properties. Tissue engineering using 3D bio-printers can overcome the limitations of traditional tissue engineering methods. It can match the complexity and cellular microenvironment of human organs and tissues, which drives much of the interest in this technique. However, most of the preliminary evaluations of 3D-printed tissues and organ engineering, including cardiac tissue, relies extensively on the lessons learned from tradi-tional tissue engineering. In many early examples, the final printed structures were found to be no bet-ter than tissues developed using traditional tissue engineering methods. This highlights the fact that 3D bio-printing of human tissue is still very much in its infancy and more work needs to be done to realise its full potential. This can be achieved through interdisciplinary collaboration between engi-neers, biomaterial scientists and molecular cell biologists. This review highlights current advance-ments and future prospects for 3D bio-printing in engineering ex vivo cardiac tissue and associated vasculature, such as coronary arteries. In this context, the role of biomaterials for hydrogel matrices and choice of cells are discussed. 3D bio-printing has the potential to advance current research signif-icantly and support the development of novel therapeutics which can improve the therapeutic out-comes of patients suffering fatal cardiovascular pathologies.
Collapse
Affiliation(s)
- Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago 7820436, Chile.,Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Flavia C Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago 7820436, Chile.,Institute of Biological and Medical Engineering, School of Engineering, Medicine and Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nikhil Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Wanadongri, Hingna Road, Nagpur, Maharashtra 441110, India
| | - Dinesh Pardhi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zheijiang University, Hangzhou 310027, China
| | - Priyank Shukla
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, BT47 6SB, Northern Ireland, United Kingdom
| | - Tareq L Mukattash
- Department of Clinical Pharmacy Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
24
|
Li Y, Lv Z, He L, Huang X, Zhang S, Zhao H, Pu W, Li Y, Yu W, Zhang L, Liu X, Liu K, Tang J, Tian X, Wang QD, Lui KO, Zhou B. Genetic Tracing Identifies Early Segregation of the Cardiomyocyte and Nonmyocyte Lineages. Circ Res 2019; 125:343-355. [PMID: 31185811 DOI: 10.1161/circresaha.119.315280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE The developing heart is composed of cardiomyocytes and noncardiomyocytes since the early stage. It is generally believed that noncardiomyocytes including the cardiac progenitors contribute to new cardiomyocytes of the looping heart. However, it remains unclear what the cellular dynamics of nonmyocyte to cardiomyocyte conversion are and when the lineage segregation occurs during development. It also remains unknown whether nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. OBJECTIVE We quantify the lineage conversion of noncardiomyocytes to cardiomyocytes in the embryonic and neonatal hearts and determine when the 2 cell lineages segregate during heart development. Moreover, we directly test if nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. METHODS AND RESULTS We generated a dual genetic lineage tracing strategy in which cardiomyocytes and noncardiomyocytes of the developing heart could be simultaneously labeled by 2 orthogonal recombination systems. Genetic fate mapping showed that nonmyocyte to cardiomyocyte conversion peaks at E8.0 (embryonic day) to E8.5 and gradually declines at E9.5 and E10.5. Noncardiomyocytes do not generate any cardiomyocyte at and beyond E11.5 to E12.5. In the neonatal heart, noncardiomyocytes also do not contribute to any new cardiomyocyte in homeostasis or after injury. CONCLUSIONS Noncardiomyocytes contribute to new cardiomyocytes of the developing heart at early embryonic stage before E11.5. The noncardiomyocyte and cardiomyocyte lineage segregation occurs between E10.5 and E11.5, which is maintained afterward even during neonatal heart regeneration.
Collapse
Affiliation(s)
- Yan Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Zan Lv
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Lingjuan He
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Xiuzhen Huang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Shaohua Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Huan Zhao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Wenjuan Pu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Yi Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Wei Yu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Libo Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Xiuxiu Liu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Kuo Liu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.).,School of Life Science and Technology, ShanghaiTech University, China (K.L., B.Z.)
| | - Juan Tang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.)
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China (X.T., B.Z.)
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Q.-D.W.)
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.)
| | - Bin Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Yan Li, Z.L., L.H., X.H., S.Z., H.Z., W.P., Yi Li, W.Y., L.Z., X.L., K.L., J.T., B.Z.).,School of Life Science and Technology, ShanghaiTech University, China (K.L., B.Z.).,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China (X.T., B.Z.).,The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (B.Z.).,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China (B.Z.)
| |
Collapse
|
25
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Yadav SK, Mishra PK. Isolation, Characterization and Differentiation of Mouse Cardiac Progenitor Cells. Methods Mol Biol 2019; 1842:183-191. [PMID: 30196409 DOI: 10.1007/978-1-4939-8697-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Despite several strategies developed for replenishing the dead myocardium after myocardial infarction (MI), stem cell therapy remains the leading method to regenerate new myocardium. Although induced pluripotent stem cells (iPS) and transdifferentiation of the differentiated cells have been used as novel approaches for myocardial regeneration, these approaches did not yield very successful results for myocardial regeneration in in vivo studies. Asynchronous contractility of newly formed cardiomyocytes with the existing cardiomyocytes is the most important issue with iPS approach, while very low yield of transdifferentiated cardiomyocytes and their less chances to beat in the same rhythm as existing cardiomyocytes in the MI heart are important caveats with transdifferentiation approach. CSCs are present in the heart and they have the potential to differentiate into myocardial cells. However, the number of resident CSCs is very low. Therefore, it is important to get maximum yield of CSCs during isolation process from the heart. Increasing the number of CSCs and initiating their differentiation ex vivo are crucial for CSC-based stem cell therapy. Here, we present a better method for isolation, characterization and differentiation of CSCs from the mouse heart. We also demonstrated morphological changes in the CSCs after 2 days, 3 days, and 7 days in maintenance medium and a separate group of CSCs cultured for 12 days in differentiation medium using Phase-Contrast microscopy. We have used different markers for identification of CSCs isolated from the mouse heart such as marker for mouse CSC, Sca-1, cardiac-specific markers NKX2-5, MEF2C, GATA4, and stemness markers OCT4 and SOX2. To characterize the differentiated CSCs, we used CSCs maintained in differentiation medium for 12 days. To evaluate differentiation of CSCs, we determined the expression of cardiomyocyte-specific markers actinin and troponin I. Overall; we described an elegant method for isolation, identification, differentiation and characterization of CSCs from the mouse heart.
