1
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
2
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of polycistronic transcription initiation by RNA polymerase II in Trypanosoma brucei. mBio 2024:e0232824. [PMID: 39704500 DOI: 10.1128/mbio.02328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF-mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here, we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP, and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR-containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Base J function in establishing transcriptional silencing, rather than maintenance, is suggested by the maintenance of PTU silencing following the inhibition of J-biosynthesis and subsequent loss of the modified DNA base. Therefore, we show that epigenetic mechanisms exist to regulate gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription.IMPORTANCEThe single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlate with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei. This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Stephen L Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
de Vries I, Adamopoulos A, Kazokaitė-Adomaitienė J, Heidebrecht T, Fish A, Celie PHN, Joosten RP, Perrakis A. JBP1 and JBP3 have conserved structures but different affinity to base-J. J Struct Biol 2024; 217:108161. [PMID: 39674235 DOI: 10.1016/j.jsb.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Base-J (β-D-glucopyranosyloxymethyluracil) is an unusual kinetoplastid-specific DNA modification, recognized by base-J containing DNA (J-DNA) binding proteins JBP1 and JBP3. Recognition of J-DNA by both JBP1 and JBP3 takes place by a conserved J-DNA binding domain (JDBD). Here we show that JDBD-JBP3 has about 1,000-fold weaker affinity to base-J than JDBD-JBP1 and discriminates between J-DNA and unmodified DNA with a factor ∼5, whereas JDBD-JBP1 discriminates with a factor ∼10,000. Comparison of the crystal structures of JDBD-JBP3 we present here, with that of the previously characterized JDBD-JBP1, shows a flexible α5-helix that lacks a positively charged patch in JBP3. Mutations removing this positive charge in JDBD-JBP1, resulted in decreased binding affinity relative to wild-type JDBD-JBP1, indicating this patch is involved in DNA binding. We suggest that the α5-helix might rearrange upon JBP1 binding to J-DNA stabilizing the complex. This work contributes to our understanding of how JBPs bind to this unique DNA modification, which may contribute to identifying potential drug targets to end the base-J dependent parasite life cycle.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Athanassios Adamopoulos
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Justina Kazokaitė-Adomaitienė
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex Fish
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Patrick H N Celie
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Robbie P Joosten
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry at the Netherlands Cancer Institute - Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Grünebast J, Lorenzen S, Clos J. Genome-wide quantification of polycistronic transcription in Leishmania major. mBio 2024:e0224124. [PMID: 39584812 DOI: 10.1128/mbio.02241-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Leishmania major is a human-pathogenic, obligate parasite and the etiological agent of the most prevalent, cutaneous form of leishmaniasis, which is an important neglected, tropical disease with ~1.2 million new infections per year. Leishmania, and the whole order Trypanosomatida, are early eukaryotes with highly diverged gene expression and regulation pathways, setting them apart from their mammalian hosts and from most other eukaryotes. Using precision run-on sequence analysis, we performed a genome-wide mapping and density analysis of RNA polymerases in isolated nuclei of the protozoan parasite Leishmania major. We map transcription initiation sites at divergent strand switch regions and head-tail regions within the chromosomes and correlate them with known sites of chromatin modifications. We confirm continuous, polycistronic RNA synthesis in all RNA polymerase II-dependent gene arrays but find small varying RNA polymerase activities in polycistronic transcription units (PTUs), excluding gene-specific transcription regulation, but not PTU-specific variations. Lastly, we find evidence for transcriptional pausing of all three RNA polymerase classes, hinting at a possible mechanism of transcriptional regulation.IMPORTANCELeishmania spp. are pathogens of humans and animals and cause one of the most important neglected tropical diseases. Regulation of gene expression in Leishmania but also in the related Trypanosoma is radically different from all eukaryotic model organisms, dispensing with regulated, gene-specific transcription, and relying instead on highly regulated translation. Our work sheds light on the initiation, elongation, and termination of transcription, maps unidirectional, polycistronic transcription units, provides evidence for transcriptional pausing at or near starting points of RNA synthesis, and quantifies the varying transcription rates of the polycistronic transcription units. Our results will further the understanding of these important pathogens and should provide a valuable resource for researchers in the field of eukaryotic microbiology.
Collapse
Affiliation(s)
- Janne Grünebast
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Infection Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Clos
- Leishmania Genetics Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
5
|
Li C, Li Y, Wang Y, Meng X, Shi X, Zhang Y, Liang N, Huang H, Li Y, Zhou H, Xu J, Xu W, Chen H. Characterization of the enzyme for 5-hydroxymethyluridine production and its role in silencing transposable elements in dinoflagellates. Proc Natl Acad Sci U S A 2024; 121:e2400906121. [PMID: 39508766 PMCID: PMC11572971 DOI: 10.1073/pnas.2400906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Dinoflagellate chromosomes are extraordinary, as their organization is independent of architectural nucleosomes unlike typical eukaryotes and shows a cholesteric liquid crystal state. 5-hydroxymethyluridine (5hmU) is present at unusually high levels and its function remains an enigma in dinoflagellates chromosomal DNA for several decades. Here, we demonstrate that 5hmU contents vary among different dinoflagellates and are generated through thymidine hydroxylation. Importantly, we identified the enzyme, which is a putative dinoflagellate TET/JBP homolog, catalyzing 5hmU production using both in vivo and in vitro biochemical assays. Based on the near-chromosomal level genome assembly of dinoflagellate Amphidinium carterae, we depicted a comprehensive 5hmU landscape and found that 5hmU loci are significantly enriched in repeat elements. Moreover, inhibition of 5hmU via dioxygenase inhibitor leads to transcriptional activation of 5hmU-marked transposable elements, implying that 5hmU appears to serve as an epigenetic mark for silencing transposon. Together, our results revealed the biogenesis, genome-wide landscape, and molecular function of dinoflagellate 5hmU, providing mechanistic insight into the function of this enigmatic DNA mark.
