1
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
2
|
Jiang X, Zhu B, Li G, Cui S, Yang J, Jiang R, Wang B. p20BAP31 promotes cell apoptosis via interaction with GRP78 and activating the PERK pathway in colorectal cancer. Int J Biol Macromol 2024; 272:132870. [PMID: 38844291 DOI: 10.1016/j.ijbiomac.2024.132870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Colorectal cancer (CRC) is the second most deadly cancer worldwide. Although various treatments for CRC have made progress, they have limitations. Therefore, the search for new effective molecular targets is important for the treatment of CRC. p20BAP31 induces apoptosis through diverse pathways and exhibits greater sensitivity in CRC. Therefore, a comprehensive exploration of the molecular functions of p20BAP31 is important for its application in anti-tumor therapy. In this study, we showed that exogenous p20BAP31 was still located in the ER and significantly activated the unfolded protein response (UPR) through the PERK pathway. The activation of the PERK pathway is prominent in p20BAP31-induced reactive oxygen species (ROS) accumulation and apoptosis. We found, for the first time, that p20BAP31 leads to ER stress and markedly attenuates tumor cell growth in vivo. Importantly, mechanistic investigations indicated that p20BAP31 competitively binds to GRP78 from PERK and causes hyperactivation of the UPR. Furthermore, p20BAP31 upregulates the expression of GRP78 by promoting HSF1 nuclear translocation and enhancing its binding to the GRP78 promoter. These findings reveal p20BAP31 as a regulator of ER stress and a potential target for tumor therapy, and elucidate the underlying mechanism by which p20BAP31 mediates signal transduction between ER and mitochondria.
Collapse
Affiliation(s)
- Xiaohan Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Benzhi Zhu
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Guoxun Li
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Shuyu Cui
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Jiaying Yang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China
| | - Rui Jiang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| | - Bing Wang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
4
|
Wang T, Wang C, Wang J, Wang B. An Intrabody against B-Cell Receptor-Associated Protein 31 (BAP31) Suppresses the Glycosylation of the Epithelial Cell-Adhesion Molecule (EpCAM) via Affecting the Formation of the Sec61-Translocon-Associated Protein (TRAP) Complex. Int J Mol Sci 2023; 24:14787. [PMID: 37834237 PMCID: PMC10572819 DOI: 10.3390/ijms241914787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The epithelial cell-adhesion molecule (EpCAM) is hyperglycosylated in carcinoma tissue and the oncogenic function of EpCAM primarily depends on the degree of glycosylation. Inhibiting EpCAM glycosylation is expected to have an inhibitory effect on cancer. We analyzed the relationship of BAP31 with 84 kinds of tumor-associated antigens and found that BAP31 is positively correlated with the protein level of EpCAM. Triple mutations of EpCAM N76/111/198A, which are no longer modified by glycosylation, were constructed to determine whether BAP31 has an effect on the glycosylation of EpCAM. Plasmids containing different C-termini of BAP31 were constructed to identify the regions of BAP31 that affects EpCAM glycosylation. Antibodies against BAP31 (165-205) were screened from a human phage single-domain antibody library and the effect of the antibody (VH-F12) on EpCAM glycosylation and anticancer was investigated. BAP31 increases protein levels of EpCAM by promoting its glycosylation. The amino acid region from 165 to 205 in BAP31 plays an important role in regulating the glycosylation of EpCAM. The antibody VH-F12 significantly inhibited glycosylation of EpCAM which, subsequently, reduced the adhesion of gastric cancer cells, inducing cytotoxic autophagy, inhibiting the AKT-PI3K-mTOR signaling pathway, and, finally, resulting in proliferation inhibition both in vitro and in vivo. Finally, we clarified that BAP31 plays a key role in promoting N-glycosylation of EpCAM by affecting the Sec61 translocation channels. Altogether, these data implied that BAP31 regulates the N-glycosylation of EpCAM and may represent a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang 110819, China; (T.W.); (C.W.); (J.W.)
| |
Collapse
|
5
|
Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y, Jiang J, Zhang J. HNF4A-BAP31-VDAC1 axis synchronously regulates cell proliferation and ferroptosis in gastric cancer. Cell Death Dis 2023; 14:356. [PMID: 37296105 PMCID: PMC10256786 DOI: 10.1038/s41419-023-05868-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
B cell receptor associated protein 31 (BAP31) is closely associated with tumor progression, while the role and mechanism of BAP31 in gastric cancer (GC) remains unknown. This study explored that BAP31 was upregulated in GC tissues and high expression indicated poor survival of GC patients. BAP31 knockdown inhibited cell growth and induced G1/S arrest. Moreover, BAP31 attenuation increased the lipid peroxidation level of the membrane and facilitated cellular ferroptosis. Mechanistically, BAP31 regulated cell proliferation and ferroptosis by directly binding to VDAC1 and affected VDAC1 oligomerization and polyubiquitination. HNF4A was bound to BAP31 at the promoter and increased its transcription. Furthermore, knockdown of BAP31 inclined to make GC cells vulnerable to 5-FU and ferroptosis inducer, erastin, in vivo and in vitro. Our work suggests that BAP31 may serve as prognostic factor for gastric cancer and act as potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tengfei Liu
- Department of Oncology, Ren ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wenjing Qian
- Operating Room, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Liu J, Zhang Q, Wang C, Yang J, Yang S, Wang T, Wang B. Knockdown of BAP31 Overcomes Hepatocellular Carcinoma Doxorubicin Resistance through Downregulation of Survivin. Int J Mol Sci 2023; 24:ijms24087622. [PMID: 37108785 PMCID: PMC10142662 DOI: 10.3390/ijms24087622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The expression of B-cell receptor associated protein 31 (BAP31) is increased in many tumor types, and it is reported to participate in proliferation, migration, and apoptosis. However, the relationship between BAP31 and chemoresistance is uncertain. This study investigated the role of BAP31 in regulating the doxorubicin (Dox) resistance of hepatocellular carcinoma (HCC). The expression of proteins was assessed by Western blotting. The correlation between BAP31 expression and Dox resistance was examined by MTT and colony formation assays. Apoptosis was analyzed by flow cytometry and TdT-mediated dUTP nick end labeling assays. Western blot and immunofluorescence analyses were performed in the knockdown cell lines to explore the possible mechanisms. In this study, BAP31 was strongly expressed, and knockdown of BAP31 increased Dox chemosensitivity in cancer cells. Furthermore, the expression of BAP31 was higher in the Dox-resistant HCC cells than that in their parental cells; knockdown of BAP31 reduced the half maximal inhibitory concentration value and overcame Dox resistance in Dox-resistant HCC cells. In HCC cells, knockdown of BAP31 increased Dox-induced apoptosis and enhanced Dox chemosensitivity in vitro and in vivo. The potential mechanism by which BAP31 increased Dox-induced apoptosis is that BAP31 inhibited survivin expression by promoting FoxO1 nucleus-cytoplasm translocation. Knockdown of BAP31 and survivin had a synergistic effect on Dox chemosensitivity by enhancing the apoptosis of HCC cells. These findings reveal that BAP31 knockdown enhances Dox chemosensitivity through the downregulation of survivin, suggesting that BAP31 is a potential therapeutic target for improving the treatment response of HCC with resistance to Dox.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Qi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Changli Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaying Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Sheng Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tianyi Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
8
|
Jiang D, Ding X, Zhang J, Liu Y, Zhang X, Li J, Shen J, Shi Y, Feng Y, Qiao X, Wei H, Zhuang T, Sun Y, Yang S, Zhou F, Zhao Q, Yang K. LV5plex: Immune-histological phenotypes staged by self-studying for a liver cancer multiplex staining set. Front Cell Dev Biol 2023; 11:1058987. [PMID: 36814600 PMCID: PMC9940753 DOI: 10.3389/fcell.2023.1058987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Dongbo Jiang, ; Qingtao Zhao, ; Kun Yang,
| | - Xvshen Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Shaanxi Provincial Center for Disease Control and Prevention, Institute of AIDS Prevention and Control, Xi’an, Shaanxi, China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Jijin Li
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Jianing Shen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yahui Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yuancai Feng
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Xupeng Qiao
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hengzheng Wei
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Tengfei Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qingtao Zhao
- Department of Pediatrics, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang, Hebei, China,*Correspondence: Dongbo Jiang, ; Qingtao Zhao, ; Kun Yang,
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Dongbo Jiang, ; Qingtao Zhao, ; Kun Yang,
| |
Collapse
|
9
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
10
|
Espinoza MF, Nguyen KK, Sycks MM, Lyu Z, Quanrud GM, Montoya MR, Genereux JC. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. J Biol Chem 2022; 298:102597. [PMID: 36244454 PMCID: PMC9691929 DOI: 10.1016/j.jbc.2022.102597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.