Collapse
Affiliation(s)
- Santosh Kumar Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Buikema JW, Wu SM. Prometheus Unbound in Ya(p) Heart. Dev Cell 2019; 48:741-742. [PMID: 30913402 DOI: 10.1016/j.devcel.2019.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The adult mammalian heart, unlike in some amphibian and fish species, is generally considered a post-mitotic organ. In this issue of Developmental Cell, Monroe et al. (2019) show that the expression of constitutively active YAP induces a remarkable degree of proliferation in preexisting adult cardiomyocytes by globally altering chromatin accessibility.
Collapse
Affiliation(s)
- Jan W Buikema
- Department of Cardiology, Utrecht Regenerative Medicine Center, University Utrecht, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Ljung K, Grönlund A, Felldin U, Rodin S, Corbascio M, Österholm C, Grinnemo KH. Human Fetal Cardiac Mesenchymal Stromal Cells Differentiate In Vivo into Endothelial Cells and Contribute to Vasculogenesis in Immunocompetent Mice. Stem Cells Dev 2019; 28:310-318. [PMID: 30618344 DOI: 10.1089/scd.2018.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have shown great potential as a treatment for systemic inflammatory diseases, but their local regenerative properties are highly tissue- and site specific. Previous studies have demonstrated that adult human MSCs respond to inflammatory cytokines through the release of paracrine factors that stimulate angiogenesis, but they do not themselves differentiate into vascular structures in vivo. In this study, we used human fetal cardiac MSCs (hfcMSCs) harvested during the first trimester of heart development and injected them into the subcutaneous tissue of normal immunocompetent mice treated with short-term costimulation blockade for tolerance induction. When hfcMSCs were transplanted subcutaneously together with Matrigel matrix, they contributed to vasculogenesis through differentiation into endothelial cells and generation of the basal membrane protein Laminin α4. These characteristics of hfcMSCs are similar to the mesodermal progenitors giving rise to the developing heart and they may be useful for treatment of ischemic injuries.
Collapse
Affiliation(s)
- Karin Ljung
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,2 Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Grönlund
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Felldin
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sergey Rodin
- 3 Division of Cardiothoracic Surgery and Anaesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Matthias Corbascio
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,2 Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Österholm
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Henrik Grinnemo
- 1 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,3 Division of Cardiothoracic Surgery and Anaesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| |
Collapse
|
29
|
Vahdat S, Pahlavan S, Aghdami N, Bakhshandeh B, Baharvand H. Establishment of A Protocol for In Vitro Culture of Cardiogenic Mesodermal Cells Derived from Human Embryonic Stem Cells. CELL JOURNAL 2018; 20:496-504. [PMID: 30123995 PMCID: PMC6099148 DOI: 10.22074/cellj.2019.5661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2017] [Indexed: 11/11/2022]
Abstract
Objective Cardiovascular progenitor cells (CPCs) are introduced as one of the promising cell sources for preclinical studies
and regenerative medicine. One of the earliest type of CPCs is cardiogenic mesoderm cells (CMCs), which have the capability
to generate all types of cardiac lineage derivatives. In order to benefit from CMCs, development of an efficient culture strategy
is required. We aim to explore an optimized culture condition that uses human embryonic stem cell (hESC)-derived CMCs.
Materials and Methods In this experimental study, hESCs were expanded and induced toward cardiac lineage in a
suspension culture. Mesoderm posterior 1-positive (MESP1+) CMCs were subjected to four different culture conditions: i.
Suspension culture of CMC spheroids, ii. Adherent culture of CMC spheroids, iii. Adherent culture of single CMCs using
gelatin, and iv. Adherent culture of single CMCs using Matrigel.
Results Although, we observed no substantial changes in the percentage of MESP1+ cells in different culture
conditions, there were significantly higher viability and total cell numbers in CMCs cultured on Matrigel (condition iv)
compared to the other groups. CMCs cultivated on Matrigel maintained their progenitor cell signature, which included
the tendency for cardiogenic differentiation.
Conclusion These results showed the efficacy of an adherent culture on Matrigel for hESC-derived CMCs, which would
facilitate their use for future applications.
