1
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang X, Gong Z, Jia Y, Zhao X, Jia C, Chen X, Guo S, Ludlow RA. Response characteristics and functional predictions of soil microorganisms to heavy metals, antibiotics, and their resistance genes originating from different animal farms amended with Herbaspirillum huttiense. ENVIRONMENTAL RESEARCH 2024; 246:118143. [PMID: 38199465 DOI: 10.1016/j.envres.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Current understanding is limited regarding technologies that use biochar and microorganisms to simultaneously treat soils contaminated with both veterinary antibiotics (VAs) and heavy metals (HMs) from different animal farms. The contributions of the keystone taxa and their similarities from different animal farms under VA and HM stresses before and after soil remediation should be further investigated as well. An innovative treatment of Herbaspirillum huttiense (HHS1) inoculated waste fungus chaff-based (WFCB) biochar was designed for immobilization of copper (Cu) and zinc (Zn), and the removal of oxytetracycline (OTC), enrofloxacin (ENR), and a subsequent reduction in their resistance genes in soils from pig, cow, and chicken farms. Roles of indigenous microorganisms which can treat soils contaminated with VAs and HMs were summarized. Results showed that available Cu and Zn were reduced by 19.5% and 28.1%, respectively, while 49.8% of OTC and 85.1% of ENR were removed by WFCB-HHS1. The decrease in ENR improved overall microbial community diversity, and the increases in genera HHS1, Pedobacter, Flavobacterium and Aequorivita, along with the decreases of genera Bacillus, Methylobacter, and Fermentimonas were indirectly favorable to treat HMs and VAs in soils from different animal farms. Bacterial communities in different animal farm soils were predominantly influenced by stochastic processes. The regulations of functional genes associated with metabolism and environmental information processing, which contribute to HM and VA defense, were altered when using WFCB-HHS1. Furthermore, the spread of their antibiotic resistance genes was restricted.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Yanjie Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xiang Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; School of Environmental Science, Liaoning University, Shenyang, 110036, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China; Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning, 110016, PR China.
| | - Shuhai Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Richard A Ludlow
- School of Biosciences, Cardiff University, Cardiff, CF10 3TL, UK.
| |
Collapse
|
3
|
Hoeher JE, Sande NE, Widom JR. Probing and perturbing riboswitch folding using a fluorescent base analogue. Photochem Photobiol 2024; 100:419-433. [PMID: 38098287 PMCID: PMC10950518 DOI: 10.1111/php.13896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 03/20/2024]
Abstract
Riboswitches are mRNA segments that regulate gene expression in response to ligand binding. The Class I preQ1 riboswitch consists of a stem-loop and an adenine-rich single-stranded tail ("L3"), which adopt a pseudoknot structure upon binding of the ligand preQ1 . We inserted 2-aminopurine (2-AP), a fluorescent analogue of adenine (A), into the riboswitch at six different positions within L3. Here, 2-AP functions both as a spectroscopic probe and as a "mutation" that reveals how alteration of specific A residues impacts the riboswitch. Using fluorescence and circular dichroism spectroscopy, we found that 2-AP decreases the affinity of the riboswitch for preQ1 at all labeling positions tested, although modified and unmodified variants undergo the same global conformational changes at sufficiently high preQ1 concentration. 2-AP substitution is most detrimental to ligand binding at sites proximal to the ligand-binding pocket, while distal labeling sites exhibit the largest impacts on the stability of the L3 domain in the absence of ligand. Insertion of multiple 2-AP residues does not induce significant additional disruptions. Our results show that interactions involving the A residues in L3 play a critical role in ligand recognition by the preQ1 riboswitch and that 2-AP substitution exerts complex and varied impacts on this riboswitch.
Collapse
Affiliation(s)
- Janson E. Hoeher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Natalie E. Sande
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| | - Julia R. Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR
| |
Collapse
|
4
|
Chang Y, Sun W, Murchie AIH, Chen D. Genome-wide identification of Kanamycin B binding RNA in Escherichia coli. BMC Genomics 2023; 24:120. [PMID: 36927548 PMCID: PMC10018874 DOI: 10.1186/s12864-023-09234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.
Collapse
Affiliation(s)
- Yaowen Chang
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
6
|
Varricchio C, Mathez G, Pillonel T, Bertelli C, Kaiser L, Tapparel C, Brancale A, Cagno V. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. Antiviral Res 2022; 208:105452. [PMID: 36341734 PMCID: PMC9617636 DOI: 10.1016/j.antiviral.2022.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modeling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.
Collapse
Affiliation(s)
- Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Center for Emerging Viruses, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland.
| |
Collapse
|
7
|
Chang Y, Zhang X, Murchie AIH, Chen D. Transcriptome profiling in response to Kanamycin B reveals its wider non-antibiotic cellular function in Escherichia coli. Front Microbiol 2022; 13:937827. [DOI: 10.3389/fmicb.2022.937827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of Escherichia coli in the absence or presence of 0.5 and 1 μM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. We further showed that Kanamycin B and other aminoglycosides can induce reporter gene expression through the 5′ UTR of napF gene or narK gene (both identified as DEG) and Kanamycin B can directly bind to the RNA. The results provide new insights into a better understanding of the wider aminoglycosides cellular function in E. coli rather than its known antibiotics function.
Collapse
|
8
|
Jagdmann J, Andersson DI, Nicoloff H. Low levels of tetracyclines select for a mutation that prevents the evolution of high-level resistance to tigecycline. PLoS Biol 2022; 20:e3001808. [PMID: 36170241 PMCID: PMC9550176 DOI: 10.1371/journal.pbio.3001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/10/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
In a collection of Escherichia coli isolates, we discovered a new mechanism leading to frequent and high-level tigecycline resistance involving tandem gene amplifications of an efflux pump encoded by the tet(A) determinant. Some isolates, despite carrying a functional tet(A), could not evolve high-level tigecycline resistance by amplification due to the presence of a deletion in the TetR(A) repressor. This mutation impaired induction of tetA(A) (encoding the TetA(A) efflux pump) in presence of tetracyclines, with the strongest effect observed for tigecycline, subsequently preventing the development of tet(A) amplification-dependent high-level tigecycline resistance. We found that this mutated tet(A) determinant was common among tet(A)-carrying E. coli isolates and analysed possible explanations for this high frequency. First, while the mutated tet(A) was found in several ST-groups, we found evidence of clonal spread among ST131 isolates, which increases its frequency within E. coli databases. Second, evolution and competition experiments revealed that the mutation in tetR(A) could be positively selected over the wild-type allele at sub-inhibitory concentrations of tetracyclines. Our work demonstrates how low concentrations of tetracyclines, such as those found in contaminated environments, can enrich and select for a mutation that generates an evolutionary dead-end that precludes the evolution towards high-level, clinically relevant tigecycline resistance. A study on evolution of antimicrobial resistance reveals how sub-inhibitory concentrations of antibiotics enrich and select for a mutated allele that prevents evolution towards clinically significant levels of antibiotic resistance.