Collapse
Affiliation(s)
- Mateo F Espinoza
- Graduate Program in Microbiology, University of California, Riverside, California, USA
| | - Khanh K Nguyen
- Department of Chemistry, University of California, Riverside, California, USA
| | - Melody M Sycks
- Department of Chemistry, University of California, Riverside, California, USA
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California, USA
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California, USA
| | - Joseph C Genereux
- Graduate Program in Microbiology, University of California, Riverside, California, USA; Department of Chemistry, University of California, Riverside, California, USA.
| |
Collapse
|
11
|
Li GX, Jiang XH, Zang JN, Zhu BZ, Jia CC, Niu KW, Liu X, Jiang R, Wang B. B-cell receptor associated protein 31 deficiency decreases the expression of adhesion molecule CD11b/CD18 and PSGL-1 in neutrophils to ameliorate acute lung injury. Int J Biochem Cell Biol 2022; 152:106299. [PMID: 36210579 PMCID: PMC9484107 DOI: 10.1016/j.biocel.2022.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
Acute lung injury (ALI) and its more severe condition acute respiratory distress syndrome (ARDS) are critical life-threatening disorders characterized by an excessive influx of neutrophils into the alveolar space. Neutrophil infiltration is a multi-step process involving the sequential engagement of adhesion molecules. The adhesion molecule CD11b/CD18 acts as an important role in the recruitment of neutrophils to lung tissues in the ALI model. B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum transmembrane protein, has been reported to regulate the cellular anterograde transport of CD11b/CD18 in human neutrophils. To explore how BAP31 regulates CD11b/CD18 in mouse neutrophils, we constructed myeloid-specific BAP31 knockdown mice in this study. Biological investigations indicated that BAP31 deficiency could significantly alleviated lung injury, as evidenced by the improved histopathological morphology, reduced pulmonary wet/dry weight ratio, inhibited myeloperoxidase level and decreased neutrophil counts in the bronchoalveolar lavage fluid. Further studies clarified that BAP31 deficiency obviously down-regulated the expression of CD11b/CD18 and P-selectin glycoprotein ligand-1 (PSGL-1) by deactivating the nuclear factor kappa B (NF-κB) signaling pathway. Collectively, our results revealed that BAP31 depletion exerted a protective effect on ALI, which was possibly dependent on the attenuation of neutrophil adhesion and infiltration by blocking the expression of adhesion molecules CD11b/CD18 and PSGL-1. These findings implied the potential of BAP31 as an appealing protein to mediate the occurrence of ALI.
Collapse
Affiliation(s)
- Guo-Xun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Han Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jing-Nan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Ben-Zhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Cong-Cong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kun-Wei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
12
|
Yuan Q, Zhao B, Cao YH, Yan JC, Sun LJ, Liu X, Xu Y, Wang XY, Wang B. BCR-Associated Protein 31 Regulates Macrophages Polarization and Wound Healing Function via Early Growth Response 2/C/EBPβ and IL-4Rα/C/EBPβ Pathways. THE JOURNAL OF IMMUNOLOGY 2022; 209:1059-1070. [DOI: 10.4049/jimmunol.2200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The BCR-associated protein 31 (BAP31), a transmembrane protein in the endoplasmic reticulum, participates in the regulation of immune cells, such as microglia and T cells, and has potential functions in macrophages that remain to be unexplored. In this study, we designed and bred macrophage-specific BAP31 knockdown mice to detect the polarization and functions of macrophages. The results revealed that M2 macrophage-associated genes were suppressed in mouse bone marrow–derived macrophages of Lyz2 Cre-BAP31flox/flox mice. Multiple macrophage-associated transcription factors were demonstrated to be able to be regulated by BAP31. Among these factors, C/EBPβ was the most significantly decreased and was regulated by early growth response 2. BAP31 could also affect C/EBPβ via modulating IL-4Rα ubiquitination and proteasome degradation in IL-4–stimulated macrophages. Furthermore, we found that BAP31 affects macrophages functions, including angiogenesis and skin fibrosis, during the wound healing process through IL-4Rα, as confirmed by infection with adeno-associated virus–short hairpin (sh)-IL-4Rα in Lyz2 Cre-BAP31flox/flox mice. Our findings indicate a novel mechanism of BAP31 in regulating macrophages and provide potential solutions for the prevention and treatment of chronic wounds.
Collapse
Affiliation(s)
- Qing Yuan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bo Zhao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yu-hua Cao
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Jia-cheng Yan
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Li-jun Sun
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xia Liu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Yang Xu
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Xiao-yu Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Hunnan Xinqu, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Han L, Shi J, Zhao L, Deng J, Li Y, Zhao H, Wang H, Yan Y, Zou F. BCAP31 is involved in modulating colorectal cancer cell proliferation via the Emerin/β-catenin axis. Exp Cell Res 2022; 418:113265. [PMID: 35716785 DOI: 10.1016/j.yexcr.2022.113265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Understanding the mechanisms of colorectal cancer (CRC) progression is critical for developing innovative treatment strategies. As an endoplasmic reticulum-located protein, B cell receptor-associated protein 31 (BCAP31) has been identified to be highly expressed in multiple cancers. However, its function and molecular mechanism in CRC remain not fully understood. In the present study, BCAP31 expression and its correlation with the clinical stage were analyzed based on TCGA database. We demonstrated that loss of BCAP31 suppressed CRC cell proliferation in vitro and tumor growth in vivo. Mechanistically, we demonstrated that Emerin was an interaction partner and downstream molecule of BCAP31. Knockdown of BCAP31 promoted the nuclear envelope localization of Emerin, leading to a reduction of β-catenin accumulation in the nucleus, which resulted in downregulation of Wnt/β-catenin downstream target genes, including c-Myc, cyclin D1, Survivin, and Mcl-1. Moreover, downregulation of Emerin partially restored the BCAP31 depletion-mediated β-catenin protein level and tumor suppressive effects in CRC cells.Our data highlights the pivotal role of BCAP31 depletion in inhibiting cell proliferation in CRC cells, and mechanistically via Emerin/β-catenin signaling, which may serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Liping Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Junyang Shi
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lili Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiaqiang Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hong Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huani Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yan Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fangdong Zou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
14
|
Li T, Hao Z, Tang Z, Li C, Cheng L, Wang T, Zhu X, He Y, Huang Y, Wang B. BAP31 Regulates Wnt Signaling to Modulate Cell Migration in Lung Cancer. Front Oncol 2022; 12:859195. [PMID: 35359416 PMCID: PMC8960194 DOI: 10.3389/fonc.2022.859195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
B-cell receptor-associated protein 31 (BAP31) has been shown to overexpress in a wide range type of cancers. The present study aims to investigate the role of BAP31 on migration in lung cancer. Results showed that the migration of BAP31 knockdown cells was weaken than the control cells. Applying TGFβ to treat BAP31 knockdown cells could reduce cell migration. The enhancement on proliferation by TGFβ treatment was downregulated after BAP31 knockdown. The cell death and G0/G1 phase arrest was increased in the cells with TGFβ and BAP31 siRNA treatment when compared with TGFβ treatment alone. Gene expression analysis showed that Bax/Bcl2, MLKL and LC3 was upregulated in the cells with combinatorial treatment of TGFβ and BAP31 siRNA. In addition, BAP31 was shown to regulate multiple signaling pathways, especially for Wnt signaling. It found that BAP31 knockdown cells treated with TGFβ decreased β-catenin cytosolic expression and nuclear localization. Wnt signaling activator BIO could restore the downregulation of proliferation by BAP31 knockdown. This finding suggested that BAP31 regulated cancer cell migration is possibly involved with cell death mechanisms and Wnt signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bing Wang
- *Correspondence: Yongye Huang, ; Bing Wang,
| |
Collapse
|
15
|
Hepatocyte-Specific Deficiency of BAP31 Amplified Acetaminophen-Induced Hepatotoxicity via Attenuating Nrf2 Signaling Activation in Mice. Int J Mol Sci 2021; 22:ijms221910788. [PMID: 34639126 PMCID: PMC8509202 DOI: 10.3390/ijms221910788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/18/2023] Open
Abstract
Liver-specific deficiency of B-cell receptor-associated protein 31 knockout mice (BAP31-LKO) and the littermates were injected with acetaminophen (APAP), markers of liver injury, and the potential molecular mechanisms were determined. In response to APAP overdose, serum aspartate aminotransferase and alanine aminotransferase levels were increased in BAP31-LKO mice than in wild-type controls, accompanied by enhanced liver necrosis. APAP-induced apoptosis and mortality were increased. Hepatic glutathione was decreased (1.60 ± 0.31 μmol/g tissue in WT mice vs. 0.85 ± 0.14 μmol/g tissue in BAP31-LKO mice at 6 h, p < 0.05), along with reduced glutathione reductase activity and superoxide dismutase; while malondialdehyde was significantly induced (0.41 ± 0.03 nmol/mg tissue in WT mice vs. 0.50 ± 0.05 nmol/mg tissue in BAP31-LKO mice for 6 h, p < 0.05). JNK signaling activation and APAP-induced hepatic inflammation were increased in BAP31-LKO mice. The mechanism research revealed that BAP31-deficiency decreased Nrf2 mRNA stability (half-life of Nrf2 mRNA decreased from ~1.3 h to ~40 min) and miR-223 expression, led to reduced nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation and antioxidant genes induction. BAP31-deficiency decreased mitochondrial membrane potentials, reduced mitochondria-related genes expression, and resulted in mitochondrial dysfunction in the liver. Conclusions: BAP31-deficiency reduced the antioxidant response and Nrf2 signaling activation via reducing Nrf2 mRNA stabilization, enhanced JNK signaling activation, hepatic inflammation, and apoptosis, amplified APAP-induced hepatotoxicity in mice.