Collapse
Affiliation(s)
- Sadaf Vahdat
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
30
|
Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018; 2018:1247857. [PMID: 30034478 PMCID: PMC6035836 DOI: 10.1155/2018/1247857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
Heart development in mammals is followed by a postnatal decline in cell proliferation and cell renewal from stem cell populations. A better understanding of the developmental changes in cardiac microenvironments occurring during heart maturation will be informative regarding the loss of adult regenerative potential. We reevaluate the adult heart's mitotic potential and the reported adult cardiac stem cell populations, as these are two topics of ongoing debate. The heart's early capacity for cell proliferation driven by progenitors and reciprocal signalling is demonstrated throughout development. The mature heart architecture and environment may be more restrictive on niches that can host progenitor cells. The engraftment issues observed in cardiac stem cell therapy trials using exogenous stem cells may indicate a lack of supporting stem cell niches, while tissue injury adds to a hostile microenvironment for transplanted cells. Engraftment may be improved by preconditioning the cultured stem cells and modulating the microenvironment to host these cells. These prospective areas of further research would benefit from a better understanding of cardiac progenitor interactions with their microenvironment throughout development and may lead to enhanced cardiac niche support for stem cell therapy engraftment.
Collapse
|
31
|
Ghazizadeh Z, Fattahi F, Mirzaei M, Bayersaikhan D, Lee J, Chae S, Hwang D, Byun K, Tabar MS, Taleahmad S, Mirshahvaladi S, Shabani P, Fonoudi H, Haynes PA, Baharvand H, Aghdami N, Evans T, Lee B, Salekdeh GH. Prospective Isolation of ISL1 + Cardiac Progenitors from Human ESCs for Myocardial Infarction Therapy. Stem Cell Reports 2018; 10:848-859. [PMID: 29503094 PMCID: PMC5918615 DOI: 10.1016/j.stemcr.2018.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
The LIM-homeodomain transcription factor ISL1 marks multipotent cardiac progenitors that give rise to cardiac muscle, endothelium, and smooth muscle cells. ISL1+ progenitors can be derived from human pluripotent stem cells, but the inability to efficiently isolate pure populations has limited their characterization. Using a genetic selection strategy, we were able to highly enrich ISL1+ cells derived from human embryonic stem cells. Comparative quantitative proteomic analysis of enriched ISL1+ cells identified ALCAM (CD166) as a surface marker that enabled the isolation of ISL1+ progenitor cells. ALCAM+/ISL1+ progenitors are multipotent and differentiate into cardiomyocytes, endothelial cells, and smooth muscle cells. Transplantation of ALCAM+ progenitors enhances tissue recovery, restores cardiac function, and improves angiogenesis through activation of AKT-MAPK signaling in a rat model of myocardial infarction, based on cardiac MRI and histology. Our study establishes an efficient method for scalable purification of human ISL1+ cardiac precursor cells for therapeutic applications.
Collapse
Affiliation(s)
- Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Faranak Fattahi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Delger Bayersaikhan
- Center for Regenerative Medicine, Gachon University, Incheon City, Republic of Korea
| | - Jaesuk Lee
- Center for Regenerative Medicine, Gachon University, Incheon City, Republic of Korea
| | - Sehyun Chae
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Daehee Hwang
- Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyunghee Byun
- Center for Regenerative Medicine, Gachon University, Incheon City, Republic of Korea
| | - Mehdi Sharifi Tabar
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran, Iran
| | - Sara Taleahmad
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran, Iran
| | - Parisa Shabani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hananeh Fonoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine at Cell Science Research, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Bonghee Lee
- Center for Regenerative Medicine, Gachon University, Incheon City, Republic of Korea.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Square, Banihashem Street, Ressalat Highway, Tehran, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Kawai H, Tsujigiwa H, Siar CH, Nakano K, Takabatake K, Fujii M, Hamada M, Tamamura R, Nagatsuka H. Characterization and potential roles of bone marrow-derived stromal cells in cancer development and metastasis. Int J Med Sci 2018; 15:1406-1414. [PMID: 30275769 PMCID: PMC6158661 DOI: 10.7150/ijms.24370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The tumor microenvironment and its stromal cells play an important role in cancer development and metastasis. Bone marrow-derived cells (BMDCs), a rich source of hematopoietic and mesenchymal stem cells, putatively contribute to this tumoral stroma. However their characteristics and roles within the tumor microenvironment are unclear. In the present study, BMDCs in the tumor microenvironment were traced using the green fluorescent protein (GFP) bone marrow transplantation model. Methods: C57BL/6 mice were irradiated and rescued by bone marrow transplantation from GFP-transgenic mice. Lewis lung cancer cells were inoculated into the mice to generate subcutaneous allograft tumors or lung metastases. Confocal microscopy, immunohistochemistry for GFP, α-SMA, CD11b, CD31, CD34 and CD105, and double-fluorescent immunohistochemistry for GFP-CD11b, GFP-CD105 and GFP-CD31 were performed. Results: Round and dendritic-shaped GFP-positive mononuclear cells constituted a significant stromal subpopulation in primary tumor peripheral area (PA) and metastatic tumor area (MA) microenvironment, thus implicating an invasive and metastatic role for these cells. CD11b co-expression in GFP-positive cells suggests that round/dendritic cell subpopulations are possibly BM-derived macrophages. Identification of GFP-positive mononuclear infiltrates co-expressing CD31 suggests that these cells might be BM-derived angioblasts, whereas their non-reactivity for CD34, CD105 and α-SMA implies an altered vascular phenotype distinct from endothelial cells. Significant upregulation of GFP-positive, CD31-positive and GFP/CD31 double-positive cell densities positively correlated with PA and MA (P<0.05). Conclusion: Taken together, in vivo evidence of traceable GFP-positive BMDCs in primary and metastatic tumor microenvironment suggests that recruited BMDCs might partake in cancer invasion and metastasis, possess multilineage potency and promote angiogenesis.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mei Hamada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Tamamura
- Department of Histology, Nihon University School of Dentistry at Matsudo, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
33
|