Collapse
Affiliation(s)
- Jennifer Jagdmann
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Dan I. Andersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Hervé Nicoloff
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
9
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
10
|
Hipólito A, García-Pastor L, Blanco P, Trigo da Roza F, Kieffer N, Vergara E, Jové T, Álvarez J, Escudero J. The expression of aminoglycoside resistance genes in integron cassettes is not controlled by riboswitches. Nucleic Acids Res 2022; 50:8566-8579. [PMID: 35947699 PMCID: PMC9410878 DOI: 10.1093/nar/gkac662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation of gene expression is a key factor influencing the success of antimicrobial resistance determinants. A variety of determinants conferring resistance against aminoglycosides (Ag) are commonly found in clinically relevant bacteria, but whether their expression is regulated or not is controversial. The expression of several Ag resistance genes has been reported to be controlled by a riboswitch mechanism encoded in a conserved sequence. Yet this sequence corresponds to the integration site of an integron, a genetic platform that recruits genes of different functions, making the presence of such a riboswitch counterintuitive. We provide, for the first time, experimental evidence against the existence of such Ag-sensing riboswitch. We first tried to reproduce the induction of the well characterized aacA5 gene using its native genetic environment, but were unsuccessful. We then broadened our approach and analyzed the inducibility of all AgR genes encoded in integrons against a variety of antibiotics. We could not observe biologically relevant induction rates for any gene in the presence of several aminoglycosides. Instead, unrelated antibiotics produced mild but consistently higher increases in expression, that were the result of pleiotropic effects. Our findings rule out the riboswitch control of aminoglycoside resistance genes in integrons.
Collapse
Affiliation(s)
- Alberto Hipólito
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Lucía García-Pastor
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | | | | | - Nicolas Kieffer
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Ester Vergara
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - Julio Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria de la Universidad Complutense de Madrid, Spain,VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Spain
| | | |
Collapse
|
11
|
Cai X, Li X, Qin J, Zhang Y, Yan B, Cai J. Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis. Appl Microbiol Biotechnol 2022; 106:5687-5699. [PMID: 35906441 DOI: 10.1007/s00253-022-12090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance genes are usually tightly controlled by transcription factors and RNA regulatory elements including sRNAs, riboswitches, and attenuators, and their expression is activated to respond to antibiotic exposure. In previous work, we revealed that the rppA gene is regulated by attenuator LRR and two mistranslation products in Bacillus thuringiensis BMB171. However, its function and promoter regulation is still not precise. In this study, we demonstrated that the encoding product of the rppA gene acts as an ARE1 ABC-F protein and confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed. Besides the reported attenuator LRR, the expression of the rppA gene is controlled by the sigma factor SigA and a global transcription factor CcpA. Consequently, its promoter activity is mainly maintained at the stationary phase of cell growth and inhibited in the presence of glucose. Our study revealed the function and regulation of the rppA gene in detail. KEY POINTS: • The RppA protein acts as an ARE1 ABC-F protein • The rppA gene confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed • The expression of the rppA gene is regulated by the sigma factor SigA and the pleiotropic regulator CcpA.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaxin Qin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China.
| |
Collapse
|
12
|
Varricchio C, Mathez G, Pillonel T, Bertelli C, Kaiser L, Tapparel C, Brancale A, Cagno V. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.08.483429. [PMID: 35291297 PMCID: PMC8923105 DOI: 10.1101/2022.03.08.483429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modelling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.
Collapse
Affiliation(s)
- Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- Center for Emerging Viruses, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| |
Collapse
|
13
|
Zhang X, Gong Z, Allinson G, Li X, Jia C. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. CHEMOSPHERE 2022; 299:134333. [PMID: 35304205 DOI: 10.1016/j.chemosphere.2022.134333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Soils containing both veterinary antibiotics (VAs) and heavy metals necessitate effective remediation approaches, and microbial and molecular levels of the results should be further examined. Here, a novel material combining waste fungus chaff-based biochar (WFCB) and Herbaspirillum huttiense (HHS1) was established to immobilize copper (Cu) and zinc (Zn) and degrade oxytetracycline (OTC) and enrofloxacin (ENR). Results showed that the combined material exhibited high immobilization of Cu (85.5%) and Zn (64.4%) and great removals of OTC (41.9%) and ENR (40.7%). Resistance genes including tet(PB), tetH, tetR, tetS, tetT, tetM, aacA/aphD, aacC, aadA9, and czcA were reduced. Abundances of potential hosts of antibiotic resistance genes (ARGs) including phylum Proteobacteria and genera Brevundimonas and Rhodanobacter were altered. Total phosphorus and pH were the factors driving the VA degrading microorganisms and potential hosts of ARGs. The combination of WFCB and HHS1 can serve as an important bioresource for immobilizing heavy metals and removing VAs in the contaminated soil.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
14
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
15
|
A Novel Non-Coding RNA CsiR Regulates the Ciprofloxacin Resistance in Proteus vulgaris by Interacting with emrB mRNA. Int J Mol Sci 2021; 22:ijms221910627. [PMID: 34638966 PMCID: PMC8508932 DOI: 10.3390/ijms221910627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial non-coding RNAs (ncRNAs) play important regulatory roles in various physiological metabolic pathways. In this study, a novel ncRNA CsiR (ciprofloxacin stress-induced ncRNA) involved in the regulation of ciprofloxacin resistance in the foodborne multidrug-resistant Proteus vulgaris (P. vulgaris) strain P3M was identified. The survival rate of the CsiR-deficient strain was higher than that of the wild-type strain P3M under the ciprofloxacin treatment condition, indicating that CsiR played a negative regulatory role, and its target gene emrB was identified through further target prediction, quantitative real-time PCR (qRT-PCR), and microscale thermophoresis (MST). Further studies showed that the interaction between CsiR and emrB mRNA affected the stability of the latter at the post-transcriptional level to a large degree, and ultimately affected the ciprofloxacin resistance of P3M. Notably, the base-pairing sites between CsiR and emrB mRNAs were highly conserved in other sequenced P. vulgaris strains, suggesting that this regulatory mechanism may be ubiquitous in this species. To the best of our knowledge, this is the first identification of a novel ncRNA involved in the regulation of ciprofloxacin resistance in P. vulgaris species, which lays a solid foundation for comprehensively expounding the antibiotic resistance mechanism of P. vulgaris.
Collapse
|
16
|
Zhang J, Liu G, Zhang X, Chang Y, Wang S, He W, Sun W, Chen D, Murchie AIH. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence 2021; 11:1432-1442. [PMID: 33103573 PMCID: PMC7588185 DOI: 10.1080/21505594.2020.1836910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The proliferation of antibiotic resistance has its origins in horizontal gene transfer. The class 1 integrons mediate gene transfer by assimilating antibiotic-resistance genes through site-specific recombination. For the class 1 integrons the first assimilated gene normally encodes an aminoglycoside antibiotic resistance protein which is either an aminoglycoside acetyltransferase (AAC), nucleotidyltransferase - (ANT), or adenyl transferase (AAD). An aminoglycoside-sensing riboswitch RNA in the leader RNA of AAC/AAD that controls the expression of aminoglycoside resistance genes has been previously described. Here we explore the relationship between the recombinant products of integron recombination and a series of candidate riboswitch RNAs in the 5' UTR of aad (aminoglycoside adenyltransferases) genes. The RNA sequences from the 5' UTR of the aad genes from pathogenic strains that are the products of site-specific DNA recombination by class 1 integrons were investigated. Reporter assays, MicroScale Thermophoresis (MST) and covariance analysis revealed that a functional aminoglycoside-sensing riboswitch was selected at the DNA level through integron-mediated site-specific recombination. This study explains the close association between integron recombination and the aminoglycoside-sensing riboswitch RNA.
