1
|
Noell CR, Ma TC, Jiang R, McKinley SA, Hancock WO. DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626575. [PMID: 39677767 PMCID: PMC11642903 DOI: 10.1101/2024.12.03.626575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Bidirectional cargo transport by kinesin and dynein is essential for cell viability and defects are linked to neurodegenerative diseases. The competition between motors is described as a tug-of-war, and computational modeling suggests that the load-dependent off-rate is the strongest determinant of which motor 'wins'. Optical tweezer experiments find that the load-dependent detachment sensitivity of transport kinesins is kinesin-3 > kinesin-2 > kinesin-1. However, when kinesin-dynein pairs were analyzed in vitro, all three kinesin families competed nearly equally well against dynein. One possible explanation is that vertical forces inherent to the large trapping beads enhance motor detachment. Because intracellular cargo range from ~30 nm to > 1000 nm, vertical forces in vivo are expected to range from near zero to larger than the horizontal forces of transport. To investigate detachment rates against loads oriented parallel to the microtubule, we created a DNA tensiometer comprising a DNA entropic spring that is attached to the microtubule on one end and a kinesin motor on the other. Surprisingly, kinesin dissociation rates at stall were slower than detachment rates during unloaded runs, a property termed a catch-bond. A plausible mechanism, supported by stochastic simulations, is that the strong-to-weak transition in the kinesin cycle is slowed with load. We also find evidence that the long run lengths of kinesin-3 (KIF1A) result from the concatenation of multiple short runs connected by diffusive episodes. The finding that kinesins form catch-bonds under horizontal loads necessitates a reevaluation of the role of cargo geometry in kinesin-dynein bidirectional transport.
Collapse
Affiliation(s)
- Crystal R. Noell
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rui Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A. McKinley
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - William O. Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Gong Z, Wu T, Zhao Y, Guo J, Zhang Y, Li B, Li Y. Intercellular Tunneling Nanotubes as Natural Biophotonic Conveyors. ACS NANO 2024. [PMID: 39630614 DOI: 10.1021/acsnano.4c12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Tunneling nanotubes (TNTs), submicrometer membranous channels that bridge and connect distant cells, play a pivotal role in intercellular communication. Organelle transfer within TNTs is crucial in regulating cell growth, signal transmission, and disease progression. However, precise control over individual organelle transport within TNTs remains elusive. In this study, we introduce an optical technique that harnesses TNTs as biophotonic conveyors for the directional transport of individual organelles between cells. By utilizing near-infrared light propagating along the TNTs, optical forces were exerted on the organelles, enabling their active transport in a predetermined direction and at a controlled velocity. As a potential application, TNT conveyors were employed to inhibit mitochondrial hijacking from immune cells to cancer cells, thereby activating immune cells and suppressing cancer cell growth. Furthermore, neural modulation was achieved by transporting mitochondria and neurotransmitter-containing vesicles between neurons via TNT conveyors and axonal conveyors, respectively. This study presents a robust and precise approach to immune activation and neural regulation through the manipulation of organelle transfer at the subcellular level.
Collapse
Affiliation(s)
- Zhiyong Gong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tianli Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| |
Collapse
|
3
|
Zhou C, Wu YK, Ishidate F, Fujiwara TK, Kengaku M. Nesprin-2 coordinates opposing microtubule motors during nuclear migration in neurons. J Cell Biol 2024; 223:e202405032. [PMID: 39115447 PMCID: PMC11310688 DOI: 10.1083/jcb.202405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.
Collapse
Affiliation(s)
- Chuying Zhou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - You Kure Wu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Dasgupta M, Guha S, Armbruster L, Das D, Mitra MK. Nature of barriers determines first passage times in heterogeneous media. SOFT MATTER 2024; 20:8353-8362. [PMID: 39318347 DOI: 10.1039/d4sm00908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Intuition suggests that passage times across a region increase with the number of barriers along the path. Can this fail depending on the nature of the barrier? To probe this fundamental question, we exactly solve for the first passage time in general d-dimensions for diffusive transport through a spatially patterned array of obstacles - either entropic or energetic, depending on the nature of the obstacles. For energetic barriers, we show that first passage times vary non-monotonically with the number of barriers, while for entropic barriers it increases monotonically. This non-monotonicity for energetic barriers is further reflected in the behaviour of effective diffusivity as well. We then design a simple experiment where a robotic bug navigates in a heterogeneous environment through a spatially patterned array of obstacles to validate our predictions. Finally, using numerical simulations, we show that this non-monotonic behaviour for energetic barriers is general and extends to even super-diffusive transport.
Collapse
Affiliation(s)
| | - Sougata Guha
- Department of Physics, IIT Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | | | - Dibyendu Das
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| | - Mithun K Mitra
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| |
Collapse
|
5
|
Anjur-Dietrich MI, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Dev Cell 2024; 59:2429-2442.e4. [PMID: 38866013 DOI: 10.1016/j.devcel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
6
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2024:10.1038/s41589-024-01694-2. [PMID: 39090313 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Nasrin SR, Yamashita T, Ikeguchi M, Torisawa T, Oiwa K, Sada K, Kakugo A. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. NANO LETTERS 2024. [PMID: 38916205 DOI: 10.1021/acs.nanolett.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.
Collapse
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| | - Takefumi Yamashita
- Department of Physical University, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| |
Collapse
|
8
|
Kumar P, Chaudhury D, Sanghavi P, Meghna A, Mallik R. Phosphatidic acid-dependent recruitment of microtubule motors to spherical supported lipid bilayers for in vitro motility assays. Cell Rep 2024; 43:114252. [PMID: 38771696 PMCID: PMC11220796 DOI: 10.1016/j.celrep.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/01/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Motor proteins transport diverse membrane-bound vesicles along microtubules inside cells. How specific lipids, particularly rare lipids, on the membrane recruit and activate motors is poorly understood. To address this, we prepare spherical supported lipid bilayers (SSLBs) consisting of a latex bead enclosed within a membrane of desired lipid composition. SSLBs containing phosphatidic acid recruit dynein when incubated with Dictyostelium fractions but kinesin-1 when incubated with rat brain fractions. These SSLBs allow controlled biophysical investigation of membrane-bound motors along with their regulators at the single-cargo level in vitro. Optical trapping of single SSLBs reveals that motor-specific inhibitors can "lock" a motor to a microtubule, explaining the paradoxical arrest of overall cargo transport by such inhibitors. Increasing their size causes SSLBs to reverse direction more frequently, relevant to how large cargoes may navigate inside cells. These studies are relevant to understand how unidirectional or bidirectional motion of vesicles might be generated.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Dwiteeya Chaudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Paulomi Sanghavi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Apurwa Meghna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Fellows AD, Bruntraeger M, Burgold T, Bassett AR, Carter AP. Dynein and dynactin move long-range but are delivered separately to the axon tip. J Cell Biol 2024; 223:e202309084. [PMID: 38407313 PMCID: PMC10896695 DOI: 10.1083/jcb.202309084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Axonal transport is essential for neuronal survival. This is driven by microtubule motors including dynein, which transports cargo from the axon tip back to the cell body. This function requires its cofactor dynactin and regulators LIS1 and NDEL1. Due to difficulties imaging dynein at a single-molecule level, it is unclear how this motor and its regulators coordinate transport along the length of the axon. Here, we use a neuron-inducible human stem cell line (NGN2-OPTi-OX) to endogenously tag dynein components and visualize them at a near-single molecule regime. In the retrograde direction, we find that dynein and dynactin can move the entire length of the axon (>500 µm). Furthermore, LIS1 and NDEL1 also undergo long-distance movement, despite being mainly implicated with the initiation of dynein transport. Intriguingly, in the anterograde direction, dynein/LIS1 moves faster than dynactin/NDEL1, consistent with transport on different cargos. Therefore, neurons ensure efficient transport by holding dynein/dynactin on cargos over long distances but keeping them separate until required.