Collapse
|
16
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
17
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Giamogante F, Poggio E, Barazzuol L, Covallero A, Calì T. Apoptotic signals at the endoplasmic reticulum-mitochondria interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:307-343. [PMID: 34090618 DOI: 10.1016/bs.apcsb.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles, such as the endoplasmic reticulum (ER) and mitochondria. Specifically, ER plays a key role in calcium (Ca2+) storage, lipid synthesis, protein folding, and assembly, while mitochondria are the "energy factories" and provide energy to drive intracellular processes. Hence, alteration in ER or mitochondrial homeostasis has detrimental effects on cell survival, being linked to the triggering of apoptosis, a programmed form of cell death. Besides, ER stress conditions affect mitochondria functionality and vice-versa, as ER and mitochondria communicate via mitochondria-associated ER membranes (MAMs) to carry out a number of fundamental cellular functions. It is not surprising, thus, that also MAMs perturbations are involved in the regulation of apoptosis. This chapter intends to accurately discuss the involvement of MAMs in apoptosis, highlighting their crucial role in controlling this delicate cellular process.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Poggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alberto Covallero
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
19
|
Yu X, Jia D, Wang Z, Li G, Chen M, Liang Q, Zhou Y, Liu H, Xiao M, Li S, Chen Q, Chen H, Wei T. A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions. PLoS Pathog 2021; 17:e1009347. [PMID: 33647067 PMCID: PMC7951979 DOI: 10.1371/journal.ppat.1009347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/11/2021] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.
Collapse
Affiliation(s)
- Xiangzhen Yu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhen Wang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Guangjun Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manni Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qifu Liang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yanyan Zhou
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Mi Xiao
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Siting Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| |
Collapse
|
20
|
Namusamba M, Li Z, Zhang Q, Wang C, Wang T, Wang B. Biological roles of the B cell receptor-associated protein 31: Functional Implication in Cancer. Mol Biol Rep 2021; 48:773-786. [PMID: 33439410 DOI: 10.1007/s11033-020-06123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BAP31 is a ubiquitously expressed integral membrane protein of the endoplasmic reticulum. BAP31 is involved in various biological and molecular processes, including protein transport, viral processing, apoptosis signaling, MHC 1 antigen processing and presentation, mitochondria and ER calcium regulation, and proteasomal protein degradation. We employed a BAP31 interaction search using STRING and inBioMap™ protein-protein interaction networks, and the Metabolic Atlas, which revealed molecular and metabolic interactors involved in various pathways essential for cell growth, cell survival, and disease development. BAP31, as a chaperone and resident protein of the ER, was reported in the development of some central nervous system disorders and metabolic diseases about AD, ALS, and Liver disease. In addition, BAP31 is overexpressed in many cancers. Furthermore, research around BAP31 involvement in cancer has taken up a shape, focusing on its roles in cancer cell survival, disease prognosis, and targeted treatment. Here, we address published data on the Biological roles of BAP31 in both health and disease. We present an analytical description of BAP31 expression and functional implication in some human cancers and the impact of its expression and regulation while it models as a potential target in cancer therapy. Besides, a profound understanding of BAP31 is insightful of the gap between cancer development and neurodegeneration, thus generating novel ideas surrounding the link between the two different cell phenomena.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Zhi Li
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| |
Collapse
|
21
|
Zhang X, Jiang D, Yang S, Sun Y, Liu Y, Shi J, Hu C, Pan J, Liu T, Jin B, Yang K. BAP31 Promotes Tumor Cell Proliferation by Stabilizing SERPINE2 in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:607906. [PMID: 33363167 PMCID: PMC7759511 DOI: 10.3389/fcell.2020.607906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) patients are mostly diagnosed at an advanced stage, resulting in systemic therapy and poor prognosis. Therefore, the identification of a novel treatment target for HCC is important. B-cell receptor-associated protein 31 (BAP31) has been identified as a cancer/testis antigen; however, BAP31 function and mechanism of action in HCC remain unclear. In this study, BAP31 was demonstrated to be upregulated in HCC and correlated with the clinical stage. BAP31 overexpression promoted HCC cell proliferation and colony formation in vitro and tumor growth in vivo. RNA-sequence (RNA-seq) analysis demonstrated that serpin family E member 2 (SERPINE2) was downregulated in BAP31-knockdown HCC cells. Coimmunoprecipitation and immunofluorescence assays demonstrated that BAP31 directly binds to SERPINE2. The inhibition of SERPINE2 significantly decreased the BAP31-induced cell proliferation and colony formation of HCC cells and phosphorylation of Erk1/2 and p38. Moreover, multiplex immunohistochemistry staining of the HCC tissue microarray showed positive associations between the expression levels of BAP31, SERPINE2, its downstream gene LRP1, and a tumor proliferation marker, Ki-67. The administration of anti-BAP31 antibody significantly inhibited HCC cell xenograft tumor growth in vivo. Thus, these findings suggest that BAP31 promotes tumor cell proliferation by stabilizing SERPINE2 and can serve as a promising candidate therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jingyu Pan
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Tianyue Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
The Long Noncoding RNA LOC441461 (STX17-AS1) Modulates Colorectal Cancer Cell Growth and Motility. Cancers (Basel) 2020; 12:cancers12113171. [PMID: 33126743 PMCID: PMC7692211 DOI: 10.3390/cancers12113171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Long noncoding RNA dysfunction is crucial for colorectal carcinoma (CRC) development. Whether the dysfunction of LOC441461, a novel lncRNA, can regulate cancer-related signaling pathways in cancer progression remains unclear. Here, we uncover the oncogenic role of LOC441461 in colon cancer cell growth and motility and identify a novel mechanism for LOC441461 knockdown-induced suppression of cancer motility through modulating Ras homolog family member A (RhoA)/Rho-associated protein kinase (ROCK) activity. This is the first report that LOC441461 knockdown impairs cell cycle progression and accelerates the apoptosis of colon cancer cells following chemotherapy drug treatment. The results suggest that LOC441461 expression confers drug sensitivity in colon cancer by inducing apoptosis. Our findings offer new insight into LOC441461 regulation and provide an application for colon cancer therapy in the future. Abstract Colorectal carcinoma (CRC) is one of the most prevalent cancers worldwide and has a high mortality rate. Long noncoding RNAs (lncRNAs) have been noted to play critical roles in cell growth; cell apoptosis; and metastasis in CRC. This study determined that LOC441461 expression was significantly higher in CRC tissues than in adjacent normal mucosa. Pathway enrichment analysis of LOC441461-coexpressed genes revealed that LOC441461 was involved in biological functions related to cancer cell growth and motility. Knockdown of the LOC441461 expression significantly suppressed colon cancer cell growth by impairing cell cycle progression and inducing cell apoptosis. Furthermore, significantly higher LOC441461 expression was discovered in primary colon tumors and metastatic liver tumors than in the corresponding normal mucosa, and LOC441461 knockdown was noted to suppress colon cancer cell motility. Knockdown of LOC441461 expression suppressed the phosphorylation of MLC and LIMK1 through the inhibition of RhoA/ROCK signaling. Overall, LOC441461 was discovered to play an oncogenic role in CRC cell growth and motility through RhoA/ROCK signaling. Our findings provide new insights into the regulation of lncRNAs and their application in the treatment of colon cancer
Collapse
|
23
|
Louie RJ, Collins DL, Friez MJ, Skinner C, Schwartz CE, Stevenson RE. Schimke XLID syndrome results from a deletion in BCAP31. Am J Med Genet A 2020; 182:2168-2174. [PMID: 32681719 DOI: 10.1002/ajmg.a.61755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Abstract
A family with three affected males and a second family with a single affected male with intellectual disability, microcephaly, ophthalmoplegia, deafness, and Involuntary limb movements were reported by Schimke and Associates in 1984. The affected males with Schimke X-linked intellectual disability (XLID) syndrome (OMIM# 312840) had a similar facial appearance with deep-set eyes, downslanting palpebral fissures, hypotelorism, narrow nose and alae nasi, cupped ears and spacing of the teeth. Two mothers had mild hearing loss but no other manifestations of the disorder. The authors considered the disorder to be distinctive and likely X-linked. Whole genome sequencing in the single affected male available and the three carrier females from one of the families with Schimke XLID syndrome identified a 2 bp deletion in the BCAP31 gene. During the past decade, pathogenic alterations of the BCAP31 gene have been associated with deafness, dystonia, and central hypomyelination, an XLID condition given the eponym DDCH syndrome. A comparison of clinical findings in Schimke XLID syndrome and DDCH syndrome shows them to be the same clinical entity. The BCAP31 protein functions in endoplasmic reticulum-associated degradation to promote ubiquitination and destruction of misfolded proteins.