Collapse
Affiliation(s)
- Jun Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Getong Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Xuhui Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Yaowen Chang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Shasha Wang
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Weizhi He
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Wenxia Sun
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Dongrong Chen
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| | - Alastair I H Murchie
- Key Laboratory of Medical Epigenetics and Metabolism, Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University , Shanghai, PR China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University , Shanghai, PR China
| |
Collapse
|
17
|
Butler DA, Rana AP, Krapp F, Patel SR, Huang Y, Ozer EA, Hauser AR, Bulman ZP. Optimizing aminoglycoside selection for KPC-producing Klebsiella pneumoniae with the aminoglycoside-modifying enzyme (AME) gene aac(6')-Ib. J Antimicrob Chemother 2021; 76:671-679. [PMID: 33326561 DOI: 10.1093/jac/dkaa480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/22/2020] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES KPC-producing Klebsiella pneumoniae (KPC-Kp) isolates commonly co-harbour the aminoglycoside-modifying enzyme (AME) gene aac(6')-Ib, which encodes an AME that can confer resistance to some of the commercially available aminoglycosides. We sought to determine the influence of AAC(6')-Ib in KPC-Kp on the pharmacodynamic activity of aminoglycosides. METHODS Six KPC-Kp clinical isolates, three with and three without aac(6')-Ib, were analysed. Using these isolates, the bacterial killing of amikacin, gentamicin and tobramycin was assessed in static time-kill experiments. The pharmacodynamic activity of the aminoglycosides was then assessed in a dynamic one-compartment infection model over 72 h using simulated human pharmacokinetics of once-daily dosing with amikacin (15 mg/kg), gentamicin (5 mg/kg) and tobramycin (5 mg/kg). RESULTS At clinically relevant aminoglycoside concentrations in time-kill experiments and the dynamic one-compartment model, gentamicin was more active than amikacin or tobramycin against the isolates harbouring aac(6')-Ib. Amikacin, gentamicin and tobramycin all showed progressively reduced bacterial killing with exposure to repeated doses against most isolates in the dynamic one-compartment model. MIC values were generally not a good predictor of gentamicin pharmacodynamic activity against KPC-Kp, but were more reliable for amikacin and tobramycin. CONCLUSIONS Gentamicin may be preferred over amikacin or tobramycin for treatment of KPC-Kp infections. However, gentamicin MICs are not a consistent predictor of its pharmacodynamic activity and unexpected treatment failures are possible.
Collapse
Affiliation(s)
- David A Butler
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Amisha P Rana
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Fiorella Krapp
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano, Lima, Peru
| | - Shitalben R Patel
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Yanqin Huang
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Egon A Ozer
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zackery P Bulman
- University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
18
|
Melior H, Li S, Stötzel M, Maaß S, Schütz R, Azarderakhsh S, Shevkoplias A, Barth-Weber S, Baumgardt K, Ziebuhr J, Förstner KU, Chervontseva Z, Becher D, Evguenieva-Hackenberg E. Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Res 2021; 49:2894-2915. [PMID: 33619526 PMCID: PMC7968998 DOI: 10.1093/nar/gkab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Trans-acting regulatory RNAs have the capacity to base pair with more mRNAs than generally detected under defined conditions, raising the possibility that sRNA target specificities vary depending on the specific metabolic or environmental conditions. In Sinorhizobium meliloti, the sRNA rnTrpL is derived from a tryptophan (Trp) transcription attenuator located upstream of the Trp biosynthesis gene trpE(G). The sRNA rnTrpL contains a small ORF, trpL, encoding the 14-aa leader peptide peTrpL. If Trp is available, efficient trpL translation causes transcription termination and liberation of rnTrpL, which subsequently acts to downregulate the trpDC operon, while peTrpL is known to have a Trp-independent role in posttranscriptional regulation of antibiotic resistance mechanisms. Here, we show that tetracycline (Tc) causes rnTrpL accumulation independently of Trp availability. In the presence of Tc, rnTrpL and peTrpL act collectively to destabilize rplUrpmA mRNA encoding ribosomal proteins L21 and L27. The three molecules, rnTrpL, peTrpL, and rplUrpmA mRNA, form an antibiotic-dependent ribonucleoprotein complex (ARNP). In vitro reconstitution of this ARNP in the presence of competing trpD and rplU transcripts revealed that peTrpL and Tc cause a shift of rnTrpL specificity towards rplU, suggesting that sRNA target prioritization may be readjusted in response to changing environmental conditions.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Rubina Schütz
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Aleksei Shevkoplias
- Faculty of Biology and Biotechnology, Higher School of Economics, 117312 Moscow, Russia.,Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, University of Giessen, 35392 Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany
| | - Konrad U Förstner
- Data Science and Services, ZB MED - Information Centre for Life Sciences, 50931 Cologne, Germany
| | - Zoe Chervontseva
- Institute for Information Transmission Problems (the Kharkevich Institute, RAS), 127051 Moscow, Russia
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | |
Collapse
|
19
|
Miller CA, Ho JM, Parks SE, Bennett MR. Macrolide Biosensor Optimization through Cellular Substrate Sequestration. ACS Synth Biol 2021; 10:258-264. [PMID: 33555859 PMCID: PMC7901672 DOI: 10.1021/acssynbio.0c00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Developing and optimizing small-molecule biosensors is a central goal of synthetic
biology. Here we incorporate additional cellular components to improve biosensor
sensitivity by preventing target molecules from diffusing out of cells. We demonstrate
that trapping erythromycin within Escherichia coli through
phosphorylation increases the sensitivity of its biosensor (MphR) by approximately
10-fold. When combined with prior engineering efforts, our optimized biosensor can
detect erythromycin concentrations as low as 13 nM. We show that this strategy works
with a range of macrolide substrates, enabling the potential usage of our optimized
system for drug development and metabolic engineering. This strategy can be extended in
future studies to improve the sensitivity of other biosensors. Our findings further
suggest that many naturally evolved genes involved in resistance to multiple classes of
antibiotics may increase intracellular drug concentrations to modulate their own
expression, acting as a form of regulatory feedback.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Joanne M. Ho
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sydney E. Parks
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Matthew R. Bennett
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
20
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
21
|
Copy Number of an Integron-Encoded Antibiotic Resistance Locus Regulates a Virulence and Opacity Switch in Acinetobacter baumannii AB5075. mBio 2020; 11:mBio.02338-20. [PMID: 33024041 PMCID: PMC7542366 DOI: 10.1128/mbio.02338-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii remains a leading cause of hospital-acquired infections. Widespread multidrug resistance in this species has prompted the WHO to name carbapenem-resistant A. baumannii as its top priority for research and development of new antibiotics. Many strains of A. baumannii undergo a high-frequency virulence switch, which is an attractive target for new therapeutics targeting this pathogen. This study reports a novel mechanism controlling the frequency of switching in strain AB5075. The rate of switching from the virulent opaque (VIR-O) to the avirulent translucent (AV-T) variant is positively influenced by the copy number of an antibiotic resistance locus encoded on a plasmid-borne composite integron. Our data suggest that this locus encodes a small RNA that regulates opacity switching. Low-switching opaque variants, which harbor a single copy of this locus, also exhibit decreased virulence. This study increases our understanding of this critical phenotypic switch, while also identifying potential targets for virulence-based A. baumannii treatments. We describe a novel genetic mechanism in which tandem amplification of a plasmid-borne integron regulates virulence, opacity variation, and global gene expression by altering levels of a putative small RNA (sRNA) in Acinetobacter baumannii AB5075. Copy number of this amplified locus correlated with the rate of switching between virulent opaque (VIR-O) and avirulent translucent (AV-T) cells. We found that prototypical VIR-O colonies, which exhibit high levels of switching and visible sectoring with AV-T cells by 24 h of growth, harbor two copies of this locus. However, a subset of opaque colonies that did not form AV-T sectors within 24 h were found to harbor only one copy. The colonies with decreased sectoring to AV-T were designated low-switching opaque (LSO) variants and were found to exhibit a 3-log decrease in switching relative to that of the VIR-O. Overexpression studies revealed that the element regulating switching was localized to the 5′ end of the aadB gene within the amplified locus. Northern blotting indicated that an sRNA of approximately 300 nucleotides (nt) is encoded in this region and is likely responsible for regulating switching to AV-T. Copy number of the ∼300-nt sRNA was also found to affect virulence, as the LSO variant exhibited decreased virulence during murine lung infections. Global transcriptional profiling revealed that >100 genes were differentially expressed between VIR-O and LSO variants, suggesting that the ∼300-nt sRNA may act as a global regulator. Several virulence genes exhibited decreased expression in LSO cells, potentially explaining their decreased virulence.