Wang L, Meier EM, Tian S, Lei I, Liu L, Xian S, Lam MT, Wang Z. Transplantation of Isl1 + cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. Stem Cell Res Ther 2017; 8:230. [PMID: 29037258 PMCID: PMC5644064 DOI: 10.1186/s13287-017-0675-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background Application of cardiac stem cells combined with biomaterial scaffold is a promising therapeutic strategy for heart repair after myocardial infarction. However, the optimal cell types and biomaterials remain elusive. Methods In this study, we seeded Isl1+ embryonic cardiac progenitor cells (CPCs) into decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) to assess the therapeutic potential of Isl1+ CPCs and the biocompatibility of SIS-ECM with these cells. Results We observed that SIS-ECM supported the viability and attachment of Isl1+ CPCs. Importantly, Isl1+ CPCs differentiated into cardiomyocytes and endothelial cells 7 days after seeding into SIS-ECM. In addition, SIS-ECM with CPC-derived cardiomyocytes showed spontaneous contraction and responded to β-adrenergic stimulation. Next, patches of SIS-ECM seeded with CPCs for 7 days were transplanted onto the outer surface of infarcted myocardium in mice. Four weeks after transplantation, the patches were tightly attached to the surface of the host myocardium and remained viable. Transplantation of patches improved cardiac function, decreased the left ventricular myocardial scarring area, and reduced fibrosis and heart failure. Conclusions Transplantation of Isl1+ CPCs seeded in SIS-ECM represents an effective approach for cell-based heart therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0675-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth M Meier
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48201, USA
| | - Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI, 48109, USA.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mai T Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, 48201, USA.,Cardiovascular Research Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
34
|
Serpooshan V, Liu YH, Buikema JW, Galdos FX, Chirikian O, Paige S, Venkatraman S, Kumar A, Rawnsley DR, Huang X, Pijnappels DA, Wu SM. Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Sci Rep 2017; 7:12590. [PMID: 28974782 PMCID: PMC5626718 DOI: 10.1038/s41598-017-12869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro. Genome-wide expression profile of neonatal Nkx2.5+ cardiomyoblasts showed the absence of sarcomeric gene and the presence of cardiac transcription factors. To determine the lineage contribution of the Nkx2.5+ cardiomyoblasts, we generated a doxycycline suppressible Cre transgenic mouse under the regulation of the Nkx2.5 enhancer and showed that neonatal Nkx2.5+ cardiomyoblasts mature into cardiomyocytes in vivo. Ablation of neonatal cardiomyoblasts resulted in ventricular hypertrophy and dilation, supporting a functional requirement of the Nkx2.5+ cardiomyoblasts. This study provides direct lineage tracing evidence that a cardiomyoblast population contributes to cardiogenesis in the neonatal heart. The cell population identified here may serve as a promising therapeutic for pediatric cardiac regeneration.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Liu
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francisco X Galdos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Sharon Paige
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Venkatraman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Anusha Kumar
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Rawnsley
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Xiaojing Huang
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Daniël A Pijnappels
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, and Stanford University School of Medicine, Stanford, CA, USA. .,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, Calabrò P, Patti G, Pirro M. Endothelial and cardiac progenitor cells for cardiovascular repair: A controversial paradigm in cell therapy. Pharmacol Ther 2017; 181:156-168. [PMID: 28827151 DOI: 10.1016/j.pharmthera.2017.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Stem cells have the potential to differentiate into cardiovascular cell lineages and to stimulate tissue regeneration in a paracrine/autocrine manner; thus, they have been extensively studied as candidate cell sources for cardiovascular regeneration. Several preclinical and clinical studies addressing the therapeutic potential of endothelial progenitor cells (EPCs) and cardiac progenitor cells (CPCs) in cardiovascular diseases have been performed. For instance, autologous EPC transplantation and EPC mobilization through pharmacological agents contributed to vascular repair and neovascularization in different animal models of limb ischemia and myocardial infarction. Also, CPC administration and in situ stimulation of resident CPCs have been shown to improve myocardial survival and function in experimental models of ischemic heart disease. However, clinical studies using EPC- and CPC-based therapeutic approaches have produced mixed results. In this regard, intracoronary, intra-myocardial or intramuscular injection of either bone marrow-derived or peripheral blood progenitor cells has improved pathological features of tissue ischemia in humans, despite modest or no clinical benefit has been observed in most cases. Also, the intriguing scientific background surrounding the potential clinical applications of EPC capture stenting is still waiting for a confirmatory proof. Moreover, clinical findings on the efficacy of CPC-based cell therapy in heart diseases are still very preliminary and based on small-size studies. Despite promising evidence, widespread clinical application of both EPCs and CPCs remains delayed due to several unresolved issues. The present review provides a summary of the different applications of EPCs and CPCs for cardiovascular cell therapy and underlies their advantages and limitations.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Francesco Bagaglia
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Biagio Ricciuti
- Department of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabrò
- Division of Cardiology, Second University of Naples, Department of Cardio-Thoracic and Respiratory Sciences, Italy
| | - Giuseppe Patti
- Unit of Cardiovascular Science, Campus Bio-Medico University of Rome, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
36
|
Kokkinopoulos I, Wong MM, Potter CMF, Xie Y, Yu B, Warren DT, Nowak WN, Le Bras A, Ni Z, Zhou C, Ruan X, Karamariti E, Hu Y, Zhang L, Xu Q. Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports 2017; 9:681-696. [PMID: 28757161 PMCID: PMC5549964 DOI: 10.1016/j.stemcr.2017.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mei Mei Wong
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Claire M F Potter
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yao Xie
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Baoqi Yu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Derek T Warren
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Witold N Nowak
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Alexandra Le Bras
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhichao Ni
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Chao Zhou
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yanhua Hu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
37
|
Li Y, Tian S, Lei I, Liu L, Ma P, Wang Z. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice. Am J Transl Res 2017; 9:1530-1542. [PMID: 28386378 PMCID: PMC5376043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/18/2017] [Indexed: 06/07/2023]
Abstract
Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy.