Collapse
Affiliation(s)
- Alexander D. Fellows
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Thomas Burgold
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrew P. Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
11
|
Maiti A, Koyano Y, Kitahata H, Dey KK. Activity-induced diffusion recovery in crowded colloidal suspensions. Phys Rev E 2024; 109:054607. [PMID: 38907422 DOI: 10.1103/physreve.109.054607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/12/2024] [Indexed: 06/24/2024]
Abstract
We show that the forces generated by active enzyme molecules are strong enough to influence the dynamics of their surroundings under artificial crowded environments. We measured the behavior of polymer microparticles in a quasi-two-dimensional system under aqueous environment, at various area fraction values of particles. In the presence of enzymatic activity, not only was the diffusion of the suspended particles enhanced at shorter time-scales, but the system also showed a transition from subdiffusive to diffusive dynamics at longer time-scale limits. Similar observations were also recorded with enzyme-functionalized microparticles. Brownian dynamics simulations have been performed to support the experimental observations.
Collapse
Affiliation(s)
- Arnab Maiti
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| | - Yuki Koyano
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
12
|
Janakaloti Narayanareddy BR, Allipeta NR, Allard J, Gross SP. A new method to experimentally quantify dynamics of initial protein-protein interactions. Commun Biol 2024; 7:311. [PMID: 38472292 PMCID: PMC10933273 DOI: 10.1038/s42003-024-05914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Cells run on initiation of protein-protein interactions, which are dynamically tuned spatially and temporally to modulate cellular events. This tuning can be physical, such as attaching the protein to a cargo or protein complex, thereby altering its diffusive properties, or modulating the distance between protein pairs, or chemical, by altering the proteins' conformations (e.g., nucleotide binding state of an enzyme, post-translational modification of a protein, etc.). Because a dynamic and changing subset of proteins in the cell could be in any specific state, ensemble measurements are not ideal-to untangle which of the factors are important, and how, we need single-molecule measurements. Experimentally, until now we have not had good tools to precisely measure initiation of such protein-protein interactions at the single-molecule level. Here, we develop a new method to measure dynamics of initial protein-protein interactions, allowing measurement of how properties such as the distance between proteins, and their tethered length can modulate the rate of interactions. In addition to precise measurement distance dependent motor-MT rebinding dynamics, we demonstrate the use of a dithered optical trap to measure dynamic motor-MT interactions and further discuss the possibilities of this technique being applicable to other systems.
Collapse
Affiliation(s)
| | - Nathan Reddy Allipeta
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Arcadia High School, Arcadia, CA, USA
| | - Jun Allard
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Steven P Gross
- Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
13
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
14
|
Sundararajan N, Guha S, Muhuri S, Mitra MK. Theoretical analysis of cargo transport by catch bonded motors in optical trapping assays. SOFT MATTER 2024; 20:566-577. [PMID: 38126708 DOI: 10.1039/d3sm01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dynein motors exhibit catch bonding, where the unbinding rate of the motors from microtubule filaments decreases with increasing opposing load. The implications of this catch bond on the transport properties of dynein-driven cargo are yet to be fully understood. In this context, optical trapping assays constitute an important means of accurately measuring the forces generated by molecular motor proteins. We investigate, using theory and stochastic simulations, the transport properties of cargo transported by catch bonded dynein molecular motors - both singly and in teams - in a harmonic potential, which mimics the variable force experienced by cargo in an optical trap. We estimate the biologically relevant measures of first passage time - the time during which the cargo remains bound to the microtubule and detachment force - the force at which the cargo unbinds from the microtubule, using both two-dimensional and one-dimensional force balance frameworks. Our results suggest that even for cargo transported by a single motor, catch bonding may play a role depending on the force scale which marks the onset of the catch bond. By comparing with experimental measurements on single dynein-driven transport, we estimate realistic bounds of this catch bond force scale. Generically, catch bonding results in increased persistent motion, and can also generate non-monotonic behaviour of first passage times. For cargo transported by multiple motors, emergent collective effects due to catch bonding can result in non-trivial re-entrant phenomena wherein average first passage times and detachment forces exhibit non-monotonic behaviour as a function of the stall force and the motor velocity.
Collapse
Affiliation(s)
- Naren Sundararajan
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | - Sudipto Muhuri
- Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| |
Collapse
|
15
|
Tripathy SK, Shamroukh HS, Fares P, Bezih Z, Akhtar M, Kondapalli KC. Acidification of the phagosome orchestrates the motor forces directing its transport. Biochem Biophys Res Commun 2023; 689:149236. [PMID: 37979328 DOI: 10.1016/j.bbrc.2023.149236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Phagosomes are dynamic organelles formed by macrophages to capture and destroy microbial pathogens. Phagosome transport from the cell periphery to the perinuclear region, is essential for fusion with lysosomes and the elimination of pathogens. Molecular motors, kinesin and dynein, generate opposing forces, transporting the phagosome away from and towards the lysosome, respectively. Luminal acidification plays a crucial role in determining the net directional movement of the phagosome. The mechanics of this regulation are not known. In this study, we used the sodium proton exchanger NHE9 to selectively modulate phagosomal acidification in macrophages. We then investigated its impact on the mechanical properties of kinesin and dynein motors through optical trapping experiments. We observed a negative correlation between the tenacity of dynein motors and pH under high resistive forces. Reduced luminal acidification impaired generation of dynein cooperative forces, which are crucial for transporting the phagosome to the lysosome. Conversely, the kinesin-powered motility of phagosomes is enabled by a decrease in phagosomal acidification. Given the various methods pathogens employ to limit phagosomal acidification, our findings are highly significant in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Suvranta K Tripathy
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA.