Collapse
Affiliation(s)
| | | | | | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | |
Collapse
|
24
|
Abdou AG, Diab A, Marae A. Immunohistochemical expression of BCAP 31 in chronic plaque psoriasis. J Immunoassay Immunochem 2020; 41:852-863. [PMID: 32608336 DOI: 10.1080/15321819.2020.1785493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Psoriasis is a common chronic skin inflammatory disease characterized by an exaggerated proliferation of keratinocytes. B-cell receptor-associated protein 31 (BCAP 31) plays critical roles in induction of proliferation and apoptosis. The current study aimed at evaluation of the immunohistochemical localization of BCAP 31 in psoriatic skin compared to normal skin in addition of correlating BCAP31 expression with the clinical and pathological parameters of psoriasis. The present study was carried out on skin biopsies from 30 psoriatic patients and 10 normal skin (control group). BCAP31 was not expressed in normal skin either epidermis or dermis, while it was expressed in epidermis of 15 psoriatic cases and in dermis of 13 cases with a significant difference between the two groups (p < .05). Strong epidermal BCAP 31 expression was associated with marked parakeratosis (p = .025). There was a significant co-parallel epidermal and dermal expression of BCAP31 in psoriasis (p < .05). The role of BCAP 31 is not only confined to its expression by affected keratinocytes but extended to its localization to dermal lymphocytes where they were correlated with each other. The up- regulation of BCAP 31 in psoriatic lesion compared to normal skin may suggest its use as a target therapy for treatment of psoriasis that necessitates further studies to clarify.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Faculty of Medicine, Pathology and Dermatology, Andology and STDs Departments
| | - Aya Diab
- Faculty of Medicine, Menoufia University , Shebein Elkom, Egypt
| | - Alaa Marae
- Faculty of Medicine, Menoufia University , Shebein Elkom, Egypt
| |
Collapse
|
25
|
Zhang X, Yu Y, Bai B, Wang T, Zhao J, Zhang N, Zhao Y, Wang X, Wang B. PTPN22 interacts with EB1 to regulate T-cell receptor signaling. FASEB J 2020; 34:8959-8974. [PMID: 32469452 DOI: 10.1096/fj.201902811rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
The PTPN22 gene encoding the Lyp/Pep protein tyrosine phosphatase is a negative regulator of T-cell receptor (TCR) signaling. Recent studies have shown that phosphorylation of end-binding protein 1 (EB1) is associated with the TCR activation. In this study, using 2-hybrid and mass spectrometry analyses, we identified EB1 as a protein associated with PTPN22. Furthermore, we discovered that EB1 specifically bound to the P1 domain of PTPN22 by competing with CSK, and the variant PTPN22-R620W does not affect the association with EB1, which is instrumental with respect to the regulation of TCR signaling. In addition, PTPN22 dephosphorylates EB1 at tyrosine-247 (Y247), which decreases the expression of the T-cell activation markers CD25 and CD69 and the phosphorylation levels of the TCR molecules ZAP-70, LAT, and Erk, leading to the eventual downregulation of the transcription factor NFAT and reduced the levels of secreted IL-2. The findings of this study provide new insights into the TCR signaling and the T-cell immune response, which are important for clarifying the mechanism of PTPN22-related autoimmune diseases.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yang Yu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Bin Bai
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Tao Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Jiahui Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Na Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yanjiao Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Xipeng Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| |
Collapse
|
26
|
Jia CC, Li G, Jiang R, Liu X, Yuan Q, Le W, Hou Y, Wang B. B-Cell Receptor-Associated Protein 31 Negatively Regulates the Expression of Monoamine Oxidase A Via R1. Front Mol Biosci 2020; 7:64. [PMID: 32426368 PMCID: PMC7212379 DOI: 10.3389/fmolb.2020.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
B-cell receptor-associated protein 31 (Bap31) is a three trans-membrane protein of the endoplasmic reticulum (ER). Patients who have loss of function of Bap31 suffered from X-linked syndrome, such as motor and intellectual disabilities, dystonia, and sensorineural deafness. However, the underlying mechanism of Bap31 on X-linked syndrome remains unclear. Here, we found that a total of 21 proteins (9 up-regulated and 12 down-regulated proteins) related with X-linked syndrome were screened from shRNA-Bap31 transfected cells with the isobaric tags for relative and absolute quantification (iTRAQ) technique. One gene with the greatest change trend, monoamine oxidase A (MAOA), was identified. MAOA expression was up-regulated by Bap31 knockdown. However, Bap31 did not affect the ubiquitination degradation of MAOA protein. Of note, Bap31 selectively regulated the expression of cell division cycle associated 7-like (R1/RAM2/CDCA7L/JPO2, a transcriptional repressor of MAOA) and the binding activity of R1 with MAOA promoter, thereby affecting MAOA expression. This study demonstrates the molecular mechanisms of Bap31 in MAOA via R1 and supports the potential function of Bap31 on X-linked syndrome.
Collapse
Affiliation(s)
- Cong-Cong Jia
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guoxun Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Rui Jiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xia Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing Yuan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Fukuda R, Okiyoneda T. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitylation as a Novel Pharmaceutical Target for Cystic Fibrosis. Pharmaceuticals (Basel) 2020; 13:ph13040075. [PMID: 32331485 PMCID: PMC7243099 DOI: 10.3390/ph13040075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene decrease the structural stability and function of the CFTR protein, resulting in cystic fibrosis. Recently, the effect of CFTR-targeting combination therapy has dramatically increased, and it is expected that add-on drugs that modulate the CFTR surrounding environment will further enhance their effectiveness. Various interacting proteins have been implicated in the structural stability of CFTR and, among them, molecules involved in CFTR ubiquitylation are promising therapeutic targets as regulators of CFTR degradation. This review focuses on the ubiquitylation mechanism that contributes to the stability of mutant CFTR at the endoplasmic reticulum (ER) and post-ER compartments and discusses the possibility as a pharmacological target for cystic fibrosis (CF).