Collapse
Affiliation(s)
- Chongping Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Ying Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou450000, China
- National Health Commission (NHC) Key Laboratory of Birth Defects Prevention, Zhengzhou450000, China
| | - Xiaoyan Shi
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Yangyi Zhang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Nan Liang
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Hongda Huang
- Institute for Biological Electron Microscopy, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Shenzhen518055, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yue Li
- Institute for Biological Electron Microscopy, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Shenzhen518055, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Hui Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou450000, China
- National Health Commission (NHC) Key Laboratory of Birth Defects Prevention, Zhengzhou450000, China
| | - Wenqi Xu
- Longevity and Aging Institute, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Hao Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong & Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Shenzhen518055, China
| |
Collapse
|
6
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
7
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of bi-directional silencing of RNA Polymerase II polycistronic transcription initiation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600114. [PMID: 38948844 PMCID: PMC11213002 DOI: 10.1101/2024.06.21.600114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and that changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, we show that epigenetic mechanisms, including base J modification, are involved in regulating gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription. IMPORTANCE The single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlates with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei . This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
|
8
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Protein phosphatase PP1 regulation of RNA polymerase II transcription termination and allelic exclusion of VSG genes in trypanosomes. Nucleic Acids Res 2024; 52:6866-6885. [PMID: 38783162 PMCID: PMC11229358 DOI: 10.1093/nar/gkae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, complicating the analysis of PP1 function in termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei and dephosphorylation of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated RPB1 accompanied by readthrough transcription and aberrant transcription of the chromosome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Kieft R, Reynolds D, Sabatini R. Epigenetic regulation of TERRA transcription and metacyclogenesis by base J in Leishmania major. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601056. [PMID: 38979290 PMCID: PMC11230386 DOI: 10.1101/2024.06.27.601056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The hyper-modified DNA base J helps control termination of Pol II transcription at polycistronic transcription units (PTUs) in T. brucei and L. major , allowing epigenetic control of gene expression. The Telomere Repeat-containing RNA (TERRA) is synthesized in T. brucei by Pol I readthrough transcription of a telomeric PTU. While little is understood regarding TERRA synthesis and function, the hyper-modified DNA base J is highly enriched at telomeres in L. major promastigotes. We now show that TERRA is synthesized by Pol II in L. major and loss of base J leads to increased TERRA. For at least one site, the increased TERRA is by Pol II readthrough transcription from an adjacent PTU. Furthermore, Pol II readthrough defects and increased TERRA correlate with increased differentiation of promastigotes to the infectious metacyclic life stage and decreased cell viability. These results help explain the essential nature of base J in Leishmania and provide insight regarding epigenetic control of coding and non-coding RNA expression and parasite development during the life cycle of L. major .
Collapse
|
10
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. Genome Biol 2024; 25:115. [PMID: 38711126 PMCID: PMC11071213 DOI: 10.1186/s13059-024-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew P Swaffer
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
12
|
Zhang Y, Sabatini R. Leishmania PNUTS discriminates between PP1 catalytic subunits through an RVxF-ΦΦ-F motif and polymorphisms in the PP1 C-tail and catalytic domain. J Biol Chem 2023; 299:105432. [PMID: 37926279 PMCID: PMC10731240 DOI: 10.1016/j.jbc.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Phosphoprotein phosphatase 1 (PP1) associates with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF-ΦΦ-F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1-PNUTS and noncanonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N and C terminus for isoform-specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82 and impact of PNUTS on the stability of complex components and function in pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C terminus for JBP3 and Wdr82 association, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating pol II transcription in divergent protozoans where little is understood.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
13
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Protein Phosphatase PP1 Regulation of Pol II Phosphorylation is Linked to Transcription Termination and Allelic Exclusion of VSG Genes and TERRA in Trypanosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563358. [PMID: 37905150 PMCID: PMC10614956 DOI: 10.1101/2023.10.21.563358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, suggesting a unique PP1-independent mechanism of termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei involving dephosphorylation of the C-terminal domain of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated large subunit of Pol II accompanied by readthrough transcription and pervasive transcription of the entire genome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation and production of TERRA RNA. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.
Collapse
|
14
|
Nusse R, Shapiro L. The Lasker-Koshland Special Achievement Award in Medical Science awarded to Piet Borst. Proc Natl Acad Sci U S A 2023; 120:e2311130120. [PMID: 37732755 PMCID: PMC10523591 DOI: 10.1073/pnas.2311130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
These are no ordinary times and Piet Borst is no ordinary scientist. In a world challenged by existential threats such as pandemics, climate change and the consequent upsurge in populism, flagrant disinformation, and the global distrust of science and technology, the statesman scientist is a necessary and rare being. Piet Borst has embraced that role for most of his life while remaining a superb biochemist. Borst is this year's winner of the Lasker-Koshland Special Achievement Award in Medical Science "for research accomplishments and scientific statesmanship that engender the deepest feelings of awe and respect".
