1
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
2
|
Kögel A, Keidel A, Loukeri MJ, Kuhn CC, Langer LM, Schäfer IB, Conti E. Structural basis of mRNA decay by the human exosome-ribosome supercomplex. Nature 2024; 635:237-242. [PMID: 39385025 PMCID: PMC11540850 DOI: 10.1038/s41586-024-08015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The interplay between translation and mRNA decay is widespread in human cells1-3. In quality-control pathways, exonucleolytic degradation of mRNA associated with translating ribosomes is mediated largely by the cytoplasmic exosome4-9, which includes the exoribonuclease complex EXO10 and the helicase complex SKI238 (refs. 10-16). The helicase can extract mRNA from the ribosome and is expected to transfer it to the exoribonuclease core through a bridging factor, HBS1L3 (also known as SKI7), but the mechanisms of this molecular handover remain unclear7,17,18. Here we reveal how human EXO10 is recruited by HBS1L3 (SKI7) to an active ribosome-bound SKI238 complex. We show that rather than a sequential handover, a direct physical coupling mechanism takes place, which culminates in the formation of a cytoplasmic exosome-ribosome supercomplex. Capturing the structure during active decay reveals a continuous path in which an RNA substrate threads from the 80S ribosome through the SKI2 helicase into the exoribonuclease active site of the cytoplasmic exosome complex. The SKI3 subunit of the complex directly binds to HBS1L3 (SKI7) and also engages a surface of the 40S subunit, establishing a recognition platform in collided disomes. Exosome and ribosome thus work together as a single structural and functional unit in co-translational mRNA decay, coordinating their activities in a transient supercomplex.
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matina-Jasemi Loukeri
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher C Kuhn
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Paul Langerhans Institute Dresden and Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Hanson WA, Romero Agosto GA, Rouskin S. Viral RNA Interactome: The Ultimate Researcher's Guide to RNA-Protein Interactions. Viruses 2024; 16:1702. [PMID: 39599817 PMCID: PMC11599142 DOI: 10.3390/v16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA molecules in the cell are bound by a multitude of RNA-binding proteins (RBPs) with a variety of regulatory consequences. Often, interactions with these RNA-binding proteins are facilitated by the complex secondary and tertiary structures of RNA molecules. Viral RNAs especially are known to be heavily structured and interact with many RBPs, with roles including genome packaging, immune evasion, enhancing replication and transcription, and increasing translation efficiency. As such, the RNA-protein interactome represents a critical facet of the viral replication cycle. Characterization of these interactions is necessary for the development of novel therapeutics targeted at the disruption of essential replication cycle events. In this review, we aim to summarize the various roles of RNA structures in shaping the RNA-protein interactome, the regulatory roles of these interactions, as well as up-to-date methods developed for the characterization of the interactome and directions for novel, RNA-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (W.A.H.); (G.A.R.A.)
| |
Collapse
|
4
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
5
|
Wu Y, Ni MT, Wang YH, Wang C, Hou H, Zhang X, Zhou J. Structural basis of translation inhibition by a valine tRNA-derived fragment. Life Sci Alliance 2024; 7:e202302488. [PMID: 38599770 PMCID: PMC11009984 DOI: 10.26508/lsa.202302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.