Collapse
|
28
|
BCAP31, a cancer/testis antigen-like protein, can act as a probe for non-small-cell lung cancer metastasis. Sci Rep 2020; 10:4025. [PMID: 32132574 PMCID: PMC7055246 DOI: 10.1038/s41598-020-60905-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents most of lung cancers, is often diagnosed at an advanced metastatic stage. Therefore, exploring the mechanisms underlying metastasis is key to understanding the development of NSCLC. The expression of B cell receptor-associated protein 31 (BCAP31), calreticulin, glucose-regulated protein 78, and glucose-regulated protein 94 were analyzed using immunohistochemical staining of 360 NSCLC patients. It resulted that the high-level expression of the four proteins, but particularly BCAP31, predicted inferior overall survival. What’s more, BCAP31 was closely associated with histological grade and p53 status, which was verified by seven cohorts of NSCLC transcript microarray datasets. Then, three NSCLC cell lines were transfected to observe behavior changes BCAP31 caused, we found the fluctuation of BCAP31 significantly influenced the migration, invasion of NSCLC cells. To identify the pathway utilized by BCAP31, Gene Set Enrichment Analysis was firstly performed, showing Akt/m-TOR/p70S6K pathway was the significant one, which was verified by immunofluorescence, kinase phosphorylation and cellular behavioral observations. Finally, the data of label-free mass spectroscopy implied that BCAP31 plays a role in a fundamental biological process. This study provides the first demonstration of BCAP31 as a novel prognostic factor related to metastasis and suggests a new therapeutic strategy for NSCLC.
Collapse
|
29
|
Trentzsch M, Nyamugenda E, Miles TK, Griffin H, Russell S, Koss B, Cooney KA, Phelan KD, Tackett AJ, Iyer S, Boysen G, Baldini G. Delivery of phosphatidylethanolamine blunts stress in hepatoma cells exposed to elevated palmitate by targeting the endoplasmic reticulum. Cell Death Discov 2020; 6:8. [PMID: 32123584 PMCID: PMC7028721 DOI: 10.1038/s41420-020-0241-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.
Collapse
Affiliation(s)
- Marcus Trentzsch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Eugene Nyamugenda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Tiffany K. Miles
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Susan Russell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kimberly A. Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
30
|
Proteomic analyses reveal that Orf virus induces the activation and maturation of mouse bone marrow-derived dendritic cells. Res Vet Sci 2020; 132:563-573. [PMID: 32466866 DOI: 10.1016/j.rvsc.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Orf virus (ORFV) is known for its immunostimulatory capacities and has been utilized as an efficient viral vector vaccine in non-permissive host species. Murine bone marrow-derived dendritic cells (BMDCs) are able to react with ORFV. In this study, we aimed to identify pivotal differentially expressed proteins involved in the process of DCs' differentiation in response to ORFV. Our findings showed that ORFV activates the maturation and differentiation of DCs. We further identified and validated seven differentially expressed proteins following ORFV stimulation. With functions in biological processes such as stimulus response, DCs maturation, antigen presentation and Th1 cell activation. Western blot analyses validated the respective changes in protein expression. The huge number of differentially expressed proteins identified in this study will be valuable for elucidating the mechanisms underlying ORFV-induced immunomodulation of murine BMDCs.
Collapse
|
31
|
Na Rangsee N, Yanatatsaneejit P, Pisitkun T, Somparn P, Jintaridth P, Topanurak S. Host proteome linked to HPV E7-mediated specific gene hypermethylation in cancer pathways. Infect Agent Cancer 2020; 15:7. [PMID: 32025240 PMCID: PMC6998090 DOI: 10.1186/s13027-020-0271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human papillomavirus (HPV) infection causes around 90% of cervical cancer cases, and cervical cancer is a leading cause of female mortality worldwide. HPV-derived oncoprotein E7 participates in cervical carcinogenesis by inducing aberrant host DNA methylation. However, the targeting specificity of E7 methylation of host genes is not fully understood but is important in the down-regulation of crucial proteins of the hallmark cancer pathways. In this study, we aim to link E7-driven aberrations in the host proteome to corresponding gene promoter hypermethylation events in the hope of providing novel therapeutic targets and biomarkers to indicate the progression of cervical cancer. Methods HEK293 cells were transfected with pcDNA3.1-E7 plasmid and empty vector and subjected to mass spectrometry-based proteomic analysis. Down-regulated proteins (where relative abundance was determined significant by paired T-test) relevant to cancer pathways were selected as gene candidates for mRNA transcript abundance measurement by qPCR and expression compared with that in SiHa cells (HPV type 16 positive). Methylation Specific PCR was used to determine promoter hypermethylation in genes downregulated in both SiHa and transfected HEK293 cell lines. The FunRich and STRING databases were used for identification of potential regulatory transcription factors and the proteins interacting with transcription factor gene candidates, respectively. Results Approximately 400 proteins totally were identified in proteomics analysis. The transcripts of six genes involved in the host immune response and cell proliferation (PTMS, C1QBP, BCAP31, CDKN2A, ZMYM6 and HIST1H1D) were down-regulated, corresponding to proteomic results. Methylation assays showed four gene promoters (PTMS, C1QBP, BCAP31 and CDKN2A) were hypermethylated with 61, 55.5, 70 and 78% increased methylation, respectively. Those four genes can be regulated by the GA-binding protein alpha chain, specificity protein 1 and ETS-like protein-1 transcription factors, as identified from FunRich database predictions. Conclusions HPV E7 altered the HEK293 proteome, particularly with respect to proteins involved in cell proliferation and host immunity. Down-regulation of these proteins appears to be partly mediated via host DNA methylation. E7 possibly complexes with the transcription factors of its targeting genes and DNMT1, allowing methylation of specific target gene promoters.
Collapse
Affiliation(s)
- Nopphamon Na Rangsee
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | | | - Trairak Pisitkun
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Poorichaya Somparn
- 3Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand.,4Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pornrutsami Jintaridth
- 5Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Supachai Topanurak
- 1Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
32
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
33
|
BAP31 Inhibits Cell Adaptation to ER Stress Conditions, Negatively Regulating Autophagy Induction by Interaction with STX17. Cells 2019; 8:cells8111350. [PMID: 31671609 PMCID: PMC6912744 DOI: 10.3390/cells8111350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer cells modulate their metabolism to proliferate and survive under the metabolic stress condition, which is known as endoplasmic reticulum (ER) stress. Therefore, cancer cells should suppress ER stress-mediated cell death and induce autophagy—which recycles metabolites to provide energy and new macromolecules. In this study, we demonstrate that the ER membrane protein BAP31 acts to suppress adaptation to ER stress conditions, induce cell death, and suppress autophagy by forming a BAP31-STX17 protein complex. The loss of BAP31 stimulates tumor growth in metabolic stress conditions in vivo and enhances invasion activity. Therefore, BAP31 stimulates cell death and inhibits autophagy, and it can be considered a novel tumor suppressor factor that acts by preventing ER stress adaptation.
Collapse
|
34
|
Guardia-Laguarta C, Liu Y, Lauritzen KH, Erdjument-Bromage H, Martin B, Swayne TC, Jiang X, Przedborski S. PINK1 Content in Mitochondria is Regulated by ER-Associated Degradation. J Neurosci 2019; 39:7074-7085. [PMID: 31300519 PMCID: PMC6733537 DOI: 10.1523/jneurosci.1691-18.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023] Open
Abstract
Maintaining a pool of functional mitochondria requires degradation of damaged ones within the cell. PINK1 is critical in this quality-control process: loss of mitochondrial membrane potential causes PINK1 to accumulate on the mitochondrial surface, triggering mitophagy. However, little is known about how PINK1 is regulated. Recently, we showed that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation of its mature form via a mechanism inconsistent with the proposed N-end rule process. Using both human female and monkey cell lines, we now demonstrate that once generated within the mitochondria, 52 kDa PINK1 adopts a mitochondrial topology most consistent with it being at the mitochondrial-endoplasmic reticulum (ER) interface. From this particular submitochondrial location, PINK1 interacts with components of the ER-associated degradation pathway, such as the E3 ligases gp78 and HRD1, which cooperate to catalyze PINK1 ubiquitination. The valosin-containing protein and its cofactor, UFD1, then target ubiquitinated PINK1 for proteasomal degradation. Our data show that PINK1 in healthy mitochondria is negatively regulated via an interplay between mitochondria and ER, and shed light on how this mitochondrial protein gains access to the proteasome.SIGNIFICANCE STATEMENT Regulation of mitochondrial content of PINK1, a contributor to mitophagy, is an important area of research. Recently, we found that PINK1 content is kept low in healthy mitochondria by continuous ubiquitination and proteasomal degradation. We now extend and refine this novel finding by showing that PINK1 localizes at the mitochondrial-endoplasmic reticulum (ER) interface, from where it interacts with the ER-associated degradation machinery, which catalyzes its ubiquitination and transfer to the proteasome. Thus, these data show that PINK1 in healthy mitochondria is negatively regulated via a mitochondria and ER interplay, and how this mitochondrial protein gains access to the proteasome.