| | - Habiba S Shamroukh
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA
| | - Perla Fares
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA
| | - Zeinab Bezih
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA
| | - Muaaz Akhtar
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA
| | - Kalyan C Kondapalli
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI, 48128, USA.
| |
Collapse
|
16
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
D'Souza AI, Grover R, Monzon GA, Santen L, Diez S. Vesicles driven by dynein and kinesin exhibit directional reversals without regulators. Nat Commun 2023; 14:7532. [PMID: 37985763 PMCID: PMC10662051 DOI: 10.1038/s41467-023-42605-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Intracellular vesicular transport along cytoskeletal filaments ensures targeted cargo delivery. Such transport is rarely unidirectional but rather bidirectional, with frequent directional reversals owing to the simultaneous presence of opposite-polarity motors. So far, it has been unclear whether such complex motility pattern results from the sole mechanical interplay between opposite-polarity motors or requires regulators. Here, we demonstrate that a minimal system, comprising purified Dynein-Dynactin-BICD2 (DDB) and kinesin-3 (KIF16B) attached to large unilamellar vesicles, faithfully reproduces in vivo cargo motility, including runs, pauses, and reversals. Remarkably, opposing motors do not affect vesicle velocity during runs. Our computational model reveals that the engagement of a small number of motors is pivotal for transitioning between runs and pauses. Taken together, our results suggest that motors bound to vesicular cargo transiently engage in a tug-of-war during pauses. Subsequently, stochastic motor attachment and detachment events can lead to directional reversals without the need for regulators.
Collapse
Affiliation(s)
- Ashwin I D'Souza
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Rahul Grover
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
| | - Gina A Monzon
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany
- Center for Biophysics, Department of Physics, Saarland University, Saarbrücken, Germany
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, Saarbrücken, Germany.
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
18
|
Kwan Z, Paulose Nadappuram B, Leung MM, Mohagaonkar S, Li A, Amaradasa KS, Chen J, Rothery S, Kibreab I, Fu J, Sanchez-Alonso JL, Mansfield CA, Subramanian H, Kondrashov A, Wright PT, Swiatlowska P, Nikolaev VO, Wojciak-Stothard B, Ivanov AP, Edel JB, Gorelik J. Microtubule-Mediated Regulation of β 2AR Translation and Function in Failing Hearts. Circ Res 2023; 133:944-958. [PMID: 37869877 PMCID: PMC10635332 DOI: 10.1161/circresaha.123.323174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND β1AR (beta-1 adrenergic receptor) and β2AR (beta-2 adrenergic receptor)-mediated cyclic adenosine monophosphate signaling has distinct effects on cardiac function and heart failure progression. However, the mechanism regulating spatial localization and functional compartmentation of cardiac β-ARs remains elusive. Emerging evidence suggests that microtubule-dependent trafficking of mRNP (messenger ribonucleoprotein) and localized protein translation modulates protein compartmentation in cardiomyocytes. We hypothesized that β-AR compartmentation in cardiomyocytes is accomplished by selective trafficking of its mRNAs and localized translation. METHODS The localization pattern of β-AR mRNA was investigated using single molecule fluorescence in situ hybridization and subcellular nanobiopsy in rat cardiomyocytes. The role of microtubule on β-AR mRNA localization was studied using vinblastine, and its effect on receptor localization and function was evaluated with immunofluorescent and high-throughput Förster resonance energy transfer microscopy. An mRNA protein co-detection assay identified plausible β-AR translation sites in cardiomyocytes. The mechanism by which β-AR mRNA is redistributed post-heart failure was elucidated by single molecule fluorescence in situ hybridization, nanobiopsy, and high-throughput Förster resonance energy transfer microscopy on 16 weeks post-myocardial infarction and detubulated cardiomyocytes. RESULTS β1AR and β2AR mRNAs show differential localization in cardiomyocytes, with β1AR found in the perinuclear region and β2AR showing diffuse distribution throughout the cell. Disruption of microtubules induces a shift of β2AR transcripts toward the perinuclear region. The close proximity between β2AR transcripts and translated proteins suggests that the translation process occurs in specialized, precisely defined cellular compartments. Redistribution of β2AR transcripts is microtubule-dependent, as microtubule depolymerization markedly reduces the number of functional receptors on the membrane. In failing hearts, both β1AR and β2AR mRNAs are redistributed toward the cell periphery, similar to what is seen in cardiomyocytes undergoing drug-induced detubulation. This suggests that t-tubule remodeling contributes to β-AR mRNA redistribution and impaired β2AR function in failing hearts. CONCLUSIONS Asymmetrical microtubule-dependent trafficking dictates differential β1AR and β2AR localization in healthy cardiomyocyte microtubules, underlying the distinctive compartmentation of the 2 β-ARs on the plasma membrane. The localization pattern is altered post-myocardial infarction, resulting from transverse tubule remodeling, leading to distorted β2AR-mediated cyclic adenosine monophosphate signaling.
Collapse
MESH Headings
- Rats
- Animals
- In Situ Hybridization, Fluorescence
- Heart Failure/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Myocardial Infarction/metabolism
- Myocytes, Cardiac/metabolism
- Cyclic AMP/metabolism
- Receptors, Adrenergic, beta-1/metabolism
- Microtubules/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Adenosine Monophosphate/metabolism
- Adenosine Monophosphate/pharmacology
Collapse
Affiliation(s)
- Zoe Kwan
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Binoy Paulose Nadappuram
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, United Kingdom (B.P.N.)
| | - Manton M. Leung
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom (M.M.L.)
| | - Sanika Mohagaonkar
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ao Li
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Kumuthu S. Amaradasa
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Ji Chen
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Stephen Rothery
- FILM Facility, Imperial College London, United Kingdom (S.R.)
| | - Iyobel Kibreab
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jiarong Fu
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Jose L. Sanchez-Alonso
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Catherine A. Mansfield
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | | | - Alexander Kondrashov
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, United Kingdom (A.K.)
| | - Peter T. Wright
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, United Kingdom (P.T.W.)
| | - Pamela Swiatlowska
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center, Hamburg-Eppendorf, Germany (H.S., V.O.N.)