Collapse
Affiliation(s)
- Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng-Ting Ni
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Chen Y, Chapagain S, Chien J, Pereira HS, Patel TR, Inoue-Nagata AK, Jan E. Factor-Dependent Internal Ribosome Entry Site and -1 Programmed Frameshifting Signal in the Bemisia-Associated Dicistrovirus 2. Viruses 2024; 16:695. [PMID: 38793577 PMCID: PMC11125867 DOI: 10.3390/v16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The dicistrovirus intergenic (IGR) IRES uses the most streamlined translation initiation mechanism: the IRES recruits ribosomes directly without using protein factors and initiates translation from a non-AUG codon. Several subtypes of dicistroviruses IRES have been identified; typically, the IRESs adopt two -to three overlapping pseudoknots with key stem-loop and unpaired regions that interact with specific domains of the ribosomal 40S and 60S subunits to direct translation. We previously predicted an atypical IGR IRES structure and a potential -1 programmed frameshift (-1 FS) signal within the genome of the whitefly Bemisia-associated dicistrovirus 2 (BaDV-2). Here, using bicistronic reporters, we demonstrate that the predicted BaDV-2 -1 FS signal can drive -1 frameshifting in vitro via a slippery sequence and a downstream stem-loop structure that would direct the translation of the viral RNA-dependent RNA polymerase. Moreover, the predicted BaDV-2 IGR can support IRES translation in vitro but does so through a mechanism that is not typical of known factorless dicistrovirus IGR IRES mechanisms. Using deletion and mutational analyses, the BaDV-2 IGR IRES is mapped within a 140-nucleotide element and initiates translation from an AUG codon. Moreover, the IRES does not bind directly to purified ribosomes and is sensitive to eIF2 and eIF4A inhibitors NSC1198983 and hippuristanol, respectively, indicating an IRES-mediated factor-dependent mechanism. Biophysical characterization suggests the BaDV-2 IGR IRES contains several stem-loops; however, mutational analysis suggests a model whereby the IRES is unstructured or adopts distinct conformations for translation initiation. In summary, we have provided evidence of the first -1 FS frameshifting signal and a novel factor-dependent IRES mechanism in this dicistrovirus family, thus highlighting the diversity of viral RNA-structure strategies to direct viral protein synthesis.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Subash Chapagain
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Jodi Chien
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Higor Sette Pereira
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | - Trushar R. Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | | | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| |
Collapse
|
7
|
Abaeva IS, Pestova TV, Hellen CUT. Genetic mechanisms underlying the structural elaboration and dissemination of viral internal ribosomal entry sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590008. [PMID: 38883778 PMCID: PMC11178006 DOI: 10.1101/2024.04.17.590008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Viral internal ribosomal entry sites (IRESs) form several classes that use distinct mechanisms to mediate end-independent initiation of translation. The origin of viral IRESs is a longstanding question. The simplest IRESs comprise tandem pseudoknots and occur in the intergenic region (IGR) of Dicistroviridae genomes (order Picornavirales ). Larger IGR IRESs contain additional elements that determine specific properties such as binding to the head of the ribosoma l 40S subunit. Metagenomic analyses reported here identified novel groups of structurally distinct IGR-like IRESs. The smallest of these (∼120nt long) comprise three pseudoknots and bind directly to the ribosomal P site. Others are up to 260nt long: insertions occurred at specific loci, possibly reflecting non-templated nucleotide insertion during replication. Various groups can be arranged in order, differing by the cumulative addition of single structural elements, suggesting an accretion mechanism for the structural elaboration of IRESs. Identification of chimeric IRESs implicates recombinational exchange of domains as a second mechanism for the diversification of IRES structure. Recombination likely also accounts for the presence of IGR-like IRESs at the 5'-end of some dicistrovirus-like genomes (e.g. Hangzhou dicistrovirus 3) and in the RNA genomes of Tombusviridae (order Tolivirales ), Marnaviridae (order Picornavirale s), and the 'Ripiresk' picorna-like clade (order Picornavirale s).
Collapse
|
8
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
9
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
11
|
Maloney A, Joseph S. Validating the EMCV IRES Secondary Structure with Structure-Function Analysis. Biochemistry 2024; 63:107-115. [PMID: 38081770 PMCID: PMC10896073 DOI: 10.1021/acs.biochem.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The encephalomyocarditis virus internal ribosome entry site (EMCV IRES) is a structured RNA sequence found in the 5' UTR of the genomic RNA of the encephalomyocarditis virus. The EMCV IRES structure facilitates efficient translation initiation without needing a 5' m7G cap or the cap-binding protein eIF4E. The secondary structure of IRES has been the subject of several previous studies, and a number of different structural models have been proposed. Though some domains of the IRES are conserved across the different secondary structure models, domain I of the IRES varies greatly across them. A literature comparison led to the identification of three regions of interest that display structural heterogeneity within past secondary structure models. To test the accuracy of the secondary structure models in these regions, we employed mutational analysis and SHAPE probing. Mutational analysis revealed that two helical regions within the identified regions of interest are important for IRES translation. These helical regions are consistent with only one of the structure predictions in the literature and do not form in EMCV IRES structures predicted using modern secondary structure prediction methods. The importance of these regions is further supported by multiple SHAPE protections when probing was performed after in vitro translation, indicating that these regions are involved in the IRES translation complex. This work validates a published structure and demonstrates the importance of domain I during EMCV IRES translation initiation.