Collapse
Affiliation(s)
| | - Yuhui Liu
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
| | - Knut H Lauritzen
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
- Institute of Basic Medical Science, University of Oslo, 0315 Oslo, Norway
| | | | - Brittany Martin
- Departments of Pathology & Cell Biology
- Center for Motor Neuron Biology and Diseases
| | - Theresa C Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032
| | - Xuejun Jiang
- Program in Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, and
| | - Serge Przedborski
- Departments of Pathology & Cell Biology,
- Neurology
- Center for Motor Neuron Biology and Diseases
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032
| |
Collapse
|
35
|
Fu W, Sun H, Zhao Y, Chen M, Yang X, Liu Y, Jin W. BCAP31 drives TNBC development by modulating ligand-independent EGFR trafficking and spontaneous EGFR phosphorylation. Theranostics 2019; 9:6468-6484. [PMID: 31588230 PMCID: PMC6771250 DOI: 10.7150/thno.35383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Identification of novel targets for triple-negative breast cancer (TNBC) is an urgent task as targeted therapies have increased the lifespans of Oestrogen Receptor +/ Progesterone Receptor + and HER2+ cancer patients. Methods: genes involved in protein processing in the endoplasmic reticulum, which have been reported to be key players in cancer, were used in loss-of-function screening to evaluate the oncogenic roles of these genes to identify candidate target genes in TNBC. In vitro and in vivo function assays as well as clinical prognostic analysis were used to study the oncogenic role of the gene. Molecular and cell based assays were further employed to investigate the mechanisms. Results: B Cell Receptor Associated Protein 31 (BCAP31), the expression of which is correlated with early recurrence and poor survival among patients, was identified an oncogene in our assay. In vitro studies further suggested that BCAP31 acts as a key oncogene by promoting TNBC development. We also showed that BCAP31 interacts with epidermal growth factor receptor (EGFR) and serves as an inhibitor of ligand-independent EGFR recycling, sustaining EGFR autophosphorylation and activation of downstream signalling. Conclusion: These findings reveal the functional role of BCAP31, an ER-related protein, in EGFR dysregulation and TNBC development.
Collapse
Affiliation(s)
- Wenyan Fu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengting Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xueli Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Kim Chiaw P, Hantouche C, Wong MJH, Matthes E, Robert R, Hanrahan JW, Shrier A, Young JC. Hsp70 and DNAJA2 limit CFTR levels through degradation. PLoS One 2019; 14:e0220984. [PMID: 31408507 PMCID: PMC6692068 DOI: 10.1371/journal.pone.0220984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cystic Fibrosis is caused by mutations in the CFTR anion channel, many of which cause its misfolding and degradation. CFTR folding depends on the Hsc70 and Hsp70 chaperones and their co-chaperone DNAJA1, but Hsc70/Hsp70 is also involved in CFTR degradation. Here, we address how these opposing functions are balanced. DNAJA2 and DNAJA1 were both important for CFTR folding, however overexpressing DNAJA2 but not DNAJA1 enhanced CFTR degradation at the endoplasmic reticulum by Hsc70/Hsp70 and the E3 ubiquitin ligase CHIP. Excess Hsp70 also promoted CFTR degradation, but this occurred through the lysosomal pathway and required CHIP but not complex formation with HOP and Hsp90. Notably, the Hsp70 inhibitor MKT077 enhanced levels of mature CFTR and the most common disease variant ΔF508-CFTR, by slowing turnover and allowing delayed maturation, respectively. MKT077 also boosted the channel activity of ΔF508-CFTR when combined with the corrector compound VX809. Thus, the Hsp70 system is the major determinant of CFTR degradation, and its modulation can partially relieve the misfolding phenotype.
Collapse
Affiliation(s)
- Patrick Kim Chiaw
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Christine Hantouche
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael J. H. Wong
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Elizabeth Matthes
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Renaud Robert
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John W. Hanrahan
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Alvin Shrier
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Namba T. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites. SCIENCE ADVANCES 2019; 5:eaaw1386. [PMID: 31206022 PMCID: PMC6561740 DOI: 10.1126/sciadv.aaw1386] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/10/2019] [Indexed: 05/26/2023]
Abstract
The endoplasmic reticulum (ER) is composed of large membrane-bound compartments, and its membrane subdomain appears to be in close contact with mitochondria via ER-mitochondria contact sites. Here, I demonstrate that the ER membrane protein, BAP31, acts as a key factor in mitochondrial homeostasis to stimulate the constitution of the mitochondrial complex I by forming an ER-mitochondria bridging protein complex. Within this complex, BAP31 interacts with mitochondria-localized proteins, including Tom40, to stimulate the translocation of NDUFS4, the component of complex I from the cytosol to the mitochondria. Disruption of the BAP31-Tom40 complex inhibits mitochondrial complex I activity and oxygen consumption by the decreased NDUFS4 localization to the mitochondria. Thus, the BAP31-Tom40 ER-mitochondria bridging complex mediates the regulation of mitochondrial function and plays a role as a previously unidentified stress sensor, representing a mechanism for the establishment of ER-mitochondria communication via contact sites between these organelles.
Collapse
Affiliation(s)
- Takushi Namba
- Science Research Center, Kochi University, Nankoku 783-8505, Japan
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Japan.
| |
Collapse
|
38
|
Chen J, Guo H, Jiang H, Namusamba M, Wang C, Lan T, Wang T, Wang B. A BAP31 intrabody induces gastric cancer cell death by inhibiting p27
kip1
proteasome degradation. Int J Cancer 2019; 144:2051-2062. [DOI: 10.1002/ijc.31930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Chen
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Haotian Guo
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Haitao Jiang
- Dasan Medichem (Shenyang) R&D center Shenyang Liaoning Province People's Republic of China
| | - Mwichie Namusamba
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Changli Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Tian Lan
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Tianyi Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| | - Bing Wang
- College of Life and Health ScienceNortheastern University Shenyang Liaoning Province People's Republic of China
| |
Collapse
|
39
|
Wang T, Chen J, Hou Y, Yu Y, Wang B. BAP31 deficiency contributes to the formation of amyloid‐β plaques in Alzheimer's disease by reducing the stability of RTN3. FASEB J 2018; 33:4936-4946. [DOI: 10.1096/fj.201801702r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianyi Wang
- College of Life Science and HealthNortheastern University Shenyang China
| | - Jing Chen
- College of Life Science and HealthNortheastern University Shenyang China
| | - Yue Hou
- College of Life Science and HealthNortheastern University Shenyang China
| | - Yang Yu
- College of Life Science and HealthNortheastern University Shenyang China
| | - Bing Wang
- College of Life Science and HealthNortheastern University Shenyang China
| |
Collapse
|
40
|
Abo Elwafa R, Gamaleldin M, Ghallab O. The clinical and prognostic significance of FIS1, SPI1, PDCD7 and Ang2 expression levels in acute myeloid leukemia. Cancer Genet 2018; 233-234:84-95. [PMID: 30555023 DOI: 10.1016/j.cancergen.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The marked heterogeneity of acute myeloid leukemia (AML) renders precisely predicting patient prognosis extremely difficult. Genetic alterations, fusions and mutations, may result in misexpression of key genes in AML. We aimed to investigate the expression patterns of 4 novel genes; FIS1, SPI1, PDCD7 and Ang2 to determine their potential prognostic role in AML patients. METHODS Bone marrow mononuclear cells were analyzed for of FIS1, SPI1, PDCD7 and Ang2 expression levels by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 100 newly diagnosed cytogenetically normal (CN-AML) patients, and 100 non-malignant controls. RESULTS FIS1, SPI1, PDCD7 and Ang2 were significantly overexpressed in CN-AML patients (p < 0.001). Their high expression levels were significantly associated with lower complete remission (CR) rate, shorter relapse-free survival (RFS) and overall survival (OS). On multivariate analysis, high FIS1 expression showed a significant impact on CR response after induction therapy (OR = 88.777, 95% C.I: 2.85-2765.78, p = 0.011) while high PDCD7 appeared to be an independent risk factor for RFS (HR = 5.107, 95% C.I: 1.731-15.066, p = 0.003) and OS (HR = 7.353, 95% C.I: 1.859-29.079, p = 0.004) in CN-AML patients. CONCLUSIONS FIS1 and PDCD7 expression are considered independent risk factors and should be integrated into the current AML stratification system.