Collapse
Affiliation(s)
- Roel Nusse
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA94305-5458
| | - Lucy Shapiro
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA94305-5458
| |
Collapse
|
15
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558303. [PMID: 37781619 PMCID: PMC10541103 DOI: 10.1101/2023.09.18.558303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties were originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
16
|
de Vries I, Ammerlaan D, Heidebrecht T, Celie PH, Geerke DP, Joosten RP, Perrakis A. Distant sequence regions of JBP1 contribute to J-DNA binding. Life Sci Alliance 2023; 6:e202302150. [PMID: 37328191 PMCID: PMC10276184 DOI: 10.26508/lsa.202302150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Base-J (β-D-glucopyranosyloxymethyluracil) is a modified DNA nucleotide that replaces 1% of thymine in kinetoplastid flagellates. The biosynthesis and maintenance of base-J depends on the base-J-binding protein 1 (JBP1) that has a thymidine hydroxylase domain and a J-DNA-binding domain (JDBD). How the thymidine hydroxylase domain synergizes with the JDBD to hydroxylate thymine in specific genomic sites, maintaining base-J during semi-conservative DNA replication, remains unclear. Here, we present a crystal structure of the JDBD including a previously disordered DNA-contacting loop and use it as starting point for molecular dynamics simulations and computational docking studies to propose recognition models for JDBD binding to J-DNA. These models guided mutagenesis experiments, providing additional data for docking, which reveals a binding mode for JDBD onto J-DNA. This model, together with the crystallographic structure of the TET2 JBP1-homologue in complex with DNA and the AlphaFold model of full-length JBP1, allowed us to hypothesize that the flexible JBP1 N-terminus contributes to DNA-binding, which we confirmed experimentally. Α high-resolution JBP1:J-DNA complex, which must involve conformational changes, would however need to be determined experimentally to further understand this unique underlying molecular mechanism that ensures replication of epigenetic information.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Danique Ammerlaan
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick Hn Celie
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robbie P Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Menezes AP, Murillo AM, de Castro CG, Bellini NK, Tosi LRO, Thiemann OH, Elias MC, Silber AM, da Cunha JPC. Navigating the boundaries between metabolism and epigenetics in trypanosomes. Trends Parasitol 2023; 39:682-695. [PMID: 37349193 DOI: 10.1016/j.pt.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.
Collapse
Affiliation(s)
- Ana Paula Menezes
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana Milena Murillo
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Camila Gachet de Castro
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Natalia Karla Bellini
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | - Maria Carolina Elias
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
18
|
Kieft R, Zhang Y, Yan H, Schmitz RJ, Sabatini R. Knockout of protein phosphatase 1 in Leishmania major reveals its role during RNA polymerase II transcription termination. Nucleic Acids Res 2023; 51:6208-6226. [PMID: 37194692 PMCID: PMC10325913 DOI: 10.1093/nar/gkad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The genomes of kinetoplastids are organized into polycistronic transcription units that are flanked by a modified DNA base (base J, beta-D-glucosyl-hydroxymethyluracil). Previous work established a role of base J in promoting RNA polymerase II (Pol II) termination in Leishmania major and Trypanosoma brucei. We recently identified a PJW/PP1 complex in Leishmania containing a J-binding protein (JBP3), PP1 phosphatase 1, PP1 interactive-regulatory protein (PNUTS) and Wdr82. Analyses suggested the complex regulates transcription termination by recruitment to termination sites via JBP3-base J interactions and dephosphorylation of proteins, including Pol II, by PP1. However, we never addressed the role of PP1, the sole catalytic component, in Pol II transcription termination. We now demonstrate that deletion of the PP1 component of the PJW/PP1 complex in L. major, PP1-8e, leads to readthrough transcription at the 3'-end of polycistronic gene arrays. We show PP1-8e has in vitro phosphatase activity that is lost upon mutation of a key catalytic residue and associates with PNUTS via the conserved RVxF motif. Additionally, purified PJW complex with associated PP1-8e, but not complex lacking PP1-8e, led to dephosphorylation of Pol II, suggesting a direct role of PNUTS/PP1 holoenzymes in regulating transcription termination via dephosphorylating Pol II in the nucleus.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
19
|
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, Lemogo L, Sarrasin M, Stretenowich P, Tripathi P, Yazaki E, Nara T, Henrissat B, Lang BF, Gray MW, Williams TA, Lukeš J, Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 2023; 21:99. [PMID: 37143068 PMCID: PMC10161547 DOI: 10.1186/s12915-023-01563-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.
Collapse
Affiliation(s)
- Matus Valach
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| | - Sandrine Moreira
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Anna Nenarokova
- School of Biological Sciences, University of Bristol, Bristol, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tom Batstone
- School of Biological Sciences, University of Bristol, Bristol, UK
- Present address: High Performance Computing Centre, Bristol, UK
| | - Pascal Lapébie
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Lionnel Lemogo
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Environment Climate Change Canada, Dorval, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Paul Stretenowich
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
- Present address: Canadian Centre for Computational Genomics; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Pragya Tripathi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Euki Yazaki
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), Hirosawa, Wako, Saitama, Japan
| | - Takeshi Nara
- Laboratory of Molecular Parasitology, Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki City, Fukushima, Japan
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
- Present address: DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology, Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Searle B, Müller M, Carell T, Kellett A. Third-Generation Sequencing of Epigenetic DNA. Angew Chem Int Ed Engl 2023; 62:e202215704. [PMID: 36524852 DOI: 10.1002/anie.202215704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The discovery of epigenetic bases has revolutionised the understanding of disease and development. Among the most studied epigenetic marks are cytosines covalently modified at the 5 position. In order to gain insight into their biological significance, the ability to determine their spatiotemporal distribution within the genome is essential. Techniques for sequencing on "next-generation" platforms often involve harsh chemical treatments leading to sample degradation. Third-generation sequencing promises to further revolutionise the field by providing long reads, enabling coverage of highly repetitive regions of the genome or structural variants considered unmappable by next generation sequencing technology. While the ability of third-generation platforms to directly detect epigenetic modifications is continuously improving, at present chemical or enzymatic derivatisation presents the most convenient means of enhancing reliability. This Review presents techniques available for the detection of cytosine modifications on third-generation platforms.