Collapse
Affiliation(s)
- Adam Maloney
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| |
Collapse
|
12
|
Geng G, Yu C, Yuan X. Variable eIF4E-binding sites and their synergistic effect on cap-independent translation in a novel IRES of wheat yellow mosaic virus RNA2 isolates. Int J Biol Macromol 2024; 254:128062. [PMID: 37967597 DOI: 10.1016/j.ijbiomac.2023.128062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Some viral proteins are translated cap-independently via the internal ribosome entry site (IRES), which maintains conservative characteristic among different isolates of the same virus species. However, IRES activity showed a 7-fold variance in RNA2 of wheat yellow mosaic virus (WYMV) HC and LYJN isolates in this study. Based on RNA structure probing and mutagenesis assay, the loosened middle stem of H1 and the hepta-nucleotide top loop of H2 in the LYJN isolate synergistically ensured higher IRES activity than that in the HC isolate. In addition, the conserved top loop of H1 ensured basic IRES activity in HC and LYJN isolates. WYMV RNA2 5'-UTR specifically interacted with the wheat eIF4E, accomplished by the top loop of H1 in the HC isolate or the top loop of H1 and H2 in the LYJN isolate. The high IRES activity of the WYMV RNA2 LYJN isolate was regulated by two eIF4E-binding sites, which showed a synergistic effect mediated by the proximity of the H1 and H2 top loops owing to the flexibility of the middle stem in H1. This report presents a novel evolution pattern of IRES, which altered the number of eIF4E-binding sites to regulate IRES activity.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
13
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. RNA (NEW YORK, N.Y.) 2023; 29:1960-1972. [PMID: 37793791 PMCID: PMC10653386 DOI: 10.1261/rna.079825.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Dorn G, Gmeiner C, de Vries T, Dedic E, Novakovic M, Damberger FF, Maris C, Finol E, Sarnowski CP, Kohlbrecher J, Welsh TJ, Bolisetty S, Mezzenga R, Aebersold R, Leitner A, Yulikov M, Jeschke G, Allain FHT. Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility. Nat Commun 2023; 14:6429. [PMID: 37833274 PMCID: PMC10576089 DOI: 10.1038/s41467-023-42012-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.