Collapse
Affiliation(s)
- Yunpeng Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical UniversityXian 710032, Shaanxi, China
- Department of Cardiac Surgery, Cardiovascular Center, The University of MichiganAnn Arbor 48109, MI, USA
| | - Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of MichiganAnn Arbor 48109, MI, USA
| | - Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Center, The University of MichiganAnn Arbor 48109, MI, USA
- Faculty of Health Sciences, University of MacauMacau SAR, China
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, The University of MichiganAnn Arbor 48109, MI, USA
| | - Peter Ma
- Department of Biologic and Materials Sciences, Biomedical Engineering, Macromolecular Science and Engineering Center, and Materials Science and Engineering, The University of MichiganAnn Arbor 48109, MI, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of MichiganAnn Arbor 48109, MI, USA
| |
Collapse
|
38
|
Kithcart A, MacRae CA. Using Zebrafish for High-Throughput Screening of Novel Cardiovascular Drugs. JACC Basic Transl Sci 2017; 2:1-12. [PMID: 30167552 PMCID: PMC6113531 DOI: 10.1016/j.jacbts.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases remain a major challenge for modern drug discovery. The diseases are chronic, complex, and the result of sophisticated interactions between genetics and environment involving multiple cell types and a host of systemic factors. The clinical events are often abrupt, and the diseases may be asymptomatic until a highly morbid event. Target selection is often based on limited information, and though highly specific agents are often identified in screening, their final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index, or substantial toxicities. Our understanding of complexity of cardiovascular disease has grown dramatically over the past 2 decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in cardiac or vascular disease. Despite these insights, the majority of active cardiovascular agents derive from a remarkably small number of classes of agents and target a very limited number of pathways. These agents have often been used initially for particular indications and then discovered serendipitously to have efficacy in other cardiac disorders or in a manner unrelated to their original mechanism of action. In this review, the rationale for in vivo screening is described, and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. An overview is provided of the complex mechanisms underlying most clinical cardiovascular diseases, and insight is offered into the limits of single downstream pathways as drug targets. The zebrafish is introduced as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology are discussed, including in vivo screening of zebrafish genetic disease models.
Collapse
Affiliation(s)
- Aaron Kithcart
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
39
|
Xu M, Jones OD, Wang L, Zhou X, Davis HG, Bryant JL, Ma J, Isaacs WB, Xu X. Characterization of tubular liquid crystal structure in embryonic stem cell derived embryoid bodies. Cell Biosci 2017; 7:3. [PMID: 28066542 PMCID: PMC5210172 DOI: 10.1186/s13578-016-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Massive liquid crystal droplets have been found during embryonic development in more than twenty different tissues and organs, including the liver, brain and kidney. Liquid crystal deposits have also been identified in multiple human pathologies, including vascular disease, liver dysfunction, age-related macular degeneration, and other chronic illnesses. Despite the involvement of liquid crystals in such a large number of human processes, this phenomenon is poorly understood and there are no in vitro systems to further examine the function of liquid crystals in biology. RESULTS We report the presence of tubular birefringent structures in embryoid bodies (EBs) differentiated in culture. These birefringent tubular structures initiate at the EB surface and penetrated the cortex at a variety of depths. Under crossed polarized light, these tubules are seen as a collection of birefringent Maltese crosses and tubules with birefringent walls and a non-birefringent lumen. The fluidity of these birefringent structures under pressure application led to elongation and widening, which was partially recoverable with pressure release. These birefringent structures also displayed heat triggered phase transition from liquid crystal to isotropic status that is partially recoverable with return to ambient temperature. These pressure and temperature triggered changes confirm the birefringent structures as liquid crystals. The first report of liquid crystal so early in development. CONCLUSION The structure of the liquid crystal tubule network we observed distributed throughout the differentiated embryoid bodies may function as a transportation network for nutrients and metabolic waste during EB growth, and act as a precursor to the vascular system. This observation not only reveals the involvement of liquid crystals earlier than previously known, but also provides a method for studying liquid crystals in vitro.
Collapse
Affiliation(s)
- MengMeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708 USA
| | - Odell D. Jones
- University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Liyang Wang
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| | - Xin Zhou
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| | - Harry G. Davis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210 USA
| | | | - Xuehong Xu
- The Laboratory of Cell Genetics and Developmental Biology (CGDB), Shaanxi Normal University College of Life Sciences, Xi’an, 710062 Shaanxi People’s Republic of China
| |
Collapse
|
40
|
Arbatlı S, Aslan GS, Kocabaş F. Stem Cells in Regenerative Cardiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:37-53. [PMID: 29064067 DOI: 10.1007/5584_2017_113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The common prevalence of heart failure and limitations in its treatment are leading cause of attention and interest towards the induction of cardiac regeneration with novel approaches. Recent studies provide growing evidence regarding bona fide cardiac regeneration post genetic manipulations, administration of stimulatory factors and myocardial injuries in animal models and human studies. To this end, stem cells of different sources have been tested to treat heart failure for the development of cellular therapies. Endogenous and exogenous stem cells sources used in regenerative cardiology have provided a proof of concept and applicability of cellular therapies in myocardial improvement. Recent clinical studies, especially, based on the endogenous cardiac progenitor and stem cells highlighted the possibility to regenerate lost cardiomyocytes in the myocardium. This review discusses emerging concepts in cardiac stem cell therapy, their sources and route of administration, and plausibility of de novo cardiomyocyte formation.