Collapse
Affiliation(s)
- Reham Abo Elwafa
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Marwa Gamaleldin
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omar Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
41
|
Ravindran MS. Molecular chaperones: from proteostasis to pathogenesis. FEBS J 2018; 285:3353-3361. [PMID: 29890022 PMCID: PMC7164077 DOI: 10.1111/febs.14576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/12/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Biocon Bristol‐Myers Squibb R&D CenterBiocon Park, Bommasandra Jigani Link RdBengaluruKarnataka560099India
| |
Collapse
|
42
|
Rekha KR, Inmozhi Sivakamasundari R. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Neurochem Res 2018; 43:1947-1962. [PMID: 30141137 DOI: 10.1007/s11064-018-2617-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/21/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Dysfunction of autophagy, mitochondrial dynamics and endoplasmic reticulum (ER) stress are currently considered as major contributing factors in the pathogenesis of Parkinson's disease (PD). Accumulation of oxidatively damaged cytoplasmic organelles and unfolded proteins in the lumen of the ER causes ER stress and it is associated with dopaminergic cell death in PD. Rotenone is a pesticide that selectively kills dopaminergic neurons by a variety of mechanism, has been implicated in PD. Geraniol (GE; 3,7-dimethylocta-trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol occurring in the essential oils of several aromatic plants. In this study, we investigated the protective effect of GE on rotenone-induced mitochondrial dysfunction dependent oxidative stress leads to cell death in SK-N-SH cells. In addition, we assessed the involvement of GE on rotenone-induced dysfunction in autophagy machinery via α-synuclein accumulation induced ER stress. We found that pre-treatment of GE enhanced cell viability, ameliorated intracellular redox, preserved mitochondrial membrane potential and improves the level of mitochondrial complex-1 in rotenone treated SK-N-SH cells. Furthermore, GE diminishes autophagy flux by reduced autophagy markers, and decreases ER stress by reducing α-synuclein expression in SK-N-SH cells. Our results demonstrate that GE possess its neuroprotective effect via reduced rotenone-induced oxidative stress by enhanced antioxidant status and maintain mitochondrial function. Furthermore, GE reduced ER stress and improved autophagy flux in the neuroblastomal SK-N-SH cells. The present study could suggest that GE a novel therapeutic avenue for clinical intervention in neurodegenerative diseases especially for PD.
Collapse
Affiliation(s)
- Karamkolly R Rekha
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India
| | - Ramu Inmozhi Sivakamasundari
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India.
| |
Collapse
|
43
|
Wu Z, Yang F, Jiang S, Sun X, Xu J. Induction of Liver Steatosis in BAP31-Deficient Mice Burdened with Tunicamycin-Induced Endoplasmic Reticulum Stress. Int J Mol Sci 2018; 19:ijms19082291. [PMID: 30081561 PMCID: PMC6121476 DOI: 10.3390/ijms19082291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is highly associated with liver steatosis. B-cell receptor-associated protein 31 (BAP31) has been reported to be involved in ER homeostasis, and plays key roles in hepatic lipid metabolism in high-fat diet-induced obese mice. However, whether BAP31 modulates hepatic lipid metabolism via regulating ER stress is still uncertain. In this study, wild-type and liver-specific BAP31-depleted mice were administrated with ER stress activator of Tunicamycin, the markers of ER stress, liver steatosis, and the underlying molecular mechanisms were determined. BAP31 deficiency increased Tunicamycin-induced hepatic lipid accumulation, aggravated liver dysfunction, and increased the mRNA levels of ER stress markers, including glucose-regulated protein 78 (GRP78), X-box binding protein 1 (XBP1), inositol-requiring protein-1α (IRE1α) and C/EBP homologous protein (CHOP), thus promoting ER stress in vivo and in vitro. Hepatic lipid export via very low-density lipoprotein (VLDL) secretion was impaired in BAP31-depleted mice, accompanied by reduced Apolipoprotein B (APOB) and microsomal triglyceride transfer protein (MTTP) expression. Exogenous lipid clearance was also inhibited, along with impaired gene expression related to fatty acid transportation and fatty acid β-oxidation. Finally, BAP31 deficiency increased Tunicamycin-induced hepatic inflammatory response. These results demonstrate that BAP31 deficiency increased Tunicamycin-induced ER stress, impaired VLDL secretion and exogenous lipid clearance, and reduced fatty acid β-oxidation, which eventually resulted in liver steatosis.
Collapse
Affiliation(s)
- Zhenhua Wu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| | - Fan Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| | - Shan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| | - Xiaoyu Sun
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
44
|
Dang E, Yang S, Song C, Jiang D, Li Z, Fan W, Sun Y, Tao L, Wang J, Liu T, Zhang C, Jin B, Wang J, Yang K. BAP31, a newly defined cancer/testis antigen, regulates proliferation, migration, and invasion to promote cervical cancer progression. Cell Death Dis 2018; 9:791. [PMID: 30022068 PMCID: PMC6052025 DOI: 10.1038/s41419-018-0824-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
Malignant tumors typically undergo an atavistic regression characterized by the overexpression of embryonic genes and proto-oncogenes, including a variety of cancer/testis antigens (CTAs) that are testis-derived and are not expressed or expressed in trace amounts in somatic tissues. Based on this theory, we established a new method to identify unknown CTAs, the spermatogenic cells-specific monoclonal antibody-defined cancer/testis antigen (SADA) method. Using the SADA method, we identified BAP31 as a novel CTA and confirmed that BAP31 expression is associated with progression and metastasis of several cancers, particularly in cervical cancer. We found that BAP31 was significantly upregulated in stage I, II, and III cervical cancer patients and highly correlated with poor clinic outcomes. We further demonstrated that BAP31 regulates cervical cancer cell proliferation by arresting the cell cycle at the G0/G1 stage and that depletion of BAP31 inhibits hyper-proliferation. Moreover, depletion of BAP31 inhibits cervical cancer cell invasion and migration by regulating the expression and subcellular localization of Drebrin, M-RIP, SPECC1L, and Nexilin, and then affect the cytoskeleton assemblage. Finally, the depletion of BAP31 prevents cervical cancer progression and metastasis in vivo. These findings provide a new method for identifying novel CTAs as well as mechanistic insights into how BAP31 regulates cervical cancer hyper-proliferation and metastasis.
Collapse
Affiliation(s)
- Erle Dang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,Department of Dermatology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Shuya Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chaojun Song
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.,School of Life Science, Northwestern Polytechnic University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongbo Jiang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zichao Li
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Wei Fan
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yuanjie Sun
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Liang Tao
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Jing Wang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Tingting Liu
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Chunmei Zhang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jian Wang
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Kun Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
45
|
Kadowaki H, Nishitoh H. Endoplasmic reticulum quality control by garbage disposal. FEBS J 2018; 286:232-240. [PMID: 29923316 DOI: 10.1111/febs.14589] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Various types of intracellular and extracellular stresses disturb homeostasis in the endoplasmic reticulum (ER) and, thus, trigger the ER stress response. Unavoidable and/or prolonged ER stress causes cell toxicity and occasionally cell death. The malfunction or death of irreplaceable cells leads to conformational diseases, including diabetes mellitus, ischemic diseases, metabolic diseases, and neurodegenerative diseases. In the past several decades, many studies have revealed the molecular mechanisms of the ER quality control system. Cells resolve ER stress by promptly and accurately reducing the amount of malfolded proteins. Recent reports have revealed that cells possess several types of ER-related disposal systems, including mRNA decay, proteasomal degradation, and autophagy. The removal of dispensable RNAs, proteins, and organelle parts may enable the effective maintenance of a functional ER. Here, we provide a comprehensive understanding of the ER quality control system by focusing on ER-related garbage disposal systems.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| |
Collapse
|
46
|
Hou X, Wei H, Rajagopalan C, Jiang H, Wu Q, Zaman K, Xie Y, Sun F. Dissection of the Role of VIMP in Endoplasmic Reticulum-Associated Degradation of CFTRΔF508. Sci Rep 2018; 8:4764. [PMID: 29555962 PMCID: PMC5859151 DOI: 10.1038/s41598-018-23284-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/06/2018] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.