Collapse
Affiliation(s)
- Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fred F Damberger
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christophe Maris
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Esteban Finol
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Timothy J Welsh
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Sreenath Bolisetty
- Laboratory of Food & Soft Materials, Institute of Food, Nutrition and Health, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food & Soft Materials, Institute of Food, Nutrition and Health, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Abaeva IS, Young C, Warsaba R, Khan N, Tran L, Jan E, Pestova T, Hellen CT. The structure and mechanism of action of a distinct class of dicistrovirus intergenic region IRESs. Nucleic Acids Res 2023; 51:9294-9313. [PMID: 37427788 PMCID: PMC10516663 DOI: 10.1093/nar/gkad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Internal ribosomal entry sites (IRESs) engage with the eukaryotic translation apparatus to promote end-independent initiation. We identified a conserved class of ∼150 nt long intergenic region (IGR) IRESs in dicistrovirus genomes derived from members of the phyla Arthropoda, Bryozoa, Cnidaria, Echinodermata, Entoprocta, Mollusca and Porifera. These IRESs, exemplified by Wenling picorna-like virus 2, resemble the canonical cricket paralysis virus (CrPV) IGR IRES in comprising two nested pseudoknots (PKII/PKIII) and a 3'-terminal pseudoknot (PKI) that mimics a tRNA anticodon stem-loop base-paired to mRNA. However, they are ∼50 nt shorter than CrPV-like IRESs, and PKIII is an H-type pseudoknot that lacks the SLIV and SLV stem-loops that are primarily responsible for the affinity of CrPV-like IRESs for the 40S ribosomal subunit and that restrict initial binding of PKI to its aminoacyl (A) site. Wenling-class IRESs bound strongly to 80S ribosomes but only weakly to 40S subunits. Whereas CrPV-like IRESs must be translocated from the A site to the peptidyl (P) site by elongation factor 2 for elongation to commence, Wenling-class IRESs bound directly to the P site of 80S ribosomes, and decoding begins without a prior translocation step. A chimeric CrPV clone containing a Wenling-class IRES was infectious, confirming that the IRES functioned in cells.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christina Young
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nadiyah Khan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lan Vy Tran
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
16
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS-CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. Genes Dev 2023; 37:844-860. [PMID: 37821106 PMCID: PMC10620056 DOI: 10.1101/gad.350829.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES, and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nt downstream from the mRNA entrance, indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of the Nsp1 NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Yani Arhab
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Anna Miścicka
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
17
|
Chen SR, Li ZQ, Xu J, Ding MY, Shan YM, Cheng YC, Zhang GX, Sun YW, Wang YQ, Wang Y. Celastrol attenuates hepatitis C virus translation and inflammatory response in mice by suppressing heat shock protein 90β. Acta Pharmacol Sin 2023; 44:1637-1648. [PMID: 36882503 PMCID: PMC10374583 DOI: 10.1038/s41401-023-01067-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/18/2023] [Indexed: 03/09/2023] Open
Abstract
Hepatitis C virus (HCV) infection is one of the major factors to trigger a sustained hepatic inflammatory response and hence hepatocellular carcinoma (HCC), but direct-acting-antiviral (DAAs) was not efficient to suppress HCC development. Heat shock protein 90 kDa (HSP90) is highly abundant in different types of cancers, and especially controls protein translation, endoplasmic reticulum stress, and viral replication. In this study we investigated the correlation between the expression levels of HSP90 isoforms and inflammatory response marker NLRP3 in different types of HCC patients as well as the effect of a natural product celastrol in suppression of HCV translation and associated inflammatory response in vivo. We identified that the expression level of HSP90β isoform was correlated with that of NLRP3 in the liver tissues of HCV positive HCC patients (R2 = 0.3867, P < 0.0101), but not in hepatitis B virus-associated HCC or cirrhosis patients. We demonstrated that celastrol (3, 10, 30 μM) dose-dependently suppressed the ATPase activity of both HSP90α and HSP90β, while its anti-HCV activity was dependent on the Ala47 residue in the ATPase pocket of HSP90β. Celastrol (200 nM) halted HCV internal ribosomal entry site (IRES)-mediated translation at the initial step by disrupting the association between HSP90β and 4EBP1. The inhibitory activity of celastrol on HCV RNA-dependent RNA polymerase (RdRp)-triggered inflammatory response also depended on the Ala47 residue of HSP90β. Intravenous injection of adenovirus expressing HCV NS5B (pAde-NS5B) in mice induced severe hepatic inflammatory response characterized by significantly increased infiltration of immune cells and hepatic expression level of Nlrp3, which was dose-dependently ameliorated by pretreatment with celastrol (0.2, 0.5 mg/kg, i.p.). This study reveals a fundamental role of HSP90β in governing HCV IRES-mediated translation as well as hepatic inflammation, and celastrol as a novel inhibitor of HCV translation and associated inflammation by specifically targeting HSP90β, which could be developed as a lead for the treatment of HSP90β positive HCV-associated HCC.
Collapse
Affiliation(s)
- Shao-Ru Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Zheng-Qing Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mo-Yu Ding
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ya-Ming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University, New Haven, CT, 06510, USA
| | - Gao-Xiao Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Ye-Wei Sun
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Yu-Qiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
- Guangzhou Magpie Pharmaceuticals Co., Ltd., Guangzhou International Business Incubator, Guangzhou, 510663, China
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China.