| | - Beata Wojciak-Stothard
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| | - Aleksandar P. Ivanov
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry (Z.K., B.P.N., A.P.I., J.B.E.), Imperial College London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute (Z.K., S.M., A.L., K.S.A., J.C., I.K., J.F., J.L.S.-A., C.A.M., P.S., B.W.-S., P.T.W., J.G.), Imperial College London, United Kingdom
| |
Collapse
|
19
|
Yu Y, Zhang Z, Yu Y. Timing of Phagosome Maturation Depends on Their Transport Switching from Actin to Microtubule Tracks. J Phys Chem B 2023; 127:9312-9322. [PMID: 37871280 PMCID: PMC10759163 DOI: 10.1021/acs.jpcb.3c05647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phagosomes, specialized membrane compartments responsible for digesting internalized pathogens, undergo sequential dynamic and biochemical changes as they mature from nascent phagosomes to degradative phagolysosomes. Maturation of phagosomes depends on their transport along actin filaments and microtubules. However, the specific quantitative relationship between the biochemical transformation and transport dynamics remains poorly characterized. The autonomous nature of phagosomes, moving and maturing at different rates, makes understanding this relationship challenging. Addressing this challenge, in this study we engineered particle sensors to image and quantify single phagosomes' maturation. We found that as phagosomes move from the actin cortex to microtubule tracks, the timing of their actin-to-microtubule transition governs the duration of the early phagosome stage before acquiring degradative capacities. Prolonged entrapment of phagosomes in the actin cortex extends the early phagosome stage by delaying the dissociation of early endosome markers and phagosome acidification. Conversely, a shortened transition from actin- to microtubule-based movements causes the opposite effect on phagosome maturation. These results suggest that the actin- and microtubule-based transport of phagosomes functions like a "clock" to coordinate the timing of biochemical events during phagosome maturation, which is crucial for effective pathogen degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
20
|
Chang C, Zheng T, Nettesheim G, Song H, Cho C, Crespi S, Shubeita G. On the use of thermal forces to probe kinesin's response to force. Front Mol Biosci 2023; 10:1260914. [PMID: 38028555 PMCID: PMC10644364 DOI: 10.3389/fmolb.2023.1260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023] Open
Abstract
The stepping dynamics of cytoskeletal motor proteins determines the dynamics of cargo transport. In its native cellular environment, a molecular motor is subject to forces from several sources including thermal forces and forces ensuing from the interaction with other motors bound to the same cargo. Understanding how the individual motors respond to these forces can allow us to predict how they move their cargo when part of a team. Here, using simulation, we show that details of how the kinesin motor responds to small assisting forces-which, at the moment, are not experimentally constrained-can lead to significant changes in cargo dynamics. Using different models of the force-dependent detachment probability of the kinesin motor leads to different predictions on the run-length of the cargo they carry. These differences emerge from the thermal forces acting on the cargo and transmitted to the motor through the motor tail that tethers the motor head to the microtubule. We show that these differences appear for cargo carried by individual motors or motor teams, and use our findings to propose the use of thermal forces as a probe of kinesin's response to force in this otherwise inaccessible force regime.
Collapse
Affiliation(s)
- Chuan Chang
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tiantian Zheng
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Guilherme Nettesheim
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Hayoung Song
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Changhyun Cho
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuele Crespi
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Shubeita
- Physics Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Nakamura H, Rho E, Lee CT, Itoh K, Deng D, Watanabe S, Razavi S, Matsubayashi HT, Zhu C, Jung E, Rangamani P, Watanabe S, Inoue T. ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization. Cell Rep 2023; 42:113089. [PMID: 37734382 PMCID: PMC10872831 DOI: 10.1016/j.celrep.2023.113089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kyoto University Hakubi Center for Advanced Research, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; Kyoto University Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Katsura Int'tech Center, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan.
| | - Elmer Rho
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kie Itoh
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daqi Deng
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Satoshi Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shiva Razavi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T Matsubayashi
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cuncheng Zhu
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Eleanor Jung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shigeki Watanabe
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Cochard A, Safieddine A, Combe P, Benassy M, Weil D, Gueroui Z. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization. EMBO J 2023; 42:e114106. [PMID: 37724036 PMCID: PMC10577640 DOI: 10.15252/embj.2023114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023] Open
Abstract
The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes. This targeting mostly occurs through the active transport of the condensate scaffolds, which leads to localized nucleation of phase-separated condensates. Then, programming the condensates to recruit specific mRNAs is able to shift the localization of these mRNAs toward the cell periphery or the centrosomes. Our method opens novel perspectives for examining the role of RNA localization as a driver of cellular functions.
Collapse
Affiliation(s)
- Audrey Cochard
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Adham Safieddine
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Pauline Combe
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| | - Marie‐Noëlle Benassy
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris‐Seine (IBPS), Laboratoire de Biologie du DéveloppementParisFrance
| | - Zoher Gueroui
- Department of Chemistry, École Normale SupérieurePSL University, Sorbonne Université, CNRSParisFrance
| |
Collapse
|
23
|
Anjur-Dietrich MI, Hererra VG, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Clustering of cortical dynein regulates the mechanics of spindle orientation in human mitotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557210. [PMID: 37745442 PMCID: PMC10515834 DOI: 10.1101/2023.09.11.557210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I. Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J. Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J. Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
24
|
Ma TC, Gicking AM, Feng Q, Hancock WO. Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs. Biophys J 2023; 122:3299-3313. [PMID: 37464742 PMCID: PMC10465704 DOI: 10.1016/j.bpj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Intracellular transport is propelled by kinesin and cytoplasmic dynein motors that carry membrane-bound vesicles and organelles bidirectionally along microtubule tracks. Much is known about these motors at the molecular scale, but many questions remain regarding how kinesin and dynein cooperate and compete during bidirectional cargo transport at the cellular level. The goal of the present study was to use a stochastic stepping model constructed by using published load-dependent properties of kinesin-1 and dynein-dynactin-BicD2 (DDB) to identify specific motor properties that determine the speed, directionality, and transport dynamics of a cargo carried by one kinesin and one dynein motor. Model performance was evaluated by comparing simulations to recently published experiments of kinesin-DDB pairs connected by complementary oligonucleotide linkers. Plotting the instantaneous velocity distributions from kinesin-DDB experiments revealed a single peak centered around zero velocity. In contrast, velocity distributions from simulations displayed a central peak around 100 nm/s, along with two side peaks corresponding to the unloaded kinesin and DDB velocities. We hypothesized that frequent motor detachment events and relatively slow motor reattachment rates resulted in periods in which only one motor is attached. To investigate this hypothesis, we varied specific model parameters and compared the resulting instantaneous velocity distributions, and we confirmed this systematic investigation using a machine-learning approach that minimized the residual sum of squares between the experimental and simulation velocity distributions. The experimental data were best recapitulated by a model in which the kinesin and dynein stall forces are matched, the motor detachment rates are independent of load, and the kinesin-1 reattachment rate is 50 s-1. These results provide new insights into motor dynamics during bidirectional transport and put forth hypotheses that can be tested by future experiments.