Collapse
Affiliation(s)
- Bethany Searle
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Andrew Kellett
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
21
|
Behind Base J: The Roles of JBP1 and JBP2 on Trypanosomatids. Pathogens 2023; 12:pathogens12030467. [PMID: 36986389 PMCID: PMC10057400 DOI: 10.3390/pathogens12030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
β-D-glucopyranosyloxymethiluracil (Base J) is a modified thymidine base found in kinetoplastids and some related organisms. Interestingly, Base J distribution into the genome can vary depending on the organism and its life stage. Base J is reported to be found mostly at telomeric repeats, on inactive variant surface glycoproteins (VSG’s) expression sites (e.g., T. brucei), in RNA polymerase II termination sites and sub-telomeric regions (e.g., Leishmania). This hypermodified nucleotide is synthesized in two steps with the participation of two distinct thymidine hydroxylases, J-binding protein 1 and 2 (JBP1 and JBP2, respectively) and a β-glucosyl transferase. A third J-binding protein, named JBP3, was recently identified as part of a multimeric complex. Although its structural similarities with JBP1, it seems not to be involved in J biosynthesis but to play roles in gene expression regulation in trypanosomatids. Over the years, with the characterization of JBP1 and JBP2 mutant lines, Base J functions have been targeted and shone a light on that matter, showing genus-specific features. This review aims to explore Base J’s reported participation as a regulator of RNA polymerase II transcription termination and to summarize the functional and structural characteristics and similarities of the remarkable JBP proteins in pathogenic trypanosomatids.
Collapse
|
22
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
23
|
Gómez-Liñán C, Gómez-Díaz E, Ceballos-Pérez G, Fernández-Moya S, Estévez AM. The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes. Nucleic Acids Res 2022; 50:12251-12265. [PMID: 36454008 PMCID: PMC9757043 DOI: 10.1093/nar/gkac1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
In-depth analysis of the transcriptomes of several model organisms has revealed that genomes are pervasively transcribed, giving rise to an abundance of non-canonical and mainly antisense RNA polymerase II-derived transcripts that are produced from almost any genomic context. Pervasive RNAs are degraded by surveillance mechanisms, but the repertoire of proteins that control the fate of these non-productive transcripts is still incomplete. Trypanosomes are single-celled eukaryotes that show constitutive RNA polymerase II transcription and in which initiation and termination of transcription occur at a limited number of sites per chromosome. It is not known whether pervasive transcription exists in organisms with unregulated RNA polymerase II activity, and which factors could be involved in the process. We show here that depletion of RBP33 results in overexpression of ∼40% of all annotated genes in the genome, with a marked accumulation of sense and antisense transcripts derived from silenced regions. RBP33 loss does not result in a significant increase in chromatin accessibility. Finally, we have found that transcripts that increase in abundance upon RBP33 knockdown are significantly more stable in RBP33-depleted trypanosomes, and that the exosome complex is responsible for their degradation. Our results provide strong evidence that RBP33 dampens non-productive transcription in trypanosomes.
Collapse
Affiliation(s)
- Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Sandra M Fernández-Moya
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- To whom correspondence should be addressed. Tel: +34 958 181652; Fax: +34 958 181632;
| |
Collapse
|
24
|
Localization of Epigenetic Markers in Leishmania Chromatin. Pathogens 2022; 11:pathogens11080930. [PMID: 36015053 PMCID: PMC9413968 DOI: 10.3390/pathogens11080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotes use histone variants and post-translation modifications (PTMs), as well as DNA base modifications, to regulate DNA replication/repair, chromosome condensation, and gene expression. Despite the unusual organization of their protein-coding genes into large polycistronic transcription units (PTUs), trypanosomatid parasites also employ a “histone code” to control these processes, but the details of this epigenetic code are poorly understood. Here, we present the results of experiments designed to elucidate the distribution of histone variants and PTMs over the chromatin landscape of Leishmania tarentolae. These experiments show that two histone variants (H2A.Z and H2B.V) and three histone H3 PTMs (H3K4me3, H3K16ac, and H3K76me3) are enriched at transcription start sites (TSSs); while a histone variant (H3.V) and the trypanosomatid-specific hyper-modified DNA base J are located at transcription termination sites (TTSs). Reduced nucleosome density was observed at all TTSs and TSSs for RNA genes transcribed by RNA polymerases I (RNAPI) or RNAPIII; as well as (to a lesser extent) at TSSs for the PTUs transcribed by RNAPII. Several PTMs (H3K4me3, H3K16ac H3K20me2 and H3K36me3) and base J were enriched at centromeres, while H3K50ac was specifically associated with the periphery of these centromeric sequences. These findings significantly expand our knowledge of the epigenetic markers associated with transcription, DNA replication and/or chromosome segregation in these early diverging eukaryotes and will hopefully lay the groundwork for future studies to elucidate how they control these fundamental processes.