- Minister of Education Science Center for Precision Oncology, University of Macau, Macao SAR, China.
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Lidsky PV, Yuan J, Lashkevich KA, Dmitriev SE, Andino R. Monitoring integrated stress response in live Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548942. [PMID: 37502856 PMCID: PMC10369977 DOI: 10.1101/2023.07.13.548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- University of California San Francisco, San Francisco, CA, 94158
| | - Jing Yuan
- University of California San Francisco, San Francisco, CA, 94158
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Raul Andino
- University of California San Francisco, San Francisco, CA, 94158
| |
Collapse
|
19
|
Miścicka A, Lu K, Abaeva IS, Pestova TV, Hellen CUT. Initiation of translation on nedicistrovirus and related intergenic region IRESs by their factor-independent binding to the P site of 80S ribosomes. RNA (NEW YORK, N.Y.) 2023; 29:1051-1068. [PMID: 37041031 PMCID: PMC10275262 DOI: 10.1261/rna.079599.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
Initiation of translation on many viral mRNAs occurs by noncanonical mechanisms that involve 5' end-independent binding of ribosomes to an internal ribosome entry site (IRES). The ∼190-nt-long intergenic region (IGR) IRES of dicistroviruses such as cricket paralysis virus (CrPV) initiates translation without Met-tRNAi Met or initiation factors. Advances in metagenomics have revealed numerous dicistrovirus-like genomes with shorter, structurally distinct IGRs, such as nedicistrovirus (NediV) and Antarctic picorna-like virus 1 (APLV1). Like canonical IGR IRESs, the ∼165-nt-long NediV-like IGRs comprise three domains, but they lack key canonical motifs, including L1.1a/L1.1b loops (which bind to the L1 stalk of the ribosomal 60S subunit) and the apex of stem-loop V (SLV) (which binds to the head of the 40S subunit). Domain 2 consists of a compact, highly conserved pseudoknot (PKIII) that contains a UACUA loop motif and a protruding CrPV-like stem--loop SLIV. In vitro reconstitution experiments showed that NediV-like IRESs initiate translation from a non-AUG codon and form elongation-competent 80S ribosomal complexes in the absence of initiation factors and Met-tRNAi Met Unlike canonical IGR IRESs, NediV-like IRESs bind directly to the peptidyl (P) site of ribosomes leaving the aminoacyl (A) site accessible for decoding. The related structures of NediV-like IRESs and their common mechanism of action indicate that they exemplify a distinct class of IGR IRES.
Collapse
Affiliation(s)
- Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Kristen Lu
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, USA
| |
Collapse
|
20
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542379. [PMID: 37292671 PMCID: PMC10245999 DOI: 10.1101/2023.05.25.542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
21
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527910. [PMID: 36798401 PMCID: PMC9934684 DOI: 10.1101/2023.02.09.527910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells significantly simplifies cell lysate preparation. The new CFPS system improves the translation of 5' cap-dependent mRNAs as well as those that use internal ribosome entry site (IRES) mediated translation initiation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. We also find evidence for activation of regulatory pathways related to eukaryotic elongation factor 2 (eEF2) phosphorylation and ribosome quality control in the extracts. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
22
|
Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, Altman RB, Wang HY, Taunton J, Blanchard SC. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023; 617:200-207. [PMID: 37020024 PMCID: PMC10156603 DOI: 10.1038/s41586-023-05908-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Kundhavai Natchiar
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily J Rundlet
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander G Myasnikov
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dubochet Center for Imaging (DCI), EPFL, Lausanne, Switzerland
| | - Zoe L Watson
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Roger B Altman
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Scott C Blanchard
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Sabei A, Caldas Baia TG, Saffar R, Martin J, Frezza E. Internal Normal Mode Analysis Applied to RNA Flexibility and Conformational Changes. J Chem Inf Model 2023; 63:2554-2572. [PMID: 36972178 DOI: 10.1021/acs.jcim.2c01509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We investigated the capability of internal normal modes to reproduce RNA flexibility and predict observed RNA conformational changes and, notably, those induced by the formation of RNA-protein and RNA-ligand complexes. Here, we extended our iNMA approach developed for proteins to study RNA molecules using a simplified representation of the RNA structure and its potential energy. Three data sets were also created to investigate different aspects. Despite all the approximations, our study shows that iNMA is a suitable method to take into account RNA flexibility and describe its conformational changes opening the route to its applicability in any integrative approach where these properties are crucial.