Collapse
Affiliation(s)
- Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Allison M Gicking
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Qingzhou Feng
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
25
|
Ayres CM, Corcelli SA, Baker BM. The Energetic Landscape of Catch Bonds in TCR Interfaces. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:325-332. [PMID: 37459192 PMCID: PMC10361606 DOI: 10.4049/jimmunol.2300121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 07/20/2023]
Abstract
Recognition of peptide/MHC complexes by αβ TCRs has traditionally been viewed through the lens of conventional receptor-ligand theory. Recent work, however, has shown that TCR recognition and T cell signaling can be profoundly influenced and tuned by mechanical forces. One outcome of applied force is the catch bond, where TCR dissociation rates decrease (half-lives increase) when limited force is applied. Although catch bond behavior is believed to be widespread in biology, its counterintuitive nature coupled with the difficulties of describing mechanisms at the structural level have resulted in considerable mystique. In this review, we demonstrate that viewing catch bonds through the lens of energy landscapes, barriers, and the ensuing reaction rates can help demystify catch bonding and provide a foundation on which atomic-level TCR catch bond mechanisms can be built.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Steve A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
26
|
Sleigh JN, Villarroel-Campos D, Surana S, Wickenden T, Tong Y, Simkin RL, Vargas JNS, Rhymes ER, Tosolini AP, West SJ, Zhang Q, Yang XL, Schiavo G. Boosting peripheral BDNF rescues impaired in vivo axonal transport in CMT2D mice. JCI Insight 2023; 8:e157191. [PMID: 36928301 PMCID: PMC10243821 DOI: 10.1172/jci.insight.157191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Gain-of-function mutations in the housekeeping gene GARS1, which lead to the expression of toxic versions of glycyl-tRNA synthetase (GlyRS), cause the selective motor and sensory pathology characterizing Charcot-Marie-Tooth disease (CMT). Aberrant interactions between GlyRS mutants and different proteins, including neurotrophin receptor tropomyosin receptor kinase receptor B (TrkB), underlie CMT type 2D (CMT2D); however, our pathomechanistic understanding of this untreatable peripheral neuropathy remains incomplete. Through intravital imaging of the sciatic nerve, we show that CMT2D mice displayed early and persistent disturbances in axonal transport of neurotrophin-containing signaling endosomes in vivo. We discovered that brain-derived neurotrophic factor (BDNF)/TrkB impairments correlated with transport disruption and overall CMT2D neuropathology and that inhibition of this pathway at the nerve-muscle interface perturbed endosome transport in wild-type axons. Accordingly, supplementation of muscles with BDNF, but not other neurotrophins, completely restored physiological axonal transport in neuropathic mice. Together, these findings suggest that selectively targeting muscles with BDNF-boosting therapies could represent a viable therapeutic strategy for CMT2D.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| | - Tahmina Wickenden
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Jose Norberto S. Vargas
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
| | | | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, and
- UK Dementia Research Institute, University College London (UCL), London, United Kingdom
| |
Collapse
|
27
|
Geyer VF, Diez S. Horizontal Magnetic Tweezers to Directly Measure the Force-Velocity Relationship for Multiple Kinesin Motors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300558. [PMID: 37035988 DOI: 10.1002/smll.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Transport of intracellular cargo along cytoskeletal filaments is often achieved by the concerted action of multiple motor molecules. While single-molecule studies have provided profound insight into the mechano-chemical principles and force generation of individual motors, studies on multi-motor systems are less advanced. Here, a horizontal magnetic-tweezers setup is applied, capable of producing up to 150 pN of horizontal force onto 2.8 µm superparamagnetic beads, to motor-propelled cytoskeletal filaments. It is found that kinesin-1 driven microtubules decorated with individual beads display frequent transitions in their gliding velocities which we attribute to dynamic changes in the number of engaged motors. Applying defined temporal force-ramps the force-velocity relationship is directly measured for multi-motor transport. It is found that the stall forces of individual motors are approximately additive and collective backward motion of the transport system under super-stall forces is observed. The magnetic-tweezers apparatus is expected to be readily applicable to a wide range of molecular and cellular motility assays.
Collapse
Affiliation(s)
- Veikko F Geyer
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstraße 18, 01307, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| |
Collapse
|
28
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
29
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
30
|
Sanghavi P, Rai A, Mallik R. In Vivo Trapping of Latex Bead Phagosomes for Quantitative Force Measurements. Methods Mol Biol 2023; 2623:187-200. [PMID: 36602687 DOI: 10.1007/978-1-0716-2958-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optical trapping of organelles inside cells is a powerful technique for directly measuring the forces generated by motor proteins when they are transporting the organelle in the form of a "cargo". Such experiments provide an understanding of how multiple motors (similar or dissimilar) function in their endogenous environment. Here we describe the use of latex bead phagosomes ingested by macrophage cells as a model cargo for optical trap-based force measurements. A protocol for quantitative force measurements of microtubule-based motors (dynein and kinesins) inside macrophage cells is provided.
Collapse
Affiliation(s)
- Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
32
|
The ubiquitous microtubule-associated protein 4 (MAP4) controls organelle distribution by regulating the activity of the kinesin motor. Proc Natl Acad Sci U S A 2022; 119:e2206677119. [PMID: 36191197 PMCID: PMC9565364 DOI: 10.1073/pnas.2206677119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of organelle transport by molecular motors along the cytoskeletal microtubules is central to maintaining cellular functions. Here, we show that the ubiquitous tau-related microtubule-associated protein 4 (MAP4) can bias the bidirectional transport of organelles toward the microtubule minus-ends. This is concurrent with MAP4 phosphorylation, mediated by the kinase GSK3β. We demonstrate that MAP4 achieves this bias by tethering the cargo to the microtubules, allowing it to impair the force generation of the plus-end motor kinesin-1. Consistent with this mechanism, MAP4 physically interacts with dynein and dynactin and, when phosphorylated, associates with the cargo-motor complex through its projection domain. Its phosphorylation coincides with the perinuclear accumulation of organelles, a phenotype that is rescued by abolishing the cargo-microtubule MAP4 tether or by the pharmacological inhibition of dynein, confirming the ability of kinesin to inch along, albeit inefficiently, in the presence of phosphorylated MAP4. These findings have broad biological significance because of the ubiquity of MAP4 and the involvement of GSK3β in multiple diseases, more specifically in cancer, where the MAP4-dependent redistribution of organelles may be prevalent in cancer cells, as we demonstrate here for mitochondria in lung carcinoma epithelial cells.