Collapse
|
25
|
Kaszecki E, Kennedy V, Shah M, Maciszewski K, Karnkowska A, Linton E, Ginger ML, Farrow S, Ebenezer TE. Meeting Report: Euglenids in the Age of Symbiogenesis: Origins, Innovations, and Prospects, November 8-11, 2021. Protist 2022; 173:125894. [PMID: 35772300 DOI: 10.1016/j.protis.2022.125894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Mahfuzur Shah
- Department of Cell Biology, Metabolism and Systems Biology, Noblegen Inc., 2140 East Bank Dr, Peterborough, ON, Canada
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Eric Linton
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859, USA
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Scott Farrow
- Department of Cell Biology, Metabolism and Systems Biology, Noblegen Inc., 2140 East Bank Dr, Peterborough, ON, Canada
| | - ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
26
|
Chakrapani A, Ruiz‐Larrabeiti O, Pohl R, Svoboda M, Krásný L, Hocek M. Glucosylated 5‐Hydroxymethylpyrimidines as Epigenetic DNA Bases Regulating Transcription and Restriction Cleavage. Chemistry 2022; 28:e202200911. [DOI: 10.1002/chem.202200911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Aswathi Chakrapani
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science Charles University Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Olatz Ruiz‐Larrabeiti
- Dept. of Microbial Genetics and Gene Expression Institute of Microbiology Czech Academy of Sciences 14220 Prague 4 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Svoboda
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Libor Krásný
- Dept. of Microbial Genetics and Gene Expression Institute of Microbiology Czech Academy of Sciences 14220 Prague 4 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science Charles University Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
27
|
Zhao Y, Huang F, Zou Z, Bi Y, Yang Y, Zhang C, Liu Q, Shang D, Yan Y, Ju X, Mei S, Xie P, Li X, Tian M, Tan S, Lu H, Han Z, Liu K, Zhang Y, Liang J, Liang Z, Zhang Q, Chang J, Liu WJ, Feng C, Li T, Zhang MQ, Wang X, Gao GF, Liu Y, Jin N, Jiang C. Avian influenza viruses suppress innate immunity by inducing trans-transcriptional readthrough via SSU72. Cell Mol Immunol 2022; 19:702-714. [PMID: 35332300 PMCID: PMC9151799 DOI: 10.1038/s41423-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022] Open
Abstract
Innate immunity plays critical antiviral roles. The highly virulent avian influenza viruses (AIVs) H5N1, H7N9, and H5N6 can better escape host innate immune responses than the less virulent seasonal H1N1 virus. Here, we report a mechanism by which transcriptional readthrough (TRT)-mediated suppression of innate immunity occurs post AIV infection. By using cell lines, mouse lungs, and patient PBMCs, we showed that genes on the complementary strand (“trans” genes) influenced by TRT were involved in the disruption of host antiviral responses during AIV infection. The trans-TRT enhanced viral lethality, and TRT abolishment increased cell viability and STAT1/2 expression. The viral NS1 protein directly bound to SSU72, and degradation of SSU72 induced TRT. SSU72 overexpression reduced TRT and alleviated mouse lung injury. Our results suggest that AIVs infection induce TRT by reducing SSU72 expression, thereby impairing host immune responses, a molecular mechanism acting through the NS1-SSU72-trans-TRT-STAT1/2 axis. Thus, restoration of SSU72 expression might be a potential strategy for preventing AIV pandemics.
Collapse
|
28
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
29
|
Alexander LT, Lepore R, Kryshtafovych A, Adamopoulos A, Alahuhta M, Arvin AM, Bomble YJ, Böttcher B, Breyton C, Chiarini V, Chinnam NB, Chiu W, Fidelis K, Grinter R, Gupta GD, Hartmann MD, Hayes CS, Heidebrecht T, Ilari A, Joachimiak A, Kim Y, Linares R, Lovering AL, Lunin VV, Lupas AN, Makbul C, Michalska K, Moult J, Mukherjee PK, Nutt W(S, Oliver SL, Perrakis A, Stols L, Tainer JA, Topf M, Tsutakawa SE, Valdivia‐Delgado M, Schwede T. Target highlights in CASP14: Analysis of models by structure providers. Proteins 2021; 89:1647-1672. [PMID: 34561912 PMCID: PMC8616854 DOI: 10.1002/prot.26247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.
Collapse
Affiliation(s)
- Leila T. Alexander
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| | | | | | - Athanassios Adamopoulos
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Ann M. Arvin
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Yannick J. Bomble
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | - Valerio Chiarini
- Program in Structural Biology and BiophysicsInstitute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Naga babu Chinnam
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
| | - Wah Chiu
- Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
- BioengineeringStanford University School of MedicineStanfordCaliforniaUSA
- Division of Cryo‐EM and Bioimaging SSRLSLAC National Accelerator LaboratoryMenlo ParkCaliforniaUSA
| | | | - Rhys Grinter
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Gagan D. Gupta
- Radiation Biology & Health Sciences DivisionBhabha Atomic Research CentreMumbaiIndia
| | - Marcus D. Hartmann
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Biomolecular Science and Engineering ProgramUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Tatjana Heidebrecht
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of the National Research Council of Italy (CNR)RomeItaly
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Romain Linares
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural BiologyGrenobleFrance
| | | | - Vladimir V. Lunin
- Bioscience Center, National Renewable Energy LaboratoryGoldenColoradoUSA
| | - Andrei N. Lupas
- Department of Protein EvolutionMax Planck Institute for Developmental BiologyTübingenGermany
| | - Cihan Makbul
- Biocenter and Rudolf Virchow Center, Julius‐Maximilians Universität WürzburgWürzburgGermany
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John Moult
- Department of Cell Biology and Molecular GeneticsInstitute for Bioscience and Biotechnology Research, University of MarylandRockvilleMarylandUSA
| | - Prasun K. Mukherjee
- Nuclear Agriculture & Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
| | - William (Sam) Nutt
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - Stefan L. Oliver
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Anastassis Perrakis
- Oncode Institute and Division of BiochemistryNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of ChicagoChicagoIllinoisUSA
- X‐ray Science DivisionArgonne National Laboratory, Structural Biology CenterArgonneIllinoisUSA
| | - John A. Tainer
- Department of Molecular and Cellular OncologyThe University of Texas M.D. Anderson Cancer CenterHoustonTexasUSA
- Department of Cancer BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College LondonLondonUK
- Centre for Structural Systems Biology, Leibniz‐Institut für Experimentelle VirologieHamburgGermany
| | - Susan E. Tsutakawa
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | | - Torsten Schwede
- Biozentrum, University of BaselBaselSwitzerland
- Computational Structural BiologySIB Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
30
|
Kim HS. Genetic Interaction Between Site-Specific Epigenetic Marks and Roles of H4v in Transcription Termination in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:744878. [PMID: 34722526 PMCID: PMC8551723 DOI: 10.3389/fcell.2021.744878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