Collapse
|
22
|
Zhang J, Liu G, Sun W, Chen D, Murchie AIH. Aminoglycoside antibiotics can inhibit or activate twister ribozyme cleavage. FEBS J 2020; 288:1586-1598. [PMID: 32790122 DOI: 10.1111/febs.15517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/19/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Interactions between aminoglycoside antibiotics and the twister ribozyme were investigated in this study. An initial screen of 17 RNA-binding antibiotics showed that a number of aminoglycosides inhibit the ribozyme, while a subset of aminoglycosides enhances twister cleavage. Initial kinetic analysis of the twister ribozyme showed a sevenfold inhibition of ribozyme cleavage by paromomycin and a fivefold enhancement of cleavage by sisomicin. Direct binding between the twister ribozyme RNA and paromomycin or sisomicin was measured by microscale thermophoresis. Selective 2'-hydroxyl acylation analysed by primer extension shows that both paromomycin and sisomicin induce distinctive tertiary structure changes to the twister ribozyme. Published crystal structures and mechanistic analysis of the twister ribozyme have deduced a nucleobase-mediated general acid-base catalytic mechanism, in which a conserved guanine plays a key role. Here, we show that paromomycin binding induces a structural transition to the twister ribozyme such that a highly conserved guanine in the active site becomes displaced, leading to inhibition of cleavage. In contrast, sisomicin binding appears to change interactions between P3 and L2, inducing allosteric changes to the active site that enhance twister RNA cleavage. Therefore, we show that small-molecule binding can modulate twister ribozyme activity. These results suggest that aminoglycosides may be used as molecular tools to study this widely distributed ribozyme.
Collapse
Affiliation(s)
- Jun Zhang
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Cai X, Zhan Y, Cao Z, Yan B, Cai J. Expression of ribosomal protection protein RppA is regulated by a ribosome-dependent ribo-regulator and two mistranslation products. Environ Microbiol 2020; 23:696-712. [PMID: 32592275 DOI: 10.1111/1462-2920.15143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
Abstract
Gene expression is tightly controlled by transcription factors and RNA regulatory elements, including trans-acting small RNAs, cis-regulatory riboswitches and ribosome-dependent ribo-regulators. In the present study, we demonstrated that a ribosome-dependent ribo-regulator and two mistranslation products co-regulate rppA (encoding a ribosomal protection protein) expression in Bacillus thuringiensis BMB171. The leader RNA of the rppA gene controls rppA expression via translation of leader ORF1 resident in its sequence. In the presence of chloramphenicol, a +1 frameshift product (ORF2) and a stop codon readthrough product (ORF3) of ORF1 emerged. ORF3 exerted a negative effect on rppA expression. By contrast, the ORF2 promoted rppA expression. The regulation mode identified in the present study will lead to a deeper understanding of bacterial gene expression.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunda Zhan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhanglei Cao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China
| |
Collapse
|
24
|
Elamary RB, Albarakaty FM, Salem WM. Efficacy of Acacia nilotica aqueous extract in treating biofilm-forming and multidrug resistant uropathogens isolated from patients with UTI syndrome. Sci Rep 2020; 10:11125. [PMID: 32636429 PMCID: PMC7341837 DOI: 10.1038/s41598-020-67732-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/10/2020] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli is the dominant bacterial cause of UTI among the uropathogens in both developed and developing countries. This study is to investigate the effect of Acacia nilotica aqueous extract on the survival and biofilm of isolated pathogens to reduce UTIs diseases. A total of 170 urine samples were collected from Luxor general hospital and private medical analysis laboratories in Luxor providence, Egypt. Samples were screened for the incidence of uropathogens by biochemical tests, antibiotics susceptibility, detection of virulence, and antibiotic-resistant genes by multiplex PCR, biofilm formation, and time-killing assay. Escherichia coli is by far the most prevalent causative agent with the percentage of 73.7% followed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeuroginosa, and Acinetobacter baumanii. Isolates were multidrug-resistant containing blaTEM, blaSHV, blaCTX, qnrs, and aac(3)-Ia resistant genes. All isolates were sensitive to 15-16.7 mg ml-1 of Acacia nilotica aqueous extract. Time killing assay confirmed the bactericidal effect of the extract over time (20-24 h). A high percentage of 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl (23.5%); á-Selinene (15.12%); Oleic Acid (14.52%); Globulol (11.35%) were detected among 19 bioactive phytochemical compounds in the aqueous extract of A. nilotica over the GC-mass spectra analysis. The plant extract reduced significantly the biofilm activity of E. coli, K. pneumoniae, P. mirabilis, and P. aeuroginosa by 62.6, 59. 03, 48.9 and 39.2%, respectively. The challenge to improve the production of A. nilotica phytochemicals is considered a very low price for the return.
Collapse
Affiliation(s)
- Rokaia B Elamary
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Fawziah M Albarakaty
- Department of Biology, College of Applied Sciences, Umm Al Qura University, Makkah Al Moukarramh, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Wesam M Salem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
25
|
Abstract
No method exists to measure large-scale translation of genes in uncultured organisms in microbiomes. To overcome this limitation, we develop MetaRibo-Seq, a method for simultaneous ribosome profiling of tens to hundreds of organisms in microbiome samples. MetaRibo-Seq was benchmarked against gold-standard Ribo-Seq in a mock microbial community and applied to five different human fecal samples. Unlike RNA-Seq, Ribo-Seq signal of a predicted gene suggests it encodes a translated protein. We demonstrate two applications of this technique: First, MetaRibo-Seq identifies small genes, whose identification until now has been challenging. For example, MetaRibo-Seq identifies 2,091 translated, previously unannotated small protein families from five fecal samples, more than doubling the number of small proteins predicted to exist in this niche. Second, the combined application of RNA-Seq and MetaRibo-Seq identifies differences in the translation of transcripts. In summary, MetaRibo-Seq enables comprehensive translational profiling in microbiomes and identifies previously unannotated small proteins. Defining the functions of individual organisms or communities within microbiomes is a challenging task. Here, the authors develop MetaRibo-Seq, a method for simultaneous high-throughput ribosome profiling of organisms in uncultured microbiome samples.