Collapse
Affiliation(s)
- Semih Arbatlı
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Galip Servet Aslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
41
|
Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. Dev Cell 2016; 39:491-507. [PMID: 27840109 DOI: 10.1016/j.devcel.2016.10.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Embryonic gene expression intricately reflects anatomical context, developmental stage, and cell type. To address whether the precise spatial origins of cardiac cells can be deduced solely from their transcriptional profiles, we established a genome-wide expression database from 118, 949, and 1,166 single murine heart cells at embryonic day 8.5 (e8.5), e9.5, and e10.5, respectively. We segregated these cells by type using unsupervised bioinformatics analysis and identified chamber-specific genes. Using a random forest algorithm, we reconstructed the spatial origin of single e9.5 and e10.5 cardiomyocytes with 92.0% ± 3.2% and 91.2% ± 2.8% accuracy, respectively (99.4% ± 1.0% and 99.1% ± 1.1% if a ±1 zone margin is permitted) and predicted the second heart field distribution of Isl-1-lineage descendants. When applied to Nkx2-5-/- cardiomyocytes from murine e9.5 hearts, we showed their transcriptional alteration and lack of ventricular phenotype. Our database and zone classification algorithm will enable the discovery of novel mechanisms in early cardiac development and disease.
Collapse
|
42
|
Nelson DO, Lalit PA, Biermann M, Markandeya YS, Capes DL, Addesso L, Patel G, Han T, John MC, Powers PA, Downs KM, Kamp TJ, Lyons GE. Irx4 Marks a Multipotent, Ventricular-Specific Progenitor Cell. Stem Cells 2016; 34:2875-2888. [PMID: 27570947 DOI: 10.1002/stem.2486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022]
Abstract
While much progress has been made in the resolution of the cellular hierarchy underlying cardiogenesis, our understanding of chamber-specific myocardium differentiation remains incomplete. To better understand ventricular myocardium differentiation, we targeted the ventricle-specific gene, Irx4, in mouse embryonic stem cells to generate a reporter cell line. Using an antibiotic-selection approach, we purified Irx4+ cells in vitro from differentiating embryoid bodies. The isolated Irx4+ cells proved to be highly proliferative and presented Cxcr4, Pdgfr-alpha, Flk1, and Flt1 on the cell surface. Single Irx4+ ventricular progenitor cells (VPCs) exhibited cardiovascular potency, generating endothelial cells, smooth muscle cells, and ventricular myocytes in vitro. The ventricular specificity of the Irx4+ population was further demonstrated in vivo as VPCs injected into the cardiac crescent subsequently produced Mlc2v+ myocytes that exclusively contributed to the nascent ventricle at E9.5. These findings support the existence of a newly identified ventricular myocardial progenitor. This is the first report of a multipotent cardiac progenitor that contributes progeny specific to the ventricular myocardium. Stem Cells 2016;34:2875-2888.
Collapse
Affiliation(s)
- Daryl O Nelson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Pratik A Lalit
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitch Biermann
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yogananda S Markandeya
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Deborah L Capes
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Luke Addesso
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Gina Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tianxiao Han
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Manorama C John
- University of Wisconsin Biotechnology Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Patricia A Powers
- University of Wisconsin Biotechnology Center, University of Wisconsin, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gary E Lyons
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Abstract
OPINION STATEMENT Direct cardiac cellular reprogramming of endogenous cardiac fibroblasts directly into induced cardiomyocytes is a highly feasible, promising therapeutic option for patients with advanced heart failure. The most successful cardiac reprogramming strategy will likely be a multimodal approach involving an optimal combination of cardio-differentiating factors, suppression of fibroblast gene expression, and induction of angiogenic factors.
Collapse
|
44
|
Liu J, Qi Y, Li S, Hsu SC, Saadat S, Hsu J, Rahimi SA, Lee LY, Yan C, Tian X, Han Y. CREG1 Interacts with Sec8 to Promote Cardiomyogenic Differentiation and Cell-Cell Adhesion. Stem Cells 2016; 34:2648-2660. [PMID: 27334848 DOI: 10.1002/stem.2434] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/29/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023]
Abstract
Understanding the regulation of cell-cell interactions during the formation of compact myocardial structures is important for achieving true cardiac regeneration through enhancing the integration of stem cell-derived cardiomyocytes into the recipient myocardium. In this study, we found that cellular repressor of E1A-stimulated genes 1 (CREG1) is highly expressed in both embryonic and adult hearts. Gain- and loss-of-function analyses demonstrated that CREG1 is required for differentiation of mouse embryonic stem (ES) cell into cardiomyocytes and the formation of cohesive myocardium-like structures in a cell-autonomous fashion. Furthermore, CREG1 directly interacts with Sec8 of the exocyst complex, which tethers vesicles to the plasma membrane. Site-directed mutagenesis and rescue of CREG1 knockout ES cells showed that CREG1 binding to Sec8 is required for cardiomyocyte differentiation and cohesion. Mechanistically, CREG1, Sec8, and N-cadherin colocalize at intercalated discs in vivo and are enriched at cell-cell junctions in cultured cardiomyocytes. CREG1 overexpression enhances the assembly of adherens and gap junctions. By contrast, its knockout inhibits the Sec8-N-cadherin interaction and induces their degradation. These results suggest that the CREG1 binding to Sec8 enhances the assembly of intercellular junctions and promotes cardiomyogenesis. Stem Cells 2016;34:2648-2660.