Collapse
Affiliation(s)
- Xia Hou
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carthic Rajagopalan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Qingtian Wu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medicine, Jiamusi, Heilongjiang, 154007, China
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Youming Xie
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
47
|
Abstract
Nucleic acid therapeutics are an established class of drugs that enable specific targeting of a gene of interest. This diverse family of drugs includes antisense oligonucleotides, siRNAs, and mRNA replacement therapies, which can elicit both gene repression and activation, primarily at the RNA level. Recent advances in medicinal chemistry have increased drug potency and enhanced delivery and distribution to a broad array of tissue and cell types. A key advantage of nucleic acid therapeutics is in their application to monogenic diseases. Cystic fibrosis (CF) is one such disease that affects ∼70,000 people globally. This severe disease is an excellent candidate for nucleic acid therapies, as it is due to a genetic defect in a single epithelial chloride channel. Although CF affects many tissues, the primary cause of patient mortality is lung disease. Here we review the various nucleic acid therapeutic modalities and their mechanisms of action, the opportunities and challenges associated with application of nucleic acid drugs to the lung pathology of CF, and the current state and prospects for nucleic acid drugs for the treatment of CF.
Collapse
Affiliation(s)
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc. , Carlsbad, California
| |
Collapse
|
48
|
Seo SR, Lee HM, Choi HS, Kim WT, Cho EW, Ryu CJ. Enhanced expression of cell-surface B-cell receptor-associated protein 31 contributes to poor survival of non-small cell lung carcinoma cells. PLoS One 2017; 12:e0188075. [PMID: 29145450 PMCID: PMC5695096 DOI: 10.1371/journal.pone.0188075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum (ER) membrane protein which plays a role as a molecular chaperone for the newly synthesized transmembrane proteins. BAP31 is also an important apoptosis regulator for extrinsic apoptosis induction in the ER membrane. Recent studies have shown that BAP31 is also expressed on the surface of embryonic stem cells. However, the function of cell surface BAP31 (csBAP31) still remains unclarified. In an attempt to search for surface markers on tumorspheres, here, we generated monoclonal antibodies (MAbs) against the sphere cells from the non-small cell lung carcinoma cell (NSCLC) line A549. SP1-B7, one of the MAbs, recognized csBAP31 whose expression was further increased on A549 sphere cells, as compared with A549 adherent cells. To investigate the role of csBAP31 in A549 cells, A549 adherent and sphere cells were stained with annexin V, propidium iodide, and SP1-B7. Interestingly, annexin V-high cells showed increased expression of csBAP31 as compared with annexin V-low cells. Caspase-3/7 activity was also increased in csBAP31-high cells as compared with csBAP31-low cells, suggesting that csBAP31-high cells are more sensitive to apoptosis. To further demonstrate the survival of csBAP31-positive A549 cells, csBAP31-positive and -negative A549 cells were sorted and subjected to the clonogenic survival assay. The colony number of csBAP31-positive A549 cells was decreased by approximately 1.7-fold, as compared that of csBAP31-negative A549 cells, suggesting that csBAP31-positve cells are sensitive to cell death indeed. The results suggest that enhanced expression of csBAP31 contributes to poor survival of NSCLC cells.
Collapse
Affiliation(s)
- Se-Ri Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Won-Tae Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
| | - Eun-Wie Cho
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Antiancer Medicine Development, Sejong University, Gwangjin-gu, Seoul, Korea
- * E-mail:
| |
Collapse
|
49
|
Xu JL, Li LY, Wang YQ, Li YQ, Shan M, Sun SZ, Yu Y, Wang B. Hepatocyte-specific deletion of BAP31 promotes SREBP1C activation, promotes hepatic lipid accumulation, and worsens IR in mice. J Lipid Res 2017; 59:35-47. [PMID: 29113994 DOI: 10.1194/jlr.m077016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Conditional knockout mice with targeted disruption of B-cell associated protein (BAP)31 in adult mouse liver were generated and challenged with a high-fat diet (HFD) for 36 or 96 days and markers of obesity, diabetes, and hepatic steatosis were determined. Mutant mice were indistinguishable from WT littermates, but exhibited increased HFD-induced obesity. BAP31-deletion in hepatocytes increased the expression of SREBP1C and the target genes, including acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1, and increased hepatic lipid accumulation and HFD-induced liver steatosis. Immunoprecipitation assay showed that BAP31 interacts with SREBP1C and insulin-induced gene 1 (INSIG1), and BAP31-deletion reduces INSIG1 expression, suggesting that BAP31 may regulate SREBP1C activity by modulating INSIG1 protein levels. Additionally, BAP31-deletion induced glucose and insulin intolerance, decreased Akt and glycogen synthase kinase 3β phosphorylation, and enhanced hepatic glucose production in mice. Expression of endoplasmic reticulum (ER) stress markers was significantly induced in BAP31-mutant mice. HFD-induced inflammation was aggravated in mutant mice, along with increased c-Jun N-terminal kinase and nuclear factor-κB activation. These findings demonstrate that BAP31-deletion induces SREBP activation and promotes hepatic lipid accumulation, reduces insulin signaling, impairs glucose/insulin tolerance, and increases ER stress and hepatic inflammation, explaining the protective roles of BAP31 in the development of liver steatosis and insulin resistance in HFD-induced obesity in animal models.
Collapse
Affiliation(s)
- Jia-Lin Xu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Li-Ya Li
- Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110169, People's Republic of China
| | - Yan-Qing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Ya-Qi Li
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Mu Shan
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Shi-Zhuo Sun
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Yang Yu
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| | - Bing Wang
- Institutes of Biochemistry and Molecular Biology Northeastern University, Shenyang 110169, People's Republic of China
| |
Collapse
|
50
|
Cho IT, Adelmant G, Lim Y, Marto JA, Cho G, Golden JA. Ascorbate peroxidase proximity labeling coupled with biochemical fractionation identifies promoters of endoplasmic reticulum-mitochondrial contacts. J Biol Chem 2017; 292:16382-16392. [PMID: 28760823 PMCID: PMC5625067 DOI: 10.1074/jbc.m117.795286] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/14/2017] [Indexed: 11/06/2022] Open
Abstract
To maintain cellular homeostasis, subcellular organelles communicate with each other and form physical and functional networks through membrane contact sites coupled by protein tethers. In particular, endoplasmic reticulum (ER)-mitochondrial contacts (EMC) regulate diverse cellular activities such as metabolite exchange (Ca2+ and lipids), intracellular signaling, apoptosis, and autophagy. The significance of EMCs has been highlighted by reports indicating that EMC dysregulation is linked to neurodegenerative diseases. Therefore, obtaining a better understanding of the physical and functional components of EMCs should provide new insights into the pathogenesis of several neurodegenerative diseases. Here, we applied engineered ascorbate peroxidase (APEX) to map the proteome at EMCs in live HEK293 cells. APEX was targeted to the outer mitochondrial membrane, and proximity-labeled proteins were analyzed by stable isotope labeling with amino acids in culture (SILAC)-LC/MS-MS. We further refined the specificity of the proteins identified by combining biochemical subcellular fractionation to the protein isolation method. We identified 405 proteins with a 2.0-fold cutoff ratio (log base 2) in SILAC quantification from replicate experiments. We performed validation screening with a Split-Rluc8 complementation assay that identified reticulon 1A (RTN1A), an ER-shaping protein localized to EMCs as an EMC promoter. Proximity mapping augmented with biochemical fractionation and additional validation methods reported here could be useful to discover other components of EMCs, identify mitochondrial contacts with other organelles, and further unravel their communication.
Collapse
Affiliation(s)
- Il-Taeg Cho
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Guillaume Adelmant
- the Departments of Cancer Biology and Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Youngshin Lim
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Jarrod A Marto
- From the Department of Pathology, Brigham and Women's Hospital, and
- the Departments of Cancer Biology and Pathology, Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Ginam Cho
- From the Department of Pathology, Brigham and Women's Hospital, and
| | - Jeffrey A Golden
- From the Department of Pathology, Brigham and Women's Hospital, and
| |
Collapse
|