Collapse
|
26
|
Sherlock ME, Breaker RR. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA (NEW YORK, N.Y.) 2020; 26:675-693. [PMID: 32165489 PMCID: PMC7266159 DOI: 10.1261/rna.074997.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative sequence analyses have been used to discover numerous classes of structured noncoding RNAs, some of which are riboswitches that specifically recognize small-molecule or elemental ion ligands and influence expression of adjacent downstream genes. Determining the correct identity of the ligand for a riboswitch candidate typically is aided by an understanding of the genes under its regulatory control. Riboswitches whose ligands were straightforward to identify have largely been associated with well-characterized metabolic pathways, such as coenzyme or amino acid biosynthesis. Riboswitch candidates whose ligands resist identification, collectively known as orphan riboswitches, are often associated with genes coding for proteins of unknown function, or genes for various proteins with no established link to one another. The cognate ligands for 16 former orphan riboswitch motifs have been identified to date. The successful pursuit of the ligands for these classes has provided insight into areas of biology that are not yet fully explored, such as ion homeostasis, signaling networks, and other previously underappreciated biochemical or physiological processes. Herein we discuss the strategies and methods used to match ligands with orphan riboswitch classes, and overview the lessons learned to inform and motivate ongoing efforts to identify ligands for the many remaining candidates.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
27
|
Ying L, Zhu H, Fosso MY, Garneau-Tsodikova S, Fredrick K. Modified Aminoglycosides Bind Nucleic Acids in High-Molecular-Weight Complexes. Antibiotics (Basel) 2020; 9:antibiotics9020093. [PMID: 32098020 PMCID: PMC7168264 DOI: 10.3390/antibiotics9020093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/05/2022] Open
Abstract
Aminoglycosides represent a large group of antibiotics well known for their ability to target the bacterial ribosome. In studying 6”-substituted variants of the aminoglycoside tobramycin, we serendipitously found that compounds with C12 or C14 linear alkyl substituents potently inhibit reverse transcription in vitro. Initial observations suggested specific inhibition of reverse transcriptase. However, further analysis showed that these and related compounds bind nucleic acids with high affinity, forming high-molecular weight complexes. Stable complex formation is observed with DNA or RNA in single- or double-stranded form. Given the amphiphilic nature of these aminoglycoside derivatives, they likely form micelles and/or vesicles with surface-bound nucleic acids. Hence, these compounds may be useful tools to localize nucleic acids to surfaces or deliver nucleic acids to cells or organelles.
Collapse
Affiliation(s)
- Lanqing Ying
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
| | - Hongkun Zhu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
| | - Marina Y. Fosso
- Department of Pharmaceutical Sciences in the College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (M.Y.F.); (S.G.-T.)
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences in the College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA; (M.Y.F.); (S.G.-T.)
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA; (L.Y.); (H.Z.)
- Correspondence: ; Tel.: +1-614-292-6679
| |
Collapse
|
28
|
Sun W, Zhang X, Chen D, Murchie AIH. Interactions between the 5' UTR mRNA of the spe2 gene and spermidine regulate translation in S. pombe. RNA (NEW YORK, N.Y.) 2020; 26:137-149. [PMID: 31826924 PMCID: PMC6961545 DOI: 10.1261/rna.072975.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/10/2019] [Indexed: 05/20/2023]
Abstract
The 5' untranslated regions (5' UTR) of mRNAs play an important role in the eukaryotic translation initiation process. Additional levels of translational regulation may be mediated through interactions between structured mRNAs that can adopt interchangeable secondary or tertiary structures and the regulatory protein/RNA factors or components of the translational apparatus. Here we report a regulatory function of the 5' UTR mRNA of the spe2 gene (SAM decarboxylase) in polyamine metabolism of the fission yeast Schizosaccharomyces pombe Reporter assays, biochemical experiments, and mutational analysis demonstrate that this 5' UTR mRNA of spe2 can bind to spermidine to regulate translation. A tertiary structure transition in the 5' UTR RNA upon spermidine binding is essential for translation regulation. This study provides biochemical evidence for spermidine binding to regulate translation of the spe2 gene through interactions with the 5' UTR mRNA. The identification of such a regulatory RNA that is directly associated with an essential eukaryotic metabolic process suggests that other ligand-binding RNAs may also contribute to eukaryotic gene regulation.
Collapse
Affiliation(s)
- Wenxia Sun
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuhui Zhang
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, Pudong and Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
30
|
Sadgrove NJ, Jones GL. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Front Microbiol 2019; 10:2470. [PMID: 31736910 PMCID: PMC6834656 DOI: 10.3389/fmicb.2019.02470] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
The new era of multidrug resistance of pathogens against frontline antibiotics has compromised the immense therapeutic gains of the 'golden age,' stimulating a resurgence in antimicrobial research focused on antimicrobial and immunomodulatory components of botanical, fungal or microbial origin. While much valuable information has been amassed on the potency of crude extracts and, indeed, purified compounds there are too many reports that uncritically extrapolate observed in vitro activity to presumed ingestive and/or topical therapeutic value, particularly in the discipline of ethnopharmacology. Thus, natural product researchers would benefit from a basic pharmacokinetic and pharmacodynamic understanding. Furthermore, therapeutic success of complex mixtures or single components derived therefrom is not always proportionate to their MIC values, since immunomodulation can be the dominant mechanism of action. Researchers often fail to acknowledge this, particularly when 'null' activity is observed. In this review we introduce the most up to date theories of oral and topical bioavailability including the metabolic processes affecting xenobiotic biotransformation before and after drugs reach the site of their action in the body. We briefly examine the common methodologies employed in antimicrobial, immunomodulatory and pharmacokinetic research. Importantly, we emphasize the contribution of synergies and/or antagonisms in complex mixtures as they affect absorptive processes in the body and sometimes potentiate activity. Strictly in the context of natural product research, it is important to acknowledge the potential for chemotypic variation within important medicinal plants. Furthermore, polar head space and rotatable bonds give a priori indications of the likelihood of bioavailability of active metabolites. Considering this and other relatively simple chemical insights, we hope to provide the basis for a more rigorous scientific assessment, enabling researchers to predict the likelihood that observed in vitro anti-infective activity will translate to in vivo outcomes in a therapeutic context. We give worked examples of tentative pharmacokinetic assessment of some well-known medicinal plants.
Collapse
Affiliation(s)
- Nicholas John Sadgrove
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
- Jodrell Science Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Graham Lloyd Jones
- Pharmaceuticals and Nutraceuticals (PAN) Group, School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
31
|
Kulik M, Mori T, Sugita Y, Trylska J. Molecular mechanisms for dynamic regulation of N1 riboswitch by aminoglycosides. Nucleic Acids Res 2019; 46:9960-9970. [PMID: 30239867 PMCID: PMC6212780 DOI: 10.1093/nar/gky833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023] Open
Abstract
A synthetic riboswitch N1, inserted into the 5'-untranslated mRNA region of yeast, regulates gene expression upon binding ribostamycin and neomycin. Interestingly, a similar aminoglycoside, paromomycin, differing from neomycin by only one substituent (amino versus hydroxyl), also binds to the N1 riboswitch, but without affecting gene expression, despite NMR evidence that the N1 riboswitch binds all aminoglycosides in a similar way. Here, to explore the details of structural dynamics of the aminoglycoside-N1 riboswitch complexes, we applied all-atom molecular dynamics (MD) and temperature replica-exchange MD simulations in explicit solvent. Indeed, we found that ribostamycin and neomycin affect riboswitch dynamics similarly but paromomycin allows for more flexibility because its complex lacks the contact between the distinctive 6' hydroxyl group and the G9 phosphate. Instead, a transient hydrogen bond of 6'-OH with A17 is formed, which partially diminishes interactions between the bulge and apical loop of the riboswitch, likely contributing to riboswitch inactivity. In many ways, the paromomycin complex mimics the conformations, interactions, and Na+ distribution of the free riboswitch. The MD-derived interaction network helps understand why riboswitch activity depends on aminoglycoside type, whereas for another aminoglycoside-binding site, aminoacyl-tRNA site in 16S rRNA, activity is not discriminatory.