Collapse
Affiliation(s)
- Jie Liu
- Department of Surgery, Robert Wood Johnson Medical School
| | - Yanmei Qi
- Department of Surgery, Robert Wood Johnson Medical School
| | - Shaohua Li
- Department of Surgery, Robert Wood Johnson Medical School
| | - Shu-Chan Hsu
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers-the State University of New Jersey, USA
| | - Siavash Saadat
- Department of Surgery, Robert Wood Johnson Medical School
| | - June Hsu
- Department of Surgery, Robert Wood Johnson Medical School
| | - Saum A Rahimi
- Department of Surgery, Robert Wood Johnson Medical School
| | - Leonard Y Lee
- Department of Surgery, Robert Wood Johnson Medical School
| | - Chenghui Yan
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Xiaoxiang Tian
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| | - Yaling Han
- Department of Cardiology, The General Hospital of Shenyang Military Region, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
46
|
PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 2016; 76:1-11. [PMID: 27131603 DOI: 10.1016/j.biocel.2016.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Cardiac progenitors, such as cardiospheres and cardiosphere-derived cells, represent an attractive cell source for cardiac regeneration. The PIWI-interacting RNAs, piRNAs, are an intriguing class of small non-coding RNAs, implicated in the regulation of epigenetic state, maintenance of genomic integrity and stem cell functions. Although non-coding RNAs are an exploiting field in cardiovascular research, the piRNA signatures of cardiac progenitors has not been evaluated yet.We profiled, through microarrays, 15,311 piRNAs expressed in cardiospheres, cardiosphere-derived cells and cardiac fibroblasts. Results showed a set of differentially expressed piRNAs (fold change ≥2, p<0.01): 641 piRNAs were upregulated and 1,301 downregulated in the cardiospheres compared to cardiosphere-derived cells, while 255 and 708 piRNAs resulted up- and down-regulated, respectively, if compared to cardiac fibroblasts. We also identified 181 piRNAs that are overexpressed and 129 are downregulated in cardiosphere-derived cells respect to cardiac fibroblasts.Bioinformatics analysis showed that the deregulated piRNAs were mainly distributed on few chromosomes, suggesting that piRNAs are organized in discrete genomic clusters.Furthermore, the bioinformatics search showed that the most upregulated piRNAs target transposons, especially belonged to LINE-1 class, as validated by qRT-PCR. This reduction is also associated to an activation of AKT signaling, which is beneficial for cardiac regeneration.The present study is the first to show a highly consistent piRNA expression pattern for human cardiac progenitors, likely responsible of their different regenerative power. Moreover, this piRNome analysis may provide new methods for characterize cardiac progenitors and may shed new light on the understanding the complex molecular mechanisms of cardiac regeneration.
Collapse
|
47
|
Carvalho E, Verma P, Hourigan K, Banerjee R. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regen Med 2015; 10:1025-43. [PMID: 26563414 DOI: 10.2217/rme.15.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular disease, according to the WHO. The review discusses advances in stem cell therapy for myocardial infarction, including cell sources, methods of differentiation, expansion selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs)-derived cardiomyocytes have advanced to the clinical stage, while induced pluripotent cells (iPSCs) are yet to be considered clinically. Delivery of cells to the sites of injury and their subsequent retention is a major issue. The development of supportive scaffold matrices to facilitate stem cell retention and differentiation are analyzed. The review outlines clinical translation of conjugate stem cell-based cellular therapeutics post-myocardial infarction.