Collapse
|
33
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
34
|
Shukla S, Troitskaia A, Swarna N, Maity BK, Tjioe M, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR. High-throughput force measurement of individual kinesin-1 motors during multi-motor transport. NANOSCALE 2022; 14:12463-12475. [PMID: 35980233 PMCID: PMC9983033 DOI: 10.1039/d2nr01701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule in vitro. We find that kinesins primarily exerted less than 1 pN force, even while the microtubule is bypassing artificial obstacles of 20-100 nanometer size. Occasionally, individual forces increase upon encountering obstacles, although at other times they do not, with the cargo continuing in a directional manner. Our high-throughput technique, which can measure forces by many motors simultaneously, is expected to be useful for many different types of molecular motors.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nikhila Swarna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Barun Kumar Maity
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marco Tjioe
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Yann R Chemla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul R Selvin
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
35
|
Català-Castro F, Schäffer E, Krieg M. Exploring cell and tissue mechanics with optical tweezers. J Cell Sci 2022; 135:jcs259355. [PMID: 35942913 DOI: 10.1242/jcs.259355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular and tissue biosystems emerge from the assembly of their constituent molecules and obtain a set of specific material properties. To measure these properties and understand how they influence cellular function is a central goal of mechanobiology. From a bottoms-up, physics or engineering point-of-view, such systems are a composition of basic mechanical elements. However, the sheer number and dynamic complexity of them, including active molecular machines and their emergent properties, makes it currently intractable to calculate how biosystems respond to forces. Because many diseases result from an aberrant mechanotransduction, it is thus essential to measure this response. Recent advances in the technology of optical tweezers have broadened their scope from single-molecule applications to measurements inside complex cellular environments, even within tissues and animals. Here, we summarize the basic optical trapping principles, implementations and calibration procedures that enable force measurements using optical tweezers directly inside cells of living animals, in combination with complementary techniques. We review their versatility to manipulate subcellular organelles and measure cellular frequency-dependent mechanics in the piconewton force range from microseconds to hours. As an outlook, we address future challenges to fully unlock the potential of optical tweezers for mechanobiology.
Collapse
Affiliation(s)
- Frederic Català-Castro
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| | - Erik Schäffer
- Cellular Nanoscience, ZMBP, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Krieg
- Neurophotonics and Mechanical Systems Biology, ICFO, Institut de Ciències Fotòniques, 08860 Castelldefels, Spain
| |
Collapse
|
36
|
Omori T, Munakata S, Ishikawa T. Self-sustaining oscillation of two axonemal microtubules based on a stochastic bonding model between microtubules and dynein. Phys Rev E 2022; 106:014402. [PMID: 35974562 DOI: 10.1103/physreve.106.014402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The motility of cilia and flagella plays important physiological roles, and there has been a great deal of research on the mechanisms underlying the motility of molecular motors. Although recent molecular structural analyses have revealed the components of the ciliary axoneme, the mechanisms involved in the regulation of dynein activity are still unknown, and how multiple dyneins coordinate their movements remains unclear. In particular, the mode of binding for axonemal dynein has not been elucidated. In this study, we constructed a thermodynamic stochastic model of microtubule-dynein coupling and reproduced the experiments of Aoyama and Kamiya on the minimal component of axonemal microtubule-dynein. We then identified the binding mode of axonemal dynein and clarified the relationship between dynein activity distribution and axonemal movement. Based on our numerical results, the slip-bond mechanism agrees quantitatively with the experimental results in terms of amplitude, frequency, and propagation velocity, implying that axial microtubule-dynein coupling may follow a slip-bond mechanism. Moreover, the frequency and propagation velocity decayed in proportion to the fourth power of microtubule length, and the critical load of the trigger for the oscillation agreed well with Euler's critical load.
Collapse
Affiliation(s)
- T Omori
- Department of Finemechanics, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| | - S Munakata
- Department of Biomedical Engineering, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| | - T Ishikawa
- Department of Finemechanics, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
- Department of Biomedical Engineering, Tohoku University, Aramaki Aoba 6-6-01, Sendai, Miyagi Japan
| |
Collapse
|
37
|
The sodium proton exchanger NHE9 regulates phagosome maturation and bactericidal activity in macrophages. J Biol Chem 2022; 298:102150. [PMID: 35716776 PMCID: PMC9293770 DOI: 10.1016/j.jbc.2022.102150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Acidification of phagosomes is essential for the bactericidal activity of macrophages. Targeting machinery that regulates pH within the phagosomes is a prominent strategy employed by various pathogens that have emerged as major threats to public health. Nascent phagosomes acquire the machinery for pH regulation through a graded maturation process involving fusion with endolysosomes. In addition, meticulous coordination between proton pumping and leakage mechanisms is crucial for maintaining optimal pH within the phagosome. However, relative to mechanisms involved in acidifying the phagosome lumen, little is known about proton leakage pathways in this organelle. Sodium proton transporter NHE9 is a known proton leakage pathway located on the endosomes. As phagosomes acquire proteins through fusions with endosomes during maturation, NHE9 seemed a promising candidate for regulating proton fluxes on the phagosome. Here, using genetic and biophysical approaches, we show NHE9 is an important proton leakage pathway associated with the maturing phagosome. NHE9 is highly expressed in immune cells, specifically macrophages; however, NHE9 expression is strongly downregulated upon bacterial infection. We show that compensatory ectopic NHE9 expression hinders the directed motion of phagosomes along microtubules and promotes early detachment from the microtubule tracks. As a result, these phagosomes have shorter run lengths and are not successful in reaching the lysosome. In accordance with this observation, we demonstrate that NHE9 expression levels negatively correlate with bacterial survival. Together, our findings show that NHE9 regulates lumenal pH to affect phagosome maturation, and consequently, microbicidal activity in macrophages.
Collapse
|
38
|
Metabolic and immune-sensitive contacts between lipid droplets and endoplasmic reticulum reconstituted in vitro. Proc Natl Acad Sci U S A 2022; 119:e2200513119. [PMID: 35675423 PMCID: PMC9214533 DOI: 10.1073/pnas.2200513119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intricate membranous network inside cells, with the endoplasmic reticulum (ER) at its center, allows coordinated cellular function by transmitting information across membrane contact sites (MCSs) that form between diverse kinds of cellular organelles and the ER. Unfortunately, these submicroscopic MCSs remain poorly understood and difficult to visualize and manipulate inside cells. We developed an in vitro assay to form MCSs between lipid droplets and an ER-mimicking microsomal membrane purified from rat liver. An optical trap is used to demonstrate physical tethering at the MCS, which changes dramatically in response to metabolic state and immune activation under control of Rab18 GTPase and phosphatidic acid. This assay can potentially be adapted to understand abnormal MCS formation in various disorders. Coordinated cell function requires a variety of subcellular organelles to exchange proteins and lipids across physical contacts that are also referred to as membrane contact sites. Such organelle-to-organelle contacts also evoke interest because they can appear in response to metabolic changes, immune activation, and possibly other stimuli. The microscopic size and complex, crowded geometry of these contacts, however, makes them difficult to visualize, manipulate, and understand inside cells. To address this shortcoming, we deposited endoplasmic reticulum (ER)-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a proteinaceous planar membrane. We visualized real-time lipid and protein exchange across contacts that form between this ER-mimicking membrane and lipid droplets (LDs) purified from the liver of rat. The high-throughput imaging possible in this geometry reveals that in vitro LD–ER contacts increase dramatically when the metabolic state is changed by feeding the animal and also when the immune system is activated. Contact formation in both cases requires Rab18 GTPase and phosphatidic acid, thus revealing common molecular targets operative in two very different biological pathways. An optical trap is used to demonstrate physical tethering of individual LDs to the ER-mimicking membrane and to estimate the strength of this tether. These methodologies can potentially be adapted to understand and target abnormal contact formation between different cellular organelles in the context of neurological and metabolic disorders or pathogen infection.