In Trypanosoma brucei, genes are assembled in polycistronic transcription units (PTUs). Boundaries of PTUs are designated transcription start sites and transcription termination sites (TTSs). Messenger RNAs are generated by trans-splicing and polyadenylation of precursor RNAs, and regulatory information in the 3' un-translated region (UTR), rather than promoter activity/sequence-specific transcription factors, controls mRNA levels. Given this peculiar genome structure, special strategies must be utilized to control transcription in T. brucei. TTSs are deposition sites for three non-essential chromatin factors-two of non-canonical histone variants (H3v and H4v) and a DNA modification (base J, which is a hydroxyl-glucosyl dT). This association generated the hypothesis that these three chromatin marks define a transcription termination site in T. brucei. Using a panel of null mutants lacking H3v, H4v, and base J, here I show that H4v is a major sign for transcription termination at TTSs. While having a secondary function at TTSs, H3v is important for monoallelic transcription of telomeric antigen genes. The simultaneous absence of both histone variants leads to proliferation and replication defects, which are exacerbated by the J absence, accompanied by accumulation of sub-G1 population. Thus, I propose that the coordinated actions of H3v, H4v, and J provide compensatory mechanisms for each other in chromatin organization, transcription, replication, and cell-cycle progression.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
31
|
Abstract
Leishmania donovani is a parasitic protist that causes the lethal Kala-azar fever in India and East Africa. Gene expression in Leishmania is regulated by gene copy number variation and inducible translation while RNA synthesis initiates at a small number of sites per chromosome and proceeds through polycistronic transcription units, precluding a gene-specific regulation (C. Clayton and M. Shapira, Mol Biochem Parasitol 156:93–101, 2007, https://doi.org/10.1016/j.molbiopara.2007.07.007). Here, we analyze the dynamics of chromatin structure in both life cycle stages of the parasite and find evidence for an additional, epigenetic gene regulation pathway in this early branching eukaryote. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis (J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Nat Methods 10:1213–1218, 2013, https://doi.org/10.1038/nmeth.2688) predominantly shows euchromatin at transcription start regions in fast-growing promastigotes, but mostly heterochromatin in the slowly proliferating amastigotes, the mammalian stage, reflecting a previously shown increase of histone synthesis in the latter stage. IMPORTANCELeishmania parasites are important pathogens with a global impact and cause poverty-related illness and death. They are devoid of classic cis- and trans-acting transcription regulators but use regulated translation and gene copy number variations to adapt to hosts and environments. In this work, we show that transcription start regions present as open euchromatin in fast-growing insect stages but as less-accessible heterochromatin in the slowly proliferating amastigote stage, indicating an epigenetic control of gene accessibility in this early branching eukaryotic pathogen. This finding should stimulate renewed interest in the control of RNA synthesis in Leishmania and related parasites.
Collapse
|
32
|
Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00356-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
33
|
Detection of Genomic Uracil Patterns. Int J Mol Sci 2021; 22:ijms22083902. [PMID: 33918885 PMCID: PMC8070346 DOI: 10.3390/ijms22083902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
The appearance of uracil in the deoxyuridine moiety of DNA is among the most frequently occurring genomic modifications. Three different routes can result in genomic uracil, two of which do not require specific enzymes: spontaneous cytosine deamination due to the inherent chemical reactivity of living cells, and thymine-replacing incorporation upon nucleotide pool imbalances. There is also an enzymatic pathway of cytosine deamination with multiple DNA (cytosine) deaminases involved in this process. In order to describe potential roles of genomic uracil, it is of key importance to utilize efficient uracil-DNA detection methods. In this review, we provide a comprehensive and critical assessment of currently available uracil detection methods with special focus on genome-wide mapping solutions. Recent developments in PCR-based and in situ detection as well as the quantitation of genomic uracil are also discussed.
Collapse
|
34
|
Abstract
Unlike most other eukaryotes, Leishmania and other trypanosomatid protozoa have largely eschewed transcriptional control of gene expression, relying instead on posttranscriptional regulation of mRNAs derived from polycistronic transcription units (PTUs). In these parasites, a novel modified nucleotide base (β-d-glucopyranosyloxymethyluracil) known as J plays a critical role in ensuring that transcription termination occurs only at the end of each PTU, rather than at the polyadenylation sites of individual genes. To further understand the biology of J-associated processes, we used tandem affinity purification (TAP) tagging and mass spectrometry to reveal proteins that interact with the glucosyltransferase performing the final step in J synthesis. These studies identified four proteins reminiscent of subunits in the PTW/PP1 complex that controls transcription termination in higher eukaryotes. Moreover, bioinformatic analyses identified the DNA-binding subunit of Leishmania PTW/PP1 as a novel J-binding protein (JBP3), which is also part of another complex containing proteins with domains suggestive of a role in chromatin modification/remodeling. Additionally, JBP3 associates (albeit transiently and/or indirectly) with the trypanosomatid equivalent of the PAF1 complex involved in the regulation of transcription in other eukaryotes. The downregulation of JBP3 expression levels in Leishmania resulted in a substantial increase in transcriptional readthrough at the 3′ end of most PTUs. We propose that JBP3 recruits one or more of these complexes to the J-containing regions at the end of PTUs, where they halt the progression of the RNA polymerase. This decoupling of transcription termination from the splicing of individual genes enables the parasites’ unique reliance on polycistronic transcription and posttranscriptional regulation of gene expression. IMPORTANCELeishmania parasites cause a variety of serious human diseases, with no effective vaccine and emerging resistance to current drug therapy. We have previously shown that a novel DNA base called J is critical for transcription termination at the ends of the polycistronic gene clusters that are a hallmark of Leishmania and related trypanosomatids. Here, we describe a new J-binding protein (JBP3) associated with three different protein complexes that are reminiscent of those involved in the control of transcription in other eukaryotes. However, the parasite complexes have been reprogrammed to regulate transcription and gene expression in trypanosomatids differently than in the mammalian hosts, providing new opportunities to develop novel chemotherapeutic treatments against these important pathogens.