Collapse
Affiliation(s)
- Edmund Carvalho
- IITB Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Paul Verma
- Turretfield Research Centre, South Australian Research & Development Institute (SARDI), SA, Australia.,Stem Cells & Reprogramming Group, Monash University, Australia
| | - Kerry Hourigan
- FLAIR/Laboratory for Biomedical Engineering & Department of Mechanical & Aerospace Engineering, Monash University, Australia
| | - Rinti Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, India
| |
Collapse
|
48
|
Li XH, Li Q, Jiang L, Deng C, Liu Z, Fu Y, Zhang M, Tan H, Feng Y, Shan Z, Wang J, Yu XY. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction. Stem Cells Transl Med 2015; 4:1415-24. [PMID: 26564862 DOI: 10.5966/sctm.2015-0136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. SIGNIFICANCE The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Qianqian Li
- Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lin Jiang
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Chunyu Deng
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zaiyi Liu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yongheng Fu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Mengzhen Zhang
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Honghong Tan
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yuliang Feng
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zhixin Shan
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Jianjun Wang
- Biochemistry and Molecular Biology Department, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xi-Yong Yu
- Guangdong Cardiovascular Institute of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
49
|
Lilly MA, Kulkulka NA, Firmiss PR, Ross MJ, Flum AS, Santos GBD, Bowen DK, Dettman RW, Gong EM. The Murine Bladder Supports a Population of Stromal Sca-1+/CD34+/lin- Mesenchymal Stem Cells. PLoS One 2015; 10:e0141437. [PMID: 26540309 PMCID: PMC4634995 DOI: 10.1371/journal.pone.0141437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/08/2015] [Indexed: 01/15/2023] Open
Abstract
Bladder fibrosis is an undesired end point of injury of obstruction and often renders the smooth muscle layer noncompliant. In many cases, the long-term effect of bladder fibrosis is renal failure. Despite our understanding of the progression of this disease, little is known about the cellular mechanisms that lead to a remodeled bladder wall. Resident stem (progenitor) cells have been identified in various organs such as the brain, heart and lung. These cells function normally during organ homeostasis, but become dysregulated after organ injury. Here, we aimed to characterize a mesenchymal progenitor cell population as a first step in understanding its role in bladder fibrosis. Using fluorescence activated cell sorting (FACS), we identified a Sca-1+/ CD34+/ lin- (PECAM-: CD45-: Ter119-) population in the adult murine bladder. These cells were localized to the stromal layer of the adult bladder and appeared by postnatal day 1. Cultured Sca-1+/ CD34+/ lin- bladder cells self-renewed, formed colonies and spontaneously differentiated into cells expressing smooth muscle genes. These cells differentiated into other mesenchymal lineages (chondrocytes, adipocytes and osteocytes) upon culture in induction medium. Both acute and partial obstruction of the bladder reduced expression of CD34 and changed localization of Sca-1 to the urothelium. Partial obstruction resulted in upregulation of fibrosis genes within the Sca-1+/CD34+/lin- population. Our data indicate a resident, mesenchymal stem cell population in the bladder that is altered by bladder obstruction. These findings provide new information about the cellular changes in the bladder that may be associated with bladder fibrosis.
Collapse
Affiliation(s)
- Meredith A. Lilly
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
| | - Natalie A. Kulkulka
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
| | - Paula R. Firmiss
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
| | - Michael J. Ross
- Loyola University Health System, Department of Urology, 2160 S. First St., Maywood, Illinois, United States of America
| | - Andrew S. Flum
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., 16–703, Chicago, Illinois, 60611, United States of America
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
| | - Grace B. Delos Santos
- Loyola University Health System, Department of Urology, 2160 S. First St., Maywood, Illinois, United States of America
| | - Diana K. Bowen
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., 16–703, Chicago, Illinois, 60611, United States of America
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
| | - Robert W. Dettman
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., 16–703, Chicago, Illinois, 60611, United States of America
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
- * E-mail: (RWD); (EMG)
| | - Edward M. Gong
- Northwestern University, Feinberg School of Medicine, Department of Urology, 303 E. Chicago Ave., 16–703, Chicago, Illinois, 60611, United States of America
- Developmental Biology, Stanley Manne Children’s Research Institute, Anne and Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave. Box 225, Chicago, Illinois, 60611, United States of America
- * E-mail: (RWD); (EMG)
| |
Collapse
|
50
|
Wang X, Liu X, Zhang H, Nie L, Chen M, Ding Z. Reconstitute the damaged heart via the dual reparative roles of pericardial adipose-derived flk-1+ stem cells. Int J Cardiol 2015; 202:256-64. [PMID: 26407047 DOI: 10.1016/j.ijcard.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/29/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND The pericardial adipose derived stromal cells (pADSC) own a developmental origin from the "second heart field" and thus favor myogenic differentiation. The present experiments extended our previous observation by defining a subset of pADSC marked with the expression of flk-1, a type II receptor for VEGF to efficiently enhance cardiac repair. METHODS AND RESULTS Immunofluorescence and flow cytometry showed that flk-1 positive cells represented about 12% in the pericardial tissue and the total isolated pADSC. The purified flk-1 positive pADSC by magnetic sorting (flk-1pospADSC) show the ability of forming spherical structure in which both myogenic (cTnT+) and angiogenic (vWF+) precursors were concurrently generated in culture. After being intramyocardially transplanted into the ischemic hearts, flk-1pospADSC yielded superior structural repair to PBS control or flk-1negpADSC, characterized by the thickening of the infarcted wall in which both myogenesis and angiogenesis of microvasculature (preferentially with ϕ<50 μm) were significantly ensured (p<0.01). The structure benefits were also translated into a functional restoration 28 days after transplantation (EF=44% vs. 62%, p<0.01). Further pulse-chase labeling experiments with BrdU revealed that neomyogenesis and neoangiogenesis contribute in the structural repair. The newly formed myocardium was resulted from the proliferation of pre-existing cardiomyocytes that re-entered cell cycle (ki-67 positive). CONCLUSION Flk-1pospADSC are capable of concurrently giving rise to both myogenic and angiogenic precursors in vitro and, after transplantation in vivo, to reconstitute the damaged heart by the neoformation of microvasculature and of cardiomyocytes and thus represent an attracting donor cells for stem cell-based therapy.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Cardiac Surgery, Zhejiang Hospital, Lingyin Rd. 12, 310013 Hangzhou, China.
| | - Xueqing Liu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China.
| | - Hui Zhang
- Department of Cardiothoracic and Operation Theater, Zhejiang Provincial People's Hospital, Shangtang Rd. 158, 310014 Hangzhou, China.
| | - Liangming Nie
- Department of Cardiothoracic and Operation Theater, Zhejiang Provincial People's Hospital, Shangtang Rd. 158, 310014 Hangzhou, China.
| | - Min Chen
- School of Medical Science and Laboratory Medicine, Jiangsu University, XueFu Rd. 301, Zhenjiang, China.
| | - Zhaoping Ding
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|