Collapse
|
39
|
Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol 2022; 23:699-714. [DOI: 10.1038/s41580-022-00491-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|
40
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
41
|
Šarlah A. Oscillating external force as a tool to tune motility characteristics of molecular motors. Phys Rev E 2021; 104:064406. [PMID: 35030938 DOI: 10.1103/physreve.104.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Molecular motors move in a dynamic environment of the cytoskeleton which generates fluctuations exceeding the thermal agitation. Their efficient motility and force generation are generally achieved via complex gating and coupling mechanisms between chemical steps, conformational changes, and mechanical steps in the working cycle. However, the motors display various force-velocity relations seemingly related (also) to the asymmetry of their unbinding from the track depending on the direction of the applied force. Here we study theoretically how the motility of molecular motors changes when they operate under an oscillating external force. We explore the roles of the shape of the force-velocity relation and the asymmetry of the force-induced unbinding. We find that a motor speeds up under force oscillations if its unbinding has a strong load dependence and a moderate asymmetry with respect to the direction of load. Motors whose unbinding is slowed down under hindering forces withstand average loads higher than the usual stall force. The relation between the function, unbinding properties, and predicted responses to the oscillating force supports the idea that the asymmetry of the load induced unbinding could serve as an adaptation of motors to their different physiological functions.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Nandi R, Täuber UC, Priyanka. Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1343. [PMID: 34682067 PMCID: PMC8534927 DOI: 10.3390/e23101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Motivated by the sidewise motions of dynein motors shown in experiments, we use a variant of the exclusion process to model the multistep dynamics of dyneins on a cylinder with open ends. Due to the varied step sizes of the particles in a quasi-two-dimensional topology, we observe the emergence of a novel phase diagram depending on the various load conditions. Under high-load conditions, our numerical findings yield results similar to the TASEP model with the presence of all three standard TASEP phases, namely the low-density (LD), high-density (HD), and maximal-current (MC) phases. However, for medium- to low-load conditions, for all chosen influx and outflux rates, we only observe the LD and HD phases, and the maximal-current phase disappears. Further, we also measure the dynamics for a single dynein particle which is logarithmically slower than a TASEP particle with a shorter waiting time. Our results also confirm experimental observations of the dwell time distribution: The dwell time distribution for dyneins is exponential in less crowded conditions, whereas a double exponential emerges under overcrowded conditions.
Collapse
Affiliation(s)
- Riya Nandi
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland;
| | - Uwe C. Täuber
- Department of Physics (MC 0435) & Center for Soft Matter and Biological Physics, Faculty of Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Priyanka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
43
|
Guha S, Mitra MK, Pagonabarraga I, Muhuri S. Novel mechanism for oscillations in catchbonded motor-filament complexes. Biophys J 2021; 120:4129-4136. [PMID: 34329628 DOI: 10.1016/j.bpj.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Generation of mechanical oscillations is ubiquitous to a wide variety of intracellular processes ranging from activity of muscle fibres to oscillations of the mitotic spindle. The activity of motors plays a vital role in maintaining the integrity of the mitotic spindle structure and in generating spontaneous oscillations. While the structural features and properties of the individual motors are well characterized, their implications on the functional behaviour of motor-filament complexes is more involved. We show that force-induced allosteric deformations in dynein, which results in catchbonding behaviour, provide a generic mechanism to generate spontaneous oscillations in motor-cytoskeletal filament complexes. The resultant phase diagram of such motor-filament systems - characterized by force-induced allosteric deformations - exhibits bistability and sustained limit cycle oscillations in biologically relevant regimes, such as for catchbonded dynein. The results reported here elucidate the central role of this mechanism in fashioning a distinctive stability behaviour and oscillations in motor-filament complexes, such as mitotic spindles.
Collapse
Affiliation(s)
- Sougata Guha
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India; Department of Physics, Savitribai Phule Pune University, Pune, India
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland; Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain; UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Sudipto Muhuri
- Department of Physics, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
44
|
Abstract
The dynein-dynactin nanomachine transports cargoes along microtubules in cells. Why dynactin interacts separately with the dynein motor and also with microtubules is hotly debated. Here we disrupted these interactions in a targeted manner on phagosomes extracted from cells, followed by optical trapping to interrogate native dynein-dynactin teams on single phagosomes. Perturbing the dynactin-dynein interaction reduced dynein's on rate to microtubules. In contrast, perturbing the dynactin-microtubule interaction increased dynein's off rate markedly when dynein was generating force against the optical trap. The dynactin-microtubule link is therefore required for persistence against load, a finding of importance because disease-relevant mutations in dynein-dynactin are known to interfere with "high-load" functions of dynein in cells. Our findings call attention to a less studied property of dynein-dynactin, namely, its detachment against load, in understanding dynein dysfunction.
Collapse
|
45
|
Fernández Casafuz AB, De Rossi MC, Bruno L. Intracellular motor-driven transport of rodlike smooth organelles along microtubules. Phys Rev E 2021; 101:062416. [PMID: 32688554 DOI: 10.1103/physreve.101.062416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Molecular motors are fascinating proteins that use the energy of ATP hydrolysis to drive vesicles and organelles along cytoskeleton filaments toward their final destination within the cell. Several copies of these proteins bind to the cargo and take turns transporting the cargo attaching to and detaching from the track stochastically. Despite the relevance of molecular motors to cell physiology, key aspects of their collective functioning are still unknown. In this work we propose a one-dimensional model for the transport of extensive and smooth organelles driven by molecular motors. We ran numerical simulations to study the behavior of the cargo for different motor configurations, focusing on the transport properties observable in the experiments, e.g., average speed of the organelle and variations in length. We found that active motors drive the cargo using two different mechanisms: Either they locate in front of the cargo and pull the organelle or they situate at the cargo lagging edge and push. Variations in the organelle length is in close relation with the fraction of motors in each configuration, which depends on the resisting load. The results of this model were contrasted with experimental data obtained from the tracking of rodlike mitochondria during active transport in Xenopus laevis melanophores.