Collapse
|
35
|
Abstract
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Collapse
|
36
|
Morea EGO, Vasconcelos EJR, Alves CDS, Giorgio S, Myler PJ, Langoni H, Azzalin CM, Cano MIN. Exploring TERRA during Leishmania major developmental cycle and continuous in vitro passages. Int J Biol Macromol 2021; 174:573-586. [PMID: 33548324 DOI: 10.1016/j.ijbiomac.2021.01.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Telomeres from different eukaryotes, including trypanosomatids, are transcribed into TERRA noncoding RNAs, crucial in regulating chromatin deposition and telomere length. TERRA is transcribed from the C-rich subtelomeric strand towards the 3'-ends of the telomeric array. Using bioinformatics, we confirmed the presence of subtelomeric splice acceptor sites at all L. major chromosome ends. Splice leader sequences positioned 5' upstream of L. major chromosomes subtelomeres were then mapped using SL-RNA-Seq libraries constructed from three independent parasite life stages and helped confirm TERRA expression from several chromosomes ends. Northern blots and RT-qPCR validated the results showing that L. major TERRA is processed by trans-splicing and polyadenylation coupled reactions. The number of transcripts varied with the parasite's life stage and continuous passages, being more abundant in the infective forms. However, no putative subtelomeric promoters involved in TERRA's transcriptional regulation were detected. In contrast, the observed changes in parasite's telomere length during development, suggest that differences in telomeric base J levels may control TERRA transcription in L. major. Also, TERRA-R loops' detection, mainly in the infective forms, was suggestive of TERRA's involvement in telomere protection. Therefore, Leishmania TERRA shares conserved features with other eukaryotes and advances new telomere specific functions in a Public Health-impacting parasite.
Collapse
Affiliation(s)
- Edna Gicela Ortiz Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Cristiane de Santis Alves
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, State University of Campinas, UNICAMP, Brazil
| | - Peter J Myler
- Department of Global Health and Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, United States of America
| | - Helio Langoni
- Department of Public Health, Veterinary Medical School, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
37
|
Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254. [PMID: 33508020 PMCID: PMC7872254 DOI: 10.1371/journal.ppat.1009254] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.
Collapse
Affiliation(s)
- Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
38
|
Roosendaal J, Heidebrecht T, Rosing H, Perrakis A, Beijnen JH. Quantitative LC-MS/MS analysis of 5-hydroxymethyl-2′-deoxyuridine to monitor the biological activity of J-binding protein. Anal Biochem 2020; 610:113930. [DOI: 10.1016/j.ab.2020.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022]
|
39
|
Rijo-Ferreira F, Takahashi JS. Sleeping Sickness: A Tale of Two Clocks. Front Cell Infect Microbiol 2020; 10:525097. [PMID: 33134186 PMCID: PMC7562814 DOI: 10.3389/fcimb.2020.525097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Sleeping sickness is caused by a eukaryotic unicellular parasite known to infect wild animals, cattle, and humans. It causes a fatal disease that disrupts many rhythmic physiological processes, including daily rhythms of hormonal secretion, temperature regulation, and sleep, all of which are under circadian (24-h) control. In this review, we summarize research on sleeping sickness parasite biology and the impact it has on host health. We also consider the possible evolutionary advantages of sleep and circadian deregulation for the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
40
|
Damasceno JD, Marques CA, Beraldi D, Crouch K, Lapsley C, Obonaga R, Tosi LR, McCulloch R. Genome duplication in Leishmania major relies on persistent subtelomeric DNA replication. eLife 2020; 9:58030. [PMID: 32897188 PMCID: PMC7511235 DOI: 10.7554/elife.58030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
DNA replication is needed to duplicate a cell’s genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania’s genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.
Collapse
Affiliation(s)
- Jeziel Dener Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Ricardo Obonaga
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Ro Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
41
|
The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms 2020; 8:microorganisms8081252. [PMID: 32824654 PMCID: PMC7463849 DOI: 10.3390/microorganisms8081252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Cytosine C5 methylation is an important epigenetic control mechanism in a wide array of eukaryotic organisms and generally carried out by proteins of the C-5 DNA methyltransferase family (DNMTs). In several protozoans, the status of this mechanism remains elusive, such as in Leishmania, the causative agent of the disease leishmaniasis in humans and a wide array of vertebrate animals. In this work, we showed that the Leishmania donovani genome contains a C-5 DNA methyltransferase (DNMT) from the DNMT6 subfamily, whose function is still unclear, and verified its expression at the RNA level. We created viable overexpressor and knock-out lines of this enzyme and characterized their genome-wide methylation patterns using whole-genome bisulfite sequencing, together with promastigote and amastigote control lines. Interestingly, despite the DNMT6 presence, we found that methylation levels were equal to or lower than 0.0003% at CpG sites, 0.0005% at CHG sites, and 0.0126% at CHH sites at the genomic scale. As none of the methylated sites were retained after manual verification, we conclude that there is no evidence for DNA methylation in this species. We demonstrated that this difference in DNA methylation between the parasite (no detectable DNA methylation) and the vertebrate host (DNA methylation) allowed enrichment of parasite vs. host DNA using methyl-CpG-binding domain columns, readily available in commercial kits. As such, we depleted methylated DNA from mixes of Leishmania promastigote and amastigote DNA with human DNA, resulting in average Leishmania:human enrichments from 62× up to 263×. These results open a promising avenue for unmethylated DNA enrichment as a pre-enrichment step before sequencing Leishmania clinical samples.
Collapse
|
42
|
Hammam E, Ananda G, Sinha A, Scheidig-Benatar C, Bohec M, Preiser PR, Dedon PC, Scherf A, Vembar SS. Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Res 2020; 48:184-199. [PMID: 31777939 PMCID: PMC6943133 DOI: 10.1093/nar/gkz1093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2–0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01–0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.