Collapse
Affiliation(s)
- Marta Kulik
- RIKEN, Hirosawa, Wako City, Saitama 351-0198, Japan.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | | - Yuji Sugita
- RIKEN, Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
32
|
Integron-Derived Aminoglycoside-Sensing Riboswitches Control Aminoglycoside Acetyltransferase Resistance Gene Expression. Antimicrob Agents Chemother 2019; 63:AAC.00236-19. [PMID: 30936094 DOI: 10.1128/aac.00236-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Class 1 integrons accumulate antibiotic resistance genes by site-specific recombination at aatI-1 sites. Captured genes are transcribed from a promoter located within the integron; for class 1 integrons, the first gene to be transcribed and translated normally encodes an aminoglycoside antibiotic resistance protein (either an acetyltransferase [AAC] or adenyltransferase [AAD]). The leader RNA from the Pseudomonas fluorescens class 1 integron contains an aminoglycoside-sensing riboswitch RNA that controls the expression of the downstream aminoglycoside resistance gene. Here, we explore the relationship between integron-dependent DNA recombination and potential aminoglycoside-sensing riboswitch products of recombination derived from a series of aminoglycoside-resistant clinical strains. Sequence analysis of the clinical strains identified a series of sequence variants that were associated with class I integron-derived aminoglycoside-resistant (both aac and aad) recombinants. For the aac recombinants, representative sequences showed up to 6-fold aminoglycoside-dependent regulation of reporter gene expression. Microscale thermophoresis (MST) confirmed RNA binding. Covariance analysis generated a secondary-structure model for the RNA that is an independent verification of previous models that were derived from mutagenesis and chemical probing data and that was similar to that of the P. fluorescens riboswitch RNA. The aminoglycosides were among the first antibiotics to be used clinically, and the data suggest that in an aminoglycoside-rich environment, functional riboswitch recombinants were selected during integron-mediated recombination to regulate aminoglycoside resistance. The incorporation of a functional aminoglycoside-sensing riboswitch by integron recombination confers a selective advantage for the expression of resistance genes of diverse origins.
Collapse
|
33
|
Nshogozabahizi J, Aubrey K, Ross J, Thakor N. Applications and limitations of regulatory
RNA
elements in synthetic biology and biotechnology. J Appl Microbiol 2019; 127:968-984. [DOI: 10.1111/jam.14270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/09/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- J.C. Nshogozabahizi
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - K.L. Aubrey
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - J.A. Ross
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| | - N. Thakor
- Department of Chemistry and Biochemistry Alberta RNA Research and Training Institute (ARRTI) University of Lethbridge Lethbridge AB Canada
| |
Collapse
|
34
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
35
|
Song M, Tang M, Ding Y, Wu Z, Xiang C, Yang K, Zhang Z, Li B, Deng Z, Liu J. Application of protein typing in molecular epidemiological investigation of nosocomial infection outbreak of aminoglycoside-resistant Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22437-22445. [PMID: 29249031 DOI: 10.1007/s11356-017-0960-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosan has emerged as an important pathogen elated to serious infections and nosocomial outbreaks worldwide. This study was conducted to understand the prevalence of aminoglycoside (AMG)-resistant P. aeruginosa in our hospital and to provide a scientific basis for control measures against nosocomial infections. Eighty-two strains of P. aeruginosa were isolated from clinical departments and divided into AMG-resistant strains and AMG-sensitive strains based on susceptibility test results. AMG-resistant strains were typed by drug resistance gene typing (DRGT) and protein typing. Five kinds of aminoglycoside-modifying enzyme (AME) genes were detected in the AMG-resistant group. AMG-resistant P. aeruginosa strains were classified into three types and six subtypes by DRGT. Four protein peaks, namely, 9900.02, 7600.04, 9101.25 and 10,372.87 Da, were significantly and differentially expressed between the two groups. AMG-resistant P. aeruginosa strains were also categorised into three types and six subtypes at the distance level of 10 by protein typing. AMG-resistant P. aeruginosa was cloned spread in our hospital; the timely implementation of nosocomial infection prevention and control strategies were needed in preventing outbreaks and epidemic of AMG-resistant P. aeruginosa. SELDI-TOF MS technology can be used for bacterial typing, which provides a new method of clinical epidemiological survey and nosocomial infection control.
Collapse
Affiliation(s)
- Min Song
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Min Tang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yinghuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zecai Wu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chengyu Xiang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kui Yang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baolin Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenghua Deng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
36
|
Greenlee EB, Stav S, Atilho RM, Brewer KI, Harris KA, Malkowski SN, Mirihana Arachchilage G, Perkins KR, Sherlock ME, Breaker RR. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol 2018; 15:377-390. [PMID: 29135333 PMCID: PMC5927730 DOI: 10.1080/15476286.2017.1403002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Orphan riboswitch candidates are noncoding RNA motifs whose representatives are believed to function as genetic regulatory elements, but whose target ligands have yet to be identified. The study of certain orphans, particularly classes that have resisted experimental validation for many years, has led to the discovery of important biological pathways and processes once their ligands were identified. Previously, we highlighted details for four of the most common and intriguing orphan riboswitch candidates. This facilitated the validation of riboswitches for the signaling molecules c-di-AMP, ZTP, and ppGpp, the metal ion Mn2+, and the metabolites guanidine and PRPP. Such studies also yield useful linkages between the ligands sensed by the riboswitches and numerous biochemical pathways. In the current report, we describe the known characteristics of 30 distinct classes of orphan riboswitch candidates - some of which have remained unsolved for over a decade. We also discuss the prospects for uncovering novel biological insights via focused studies on these RNAs. Lastly, we make recommendations for experimental objectives along the path to finding ligands for these mysterious RNAs.
Collapse
Affiliation(s)
- Etienne B. Greenlee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ruben M. Atilho
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kenneth I. Brewer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly A. Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | | - Kevin R. Perkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Madeline E. Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Chan H, Ho J, Liu X, Zhang L, Wong SH, Chan MT, Wu WK. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist 2017; 10:521-532. [PMID: 29290689 PMCID: PMC5736357 DOI: 10.2147/idr.s148444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Over the decades, new antibacterial agents have been developed in an attempt to combat drug resistance, but they remain unsuccessful. Recently, a novel class of bacterial gene expression regulators, bacterial small RNAs (sRNAs), has received increasing attention toward their involvement in antibiotic resistance. This systematic review aimed to discuss the potential of these small molecules as antibacterial drug targets. Methods Two investigators performed a comprehensive search of MEDLINE, EmBase, and ISI Web of Knowledge from inception to October 2016, without restriction on language. We included all in vitro and in vivo studies investigating the role of bacterial sRNA in antibiotic resistance. Risk of bias of the included studies was assessed by a modified guideline of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). Results Initial search yielded 432 articles. After exclusion of non-original articles, 20 were included in this review. Of these, all studies examined bacterial-type strains only. There were neither relevant in vivo nor clinical studies. The SYRCLE scores ranged from to 5 to 7, with an average of 5.9. This implies a moderate risk of bias. sRNAs influenced the antibiotics susceptibility through modulation of gene expression relevant to efflux pumps, cell wall synthesis, and membrane proteins. Conclusion Preclinical studies on bacterial-type strains suggest that modulation of sRNAs could enhance bacterial susceptibility to antibiotics. Further studies on clinical isolates and in vivo models are needed to elucidate the therapeutic value of sRNA modulation on treatment of multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Hung Chan
- Department of Anesthesia and Intensive Care
| | - Jeffery Ho
- Department of Anesthesia and Intensive Care
| | | | - Lin Zhang
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,School of Biomedical Sciences, Faculty of Medicine
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences.,Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - William Kk Wu
- Department of Anesthesia and Intensive Care.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences
| |
Collapse
|
38
|
Stamatopoulou V, Apostolidi M, Li S, Lamprinou K, Papakyriakou A, Zhang J, Stathopoulos C. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Res 2017; 45:10242-10258. [PMID: 28973457 PMCID: PMC5622331 DOI: 10.1093/nar/gkx663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 11/14/2022] Open
Abstract
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators.