Collapse
Affiliation(s)
- A B Fernández Casafuz
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - M C De Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - L Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
46
|
Wilson JO, Zaragoza AD, Xu J. Tuning ensemble-averaged cargo run length via fractional change in mean kinesin number. Phys Biol 2021; 18. [PMID: 33827070 DOI: 10.1088/1478-3975/abf5b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 11/12/2022]
Abstract
The number of motors carrying cargos in biological cells is not well-defined, instead varying from cargo to cargo about a statistical mean. Predictive understanding of motility in cells therefore requires quantitative insights into mixed ensembles of cargos. Toward this goal, here we employed Monte Carlo simulations to investigate statistical ensembles of cargos carried by a Poisson-distributed number of motors. Focusing on the key microtubule-based motor kinesin-1, our simulations utilized experimentally determined single-kinesin characteristics and alterations in kinesin's on- and off-rates caused by cellular factors and/or physical load. We found that a fractional increase in mean kinesin number enhances the ensemble-averaged cargo run length and amplifies run-length sensitivity to changes in single-kinesin on-rate and off-rate. These tuning effects can be further enhanced as solution viscosity increases over the range reported for cells. Together, our data indicate that the physiological range of kinesin number sensitively tunes the motility of mixed cargo populations. These effects have rich implications for quantitative and predictive understanding of cellular motility and its regulation.
Collapse
Affiliation(s)
- John O Wilson
- Physics, University of California, Merced, CA, United States of America
| | - Arturo D Zaragoza
- Mechanical Engineering, University of California, Merced, CA, United States of America
| | - Jing Xu
- Physics, University of California, Merced, CA, United States of America
| |
Collapse
|
47
|
Patel NM, Siva MSA, Kumari R, Shewale DJ, Rai A, Ritt M, Sharma P, Setty SRG, Sivaramakrishnan S, Soppina V. KIF13A motors are regulated by Rab22A to function as weak dimers inside the cell. SCIENCE ADVANCES 2021; 7:7/6/eabd2054. [PMID: 33536208 PMCID: PMC7857691 DOI: 10.1126/sciadv.abd2054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Endocytic recycling is a complex itinerary, critical for many cellular processes. Membrane tubulation is a hallmark of recycling endosomes (REs), mediated by KIF13A, a kinesin-3 family motor. Understanding the regulatory mechanism of KIF13A in RE tubulation and cargo recycling is of fundamental importance but is overlooked. Here, we report a unique mechanism of KIF13A dimerization modulated by Rab22A, a small guanosine triphosphatase, during RE tubulation. A conserved proline between neck coil-coiled-coil (NC-CC1) domains of KIF13A creates steric hindrance, rendering the motors as inactive monomers. Rab22A plays an unusual role by binding to NC-CC1 domains of KIF13A, relieving proline-mediated inhibition and facilitating motor dimerization. As a result, KIF13A motors produce balanced motility and force against multiple dyneins in a molecular tug-of-war to regulate RE tubulation and homeostasis. Together, our findings demonstrate that KIF13A motors are tuned at a single-molecule level to function as weak dimers on the cellular cargo.
Collapse
Affiliation(s)
- Nishaben M Patel
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | | | - Ruchi Kumari
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Dipeshwari J Shewale
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Prerna Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Virupakshi Soppina
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
48
|
Number Dependence of Microtubule Collective Transport by Kinesin and Dynein. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Klobusicky JJ, Fricks J, Kramer PR. Effective behavior of cooperative and nonidentical molecular motors. RESEARCH IN THE MATHEMATICAL SCIENCES 2020; 7:29. [PMID: 33870090 PMCID: PMC8049358 DOI: 10.1007/s40687-020-00230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Analytical formulas for effective drift, diffusivity, run times, and run lengths are derived for an intracellular transport system consisting of a cargo attached to two cooperative but not identical molecular motors (for example, kinesin-1 and kinesin-2) which can each attach and detach from a microtubule. The dynamics of the motor and cargo in each phase are governed by stochastic differential equations, and the switching rates depend on the spatial configuration of the motor and cargo. This system is analyzed in a limit where the detached motors have faster dynamics than the cargo, which in turn has faster dynamics than the attached motors. The attachment and detachment rates are also taken to be slow relative to the spatial dynamics. Through an application of iterated stochastic averaging to this system, and the use of renewal-reward theory to stitch together the progress within each switching phase, we obtain explicit analytical expressions for the effective drift, diffusivity, and processivity of the motor-cargo system. Our approach accounts in particular for jumps in motor-cargo position that occur during attachment and detachment events, as the cargo tracking variable makes a rapid adjustment due to the averaged fast scales. The asymptotic formulas are in generally good agreement with direct stochastic simulations of the detailed model based on experimental parameters for various pairings of kinesin-1 and kinesin-2 under assisting, hindering, or no load.
Collapse
Affiliation(s)
| | - John Fricks
- Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ, USA
| | - Peter R Kramer
- Rensselaer Polytechnic Institute, Mathematical Science Department, Troy, NY, USA
| |
Collapse
|
50
|
Palenzuela H, Lacroix B, Sallé J, Minami K, Shima T, Jegou A, Romet-Lemonne G, Minc N. In Vitro Reconstitution of Dynein Force Exertion in a Bulk Viscous Medium. Curr Biol 2020; 30:4534-4540.e7. [PMID: 32946749 DOI: 10.1016/j.cub.2020.08.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
The forces generated by microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on MT force exertion by motors anchored to a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2-4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk. Such forces may contribute to MT aster centration, organization, and orientation [5-14] but have yet to be evidenced and studied in a minimal reconstituted system. By developing a bulk motility assay, based on stabilized MTs and dynein-coated beads freely floating in a viscous medium away from any surface, we demonstrate that the motion of a cargo exerts a pulling force on the MT and propels it in opposite direction. Quantification of resulting MT movements for different motors, motor velocities, over a range of cargo sizes and medium viscosities shows that the efficiency of this mechanism is primarily determined by cargo size and MT length. Forces exerted by cargos are additive, allowing us to recapitulate tug-of-war situations or bi-dimensional motions of minimal asters. These data also reveal unappreciated effects of the nature of viscous crowders and hydrodynamic interactions between cargos and MTs, likely relevant to understand this mode of force exertion in living cells. This study reinforces the notion that endomembrane transport can exert significant forces on MTs.
Collapse
Affiliation(s)
| | - Benjamin Lacroix
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | - Katsuhiko Minami
- Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiro Shima
- Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Antoine Jegou
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | | | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France.
| |
Collapse
|