Collapse
Affiliation(s)
- Elie Hammam
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France.,Sorbonne Université, Ecole doctorale Complexité du Vivant ED515, F-75005 Paris, France
| | - Guruprasad Ananda
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Christine Scheidig-Benatar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Mylene Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Scherf
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Shruthi S Vembar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| |
Collapse
|
43
|
Kieft R, Zhang Y, Marand AP, Moran JD, Bridger R, Wells L, Schmitz RJ, Sabatini R. Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes. PLoS Genet 2020; 16:e1008390. [PMID: 32084124 PMCID: PMC7055916 DOI: 10.1371/journal.pgen.1008390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/04/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alexandre P. Marand
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jose Dagoberto Moran
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert Bridger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome. Sci Rep 2019; 9:19314. [PMID: 31848418 PMCID: PMC6917789 DOI: 10.1038/s41598-019-55826-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous. Here, employing reversed-phase HPLC coupled with sensitive mass spectrometry, we demonstrated that, unlike 5caC, both 5hmC and 5fC are detectable in non-negligible quantities in the DNA of a conifer, Norway spruce. Remarkably, whereas 5hmC content of spruce DNA is approximately 100-fold lower relative to human colorectal carcinoma cells, the levels of both - 5fC and a thymine base modification, 5-hydroxymethyluracil, are comparable in these systems. We confirmed the presence of modified DNA bases by immunohistochemistry in Norway spruce buds based on peroxidase-conjugated antibodies and tyramide signal amplification. Our results reveal the presence of specific range of noncanonical DNA bases in conifer genomes implying potential roles for these modifications in plant development and homeostasis.
Collapse
|
45
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
46
|
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A. The domain architecture of the protozoan protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem 2019; 294:12815-12825. [PMID: 31292194 DOI: 10.1074/jbc.ra119.007393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (β-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as Trypanosoma and Leishmania JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity in vitro but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1. Small-angle X-ray scattering (SAXS) experiments on JBP1 and JDBD in the presence or absence of J-DNA and on Δ-JDBD enabled us to generate low-resolution three-dimensional models. We conclude that Δ-JDBD, and not the N-terminal region of JBP1 alone, is a distinct folding unit. Our SAXS-based model supports the notion that binding of JDBD specifically to J-DNA can facilitate T hydroxylation 12-14 bp downstream on the complementary strand of the J-recognition site. We postulate that insertion of the JDBD module into the Δ-JDBD scaffold during evolution provided a mechanism that synergized J recognition and T hydroxylation, ensuring inheritance of base J in specific sequence patterns following DNA replication in kinetoplastid parasites.
Collapse
Affiliation(s)
- Athanassios Adamopoulos
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen Roosendaal
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter G Touw
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109
| | - Jos Beijnen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
47
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|
48
|
Liu ZJ, Martínez Cuesta S, van Delft P, Balasubramanian S. Sequencing abasic sites in DNA at single-nucleotide resolution. Nat Chem 2019; 11:629-637. [PMID: 31209299 PMCID: PMC6589398 DOI: 10.1038/s41557-019-0279-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/30/2019] [Indexed: 12/27/2022]
Abstract
In DNA, the loss of a nucleobase by hydrolysis generates an abasic site. Formed as a result of DNA damage, as well as a key intermediate during the base excision repair pathway, abasic sites are frequent DNA lesions that can lead to mutations and strand breaks. Here we present snAP-seq, a chemical approach that selectively exploits the reactive aldehyde moiety at abasic sites to reveal their location within DNA at single-nucleotide resolution. Importantly, the approach resolves abasic sites from other aldehyde functionalities known to exist in genomic DNA. snAP-seq was validated on synthetic DNA and then applied to two separate genomes. We studied the distribution of thymine modifications in the Leishmania major genome by enzymatically converting these modifications into abasic sites followed by abasic site mapping. We also applied snAP-seq directly to HeLa DNA to provide a map of endogenous abasic sites in the human genome.
Collapse
Affiliation(s)
- Zheng J Liu
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sergio Martínez Cuesta
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
50
|
Afrin F, Khan I, Hemeg HA. Leishmania-Host Interactions-An Epigenetic Paradigm. Front Immunol 2019; 10:492. [PMID: 30967861 PMCID: PMC6438953 DOI: 10.3389/fimmu.2019.00492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases, for which no vaccines exist. Chemotherapy is hampered by limited efficacy coupled with development of resistance and other side effects. Leishmania parasites elude the host defensive mechanisms by modulating their surface proteins as well as dampening the host's immune responses. The parasites use the conventional RNA polymerases peculiarly under different environmental cues or pressures such as the host's milieu or the drugs. The mechanisms that restructure post-translational modifications are poorly understood but altered epigenetic histone modifications are believed to be instrumental in influencing the chromatin remodeling in the parasite. Interestingly, the parasite also modulates gene expression of the hosts, thereby hijacking or dampening the host immune response. Epigenetic factor such as DNA methylation of cytosine residues has been incriminated in silencing of macrophage-specific genes responsible for defense against these parasites. Although there is dearth of information regarding the epigenetic alterations-mediated pathogenesis in these parasites and the host, the unique epigenetic marks may represent targets for potential anti-leishmanial drug candidates. This review circumscribes the epigenetic changes during Leishmania infection, and the epigenetic modifications they enforce upon the host cells to ensure a safe haven. The non-coding micro RNAs as post-transcriptional regulators and correlates of wound healing and toll-like receptor signaling, as well as prognostic biomarkers of therapeutic failure and healing time are also explored. Finally, we highlight the recent advances on how the epigenetic perturbations may impact leishmaniasis vaccine development as biomarkers of safety and immunogenicity.
Collapse
Affiliation(s)
- Farhat Afrin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Inbesat Khan
- Rajiv Gandhi Technical University, Bhopal, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| |
Collapse
|