Collapse
Affiliation(s)
| | - Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | - Katerina Lamprinou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
39
|
French S, Ellis MJ, Coutts BE, Brown ED. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria. Curr Opin Microbiol 2017; 39:42-47. [PMID: 28957731 DOI: 10.1016/j.mib.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023]
Abstract
In an effort to combat the perpetual emergence of new antibiotic-resistant human pathogens, research in industry and academe aims to find new means of controlling infection. The discovery of new antimicrobial chemicals is not the bottleneck in an era where high-throughput screening rapidly uncovers new bioactive compounds. Rather, the rate-limiting step in antimicrobial discovery pipelines is identifying mechanisms of action (MOA) of bioactive molecules produced by these increasingly large-scale efforts. Chemical genomics has proven to be of high value in providing mechanistic hypotheses for novel bioactive chemical matter. Several techniques fall under this blanket term, including interactions with deletion or transposon libraries, fluorescent or luminescent reporter library profiles, or deep sequencing approaches. Each of these provide unique and complementary outputs, and have high value in generating target lists for chemical screens, or assisting in downstream MOA discovery. We review here the broad usefulness of this technique to aid in MOA determination, to identify targets for new lead molecules, and to expand our mechanistic understanding of existing drugs.
Collapse
Affiliation(s)
- Shawn French
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Michael J Ellis
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Brittney E Coutts
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences and Michael G DeGroote Institute for Infectious Disease Research, McMaster University, Canada.
| |
Collapse
|
40
|
Jaimee G, Halami P. Conjugal transfer of aac(6′)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Microb Pathog 2017; 110:546-553. [DOI: 10.1016/j.micpath.2017.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
41
|
Liu X, Deng S, Huang J, Huang Y, Zhang Y, Yan Q, Wang Y, Li Y, Sun C, Jia X. Dissemination of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus clinical isolates. Oncotarget 2017; 8:58086-58097. [PMID: 28938539 PMCID: PMC5601635 DOI: 10.18632/oncotarget.19491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
As an increasingly common cause of skin infections worldwide, the prevalence of antibiotic-resistant Staphylococcus aureus (S. aureus) across China has not been well documented. This literature aims to study the resistance profile to commonly used antibiotics, including macrolides, fusidic acid (FA) and mupirocin, and its relationship to the genetic typing in 34 S. aureus strains, including 6 methicillin-resistant S. aureus (MRSA), isolated from a Chinese hospital. The MIC results showed 27 (79.4%), 1 (2.9%) and 6 (17.6%) isolates were resistant to macrolides, FA and mupirocin, respectively. Among 27 macrolide-resistant S. aureus isolates, 5 (18.5%) were also resistant to mupirocin and 1 (3.7%) to FA. A total of 13 available resistant genes were analyzed in 28 antibiotic-resistant strains using polymerase chain reaction (PCR). The positive rates of macrolide-resistant ermA, ermB, ermC, erm33 and low level mupirocin-resistant ileS mutations were 11.1%, 25.9%, 51.9%, 7.4% and 100%, respectively. Other determinants for FA- and high level mupirocin-resistance were not found. The results of multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE) revealed 13 sequence types (STs) and 18 clusters in 23 resistant gene positive S. aureus isolates. Among these STs, ST5 was most prevalent, accounting for 18.2%. Notably, various clusters were found with similar resistance phenotype and genotype, exhibiting a weak genetic relatedness and high genetic heterogeneities. In conclusion, macrolides, especially erythromycin, are not appropriate to treat skin infections caused by S. aureus, and more effective measures are required to reduce the dissemination of macrolides, FA and mupirocin resistance of the pathogen.
Collapse
Affiliation(s)
- Xingmei Liu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Shanshan Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jinwei Huang
- Institute of Antibiotics, The Fifth Affiliated Hospital, Wenzhou Medical University, Lishui 323000, China
| | - Yaling Huang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Yu Zhang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Qin Yan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Yanhong Wang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Yanyue Li
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Chengfu Sun
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
42
|
Sub-inhibitory concentrations of gentamicin triggers the expression of aac(6')Ie-aph(2″)Ia, chaperons and biofilm related genes in Lactobacillus plantarum MCC 3011. Res Microbiol 2017; 168:722-731. [PMID: 28684253 DOI: 10.1016/j.resmic.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/10/2017] [Accepted: 06/18/2017] [Indexed: 12/23/2022]
Abstract
The study aimed to analyze the effects of sub-inhibitory concentrations of gentamicin on the expressions of high level aminoglycoside resistant (HLAR) bifunctional aac(6')Ie-aph(2″)Ia, biofilm and chaperone genes in Lactobacillus plantarum. The analysis of the biofilm formation in five isolates obtained from chicken sausages indicated their role in exhibiting phenotypic resistance based on the varied MIC values despite carrying the bifunctional gene. The biofilm formation significantly increased when L. plantarum MCC 3011 was grown in sub-inhibitory concentrations of gentamicin (4 μg/ml), kanamycin (8 μg/ml) and streptomycin (2 μg/ml). Thirty day gentamicin selection increased minimum inhibitory concentration (MIC) values from 4 to 64 and 2 to 256 fold for gentamicin and kanamycin, respectively when compared to the parental cultures. Expression studies revealed that constant exposure to gentamicin had induced chaperon [groEL] and the bifunctional gene, aac(6')Ie-aph(2″)Ia upto nine fold. Induction of groEL, groES and lamC genes in gentamicin (4 μg/ml) preincubated MCC 3011 indicated their significant role in aminoglycoside mediated response. Our study indicates that constant exposure to sub inhibitory concentrations of gentamicin allows L. plantarum to adapt against higher doses of aminoglycosides. This highlights the risks and food safety issues associated with the use of aminoglycosides in livestock and consumption of farm oriented fermented food products.
Collapse
|
43
|
McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. Riboswitch diversity and distribution. RNA (NEW YORK, N.Y.) 2017; 23:995-1011. [PMID: 28396576 PMCID: PMC5473149 DOI: 10.1261/rna.061234.117] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 05/04/2023]
Abstract
Riboswitches are commonly used by bacteria to detect a variety of metabolites and ions to regulate gene expression. To date, nearly 40 different classes of riboswitches have been discovered, experimentally validated, and modeled at atomic resolution in complex with their cognate ligands. The research findings produced since the first riboswitch validation reports in 2002 reveal that these noncoding RNA domains exploit many different structural features to create binding pockets that are extremely selective for their target ligands. Some riboswitch classes are very common and are present in bacteria from nearly all lineages, whereas others are exceedingly rare and appear in only a few species whose DNA has been sequenced. Presented herein are the consensus sequences, structural models, and phylogenetic distributions for all validated riboswitch classes. Based on our findings, we predict that there are potentially many thousands of distinct bacterial riboswitch classes remaining to be discovered, but that the rarity of individual undiscovered classes will make it increasingly difficult to find additional examples of this RNA-based sensory and gene control mechanism.
Collapse
Affiliation(s)
- Phillip J McCown
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Keith A Corbino
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Shira Stav
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Madeline E Sherlock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
44
|
Dersch P, Khan MA, Mühlen S, Görke B. Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. Front Microbiol 2017; 8:803. [PMID: 28529506 PMCID: PMC5418344 DOI: 10.3389/fmicb.2017.00803] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/23/2023] Open
Abstract
The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Muna A. Khan
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| | - Sabrina Mühlen
- Department of Molecular Infection Biology, Helmholtz Centre for Infection ResearchBraunschweig, Germany
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of ViennaVienna, Austria
| |
Collapse
|
45
|
Dar D, Sorek R. Regulation of antibiotic-resistance by non-coding RNAs in bacteria. Curr Opin Microbiol 2017; 36:111-117. [PMID: 28414973 DOI: 10.1016/j.mib.2017.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance genes are commonly regulated by sophisticated mechanisms that activate gene expression in response to antibiotic exposure. Growing evidence suggest that cis-acting non-coding RNAs play a major role in regulating the expression of many resistance genes, specifically those which counteract the effects of translation-inhibiting antibiotics. These ncRNAs reside in the 5'UTR of the regulated gene, and sense the presence of the antibiotics by recruiting translating ribosomes onto short upstream open reading frames (uORFs) embedded in the ncRNA. In the presence of translation-inhibiting antibiotics ribosomes arrest over the uORF, altering the RNA structure of the regulator and switching the expression of the resistance gene to 'ON'. The specificity of these riboregulators is tuned to sense-specific classes of antibiotics based on the length and composition of the respective uORF. Here we review recent work describing new types of antibiotic-sensing RNA-based regulators and elucidating the molecular mechanisms by which they function to control antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Daniel Dar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
46
|
The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling. Antimicrob Agents Chemother 2016; 60:7178-7188. [PMID: 27645242 PMCID: PMC5118997 DOI: 10.1128/aac.01806-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation.
Collapse
|
47
|
Wang Y, Shen M, Yang J, Dai M, Chang Y, Zhang C, Luan G, Ling B, Jia X. Prevalence of carbapenemases among high-level aminoglycoside-resistant Acinetobacter baumannii isolates in a university hospital in China. Exp Ther Med 2016; 12:3642-3652. [PMID: 28101158 PMCID: PMC5228107 DOI: 10.3892/etm.2016.3828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2016] [Indexed: 11/28/2022] Open
Abstract
The prevalence of aminoglycoside resistant enzymes has previously been reported and extended-spectrum β-lactamase among Acinetobacter baumannii. To track the risk of multidrug-resistant A. baumannii, the present study aimed to determine the prevalence of carbapenemases in high-level aminoglycoside resistant A. baumannii over two years. A total of 118 strains of A. baumannii were consecutively collected in the First Affiliated Hospital of Chengdu Medical College, Chengdu, China. These isolates were investigated on the genetic basis of their resistance to aminoglycosides. The results showed that 75 (63.56%) isolates were high-level resistant to aminoglycosides, including gentamicin and amikacin (minimum inhibitory concentration, ≥256 µg/ml). Aminoglycoside-resistant genes ant(2″)-Ia, aac(6′)-Ib, aph(3′)-Ia, aac(3)-Ia, aac(3)-IIa, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH and npmA, and carbapenem-resistant genes blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, blaSIM, blaIMP, blaNDM-1 and blaKPC, were analyzed using polymerase chain reaction. The positive rate of ant(2″)-Ia, aac(6′)-Ib, aph(3′)-Ia, aac(3)-Ia and aac(3)-IIa was 66.95, 69.49, 42.37, 39.83 and 14.41%, respectively. armA was present in 72.0% (54/75) of A. baumannii isolates with high-level resistance to aminoglycosides. The remaining nine 16S ribosomal RNA methlyase genes (rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH and npmA) and aminoglycoside-modifying enzyme gene aac(6′)-Ib-cr were not detected. Among the 54 armA-positive isolates, the prevalence of the carbapenem resistant blaOXA-23 and blaOXA-51 genes was 79.63 and 100%, respectively. armA, ant(2″)-Ia and aac(6′)-Ib were positive in 43 isolates. The results of multilocus sequence typing revealed 31 sequence types (STs) in all clinical strains. Among these STs, the high-level aminoglycoside-resistant A. baumannii ST92, which mostly harbored blaOXA-23, was the predominant clone (29/75). In conclusion, A. baumannii harboring carbapenemases and aminoglycoside-resistant enzymes are extremely prevalent in western China, emphasizing the need to adopt surveillance programs to solve the therapeutic challenges that this presents.
Collapse
Affiliation(s)
- Yanhong Wang
- Non-Coding RNA and Drug Discovery Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Shen
- Non-Coding RNA and Drug Discovery Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Jingni Yang
- Non-Coding RNA and Drug Discovery Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Yaowen Chang
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Chi Zhang
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Guangxin Luan
- Non-Coding RNA and Drug Discovery Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Baodong Ling
- Small Molecule Drugs Sichuan Key Laboratory, Institute of Materia Medica, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Laboratory, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
48
|
Kogermann K, Putrinš M, Tenson T. Single-cell level methods for studying the effect of antibiotics on bacteria during infection. Eur J Pharm Sci 2016; 95:2-16. [PMID: 27577009 DOI: 10.1016/j.ejps.2016.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Considerable evidence about phenotypic heterogeneity among bacteria during infection has accumulated during recent years. This heterogeneity has to be considered if the mechanisms of infection and antibiotic action are to be understood, so we need to implement existing and find novel methods to monitor the effects of antibiotics on bacteria at the single-cell level. This review provides an overview of methods by which this aim can be achieved. Fluorescence label-based methods and Raman scattering as a label-free approach are discussed in particular detail. Other label-free methods that can provide single-cell level information, such as impedance spectroscopy and surface plasmon resonance, are briefly summarized. The advantages and disadvantages of these different methods are discussed in light of a challenging in vivo environment.
Collapse
Affiliation(s)
- Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
49
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
50
|
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592:244-59. [PMID: 27432066 DOI: 10.1016/j.gene.2016.07.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
Riboswitches are generally located in 5'-UTR region of mRNAs and specifically bind small ligands. Following ligand binding, gene expression is controlled mostly by transcription termination, translation inhibition or mRNA degradation processes. More than 30 classes of known riboswitches have been identified by now. Most riboswitches consist of an aptamer domain and an expression platform. The aptamer domain of each class of riboswitch is a conserved structure and stabilizes specific structures of the expression platforms through binding to specific compounds. In this review, we are highlighting most aspects of riboswitch research including the novel riboswitch discoveries, routine methods for discovering and investigating riboswitches along with newly discovered classes and mechanistic principles of riboswitch-mediated gene expression control. Moreover, we will give an overview about the potential of riboswitches as therapeutic targets for antibiotic design and also their utilization as biosensors for molecular detection.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran; The School of Advanced Biomedical Sciences (SABS), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|