Collapse
|
24
|
Liu Y, Cui J, Hoffman AR, Hu JF. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif 2023; 56:e13367. [PMID: 36547008 PMCID: PMC9977666 DOI: 10.1111/cpr.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Protein translation is a critical regulatory event involved in nearly all physiological and pathological processes. Eukaryotic translation initiation factors are dedicated to translation initiation, the most highly regulated stage of protein synthesis. Eukaryotic translation initiation factor 4G2 (eIF4G2, also called p97, NAT1 and DAP5), an eIF4G family member that lacks the binding sites for 5' cap binding protein eIF4E, is widely considered to be a key factor for internal ribosome entry sites (IRESs)-mediated cap-independent translation. However, recent findings demonstrate that eIF4G2 also supports many other translation initiation pathways. In this review, we summarize the role of eIF4G2 in a variety of cap-independent and -dependent translation initiation events. Additionally, we also update recent findings regarding the role of eIF4G2 in apoptosis, cell survival, cell differentiation and embryonic development. These studies reveal an emerging new picture of how eIF4G2 utilizes diverse translational mechanisms to regulate gene expression.
Collapse
Affiliation(s)
- Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital, Jilin University, Changchun, Jilin, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
25
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
26
|
Sadasivan J, Vlok M, Wang X, Nayak A, Andino R, Jan E. Targeting Nup358/RanBP2 by a viral protein disrupts stress granule formation. PLoS Pathog 2022; 18:e1010598. [PMID: 36455064 PMCID: PMC9746944 DOI: 10.1371/journal.ppat.1010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/13/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Viruses have evolved mechanisms to modulate cellular pathways to facilitate infection. One such pathway is the formation of stress granules (SG), which are ribonucleoprotein complexes that assemble during translation inhibition following cellular stress. Inhibition of SG assembly has been observed under numerous virus infections across species, suggesting a conserved fundamental viral strategy. However, the significance of SG modulation during virus infection is not fully understood. The 1A protein encoded by the model dicistrovirus, Cricket paralysis virus (CrPV), is a multifunctional protein that can bind to and degrade Ago-2 in an E3 ubiquitin ligase-dependent manner to block the antiviral RNA interference pathway and inhibit SG formation. Moreover, the R146 residue of 1A is necessary for SG inhibition and CrPV infection in both Drosophila S2 cells and adult flies. Here, we uncoupled CrPV-1A's functions and provide insight into its underlying mechanism for SG inhibition. CrPV-1A mediated inhibition of SGs requires the E3 ubiquitin-ligase binding domain and the R146 residue, but not the Ago-2 binding domain. Wild-type but not mutant CrPV-1A R146A localizes to the nuclear membrane which correlates with nuclear enrichment of poly(A)+ RNA. Transcriptome changes in CrPV-infected cells are dependent on the R146 residue. Finally, Nup358/RanBP2 is targeted and degraded in CrPV-infected cells in an R146-dependent manner and the depletion of Nup358 blocks SG formation. We propose that CrPV utilizes a multiprong strategy whereby the CrPV-1A protein interferes with a nuclear event that contributes to SG inhibition in order to promote infection.
Collapse
Affiliation(s)
- Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinying Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arabinda Nayak
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
27
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
28
|
Genuth NR, Shi Z, Kunimoto K, Hung V, Xu AF, Kerr CH, Tiu GC, Oses-Prieto JA, Salomon-Shulman REA, Axelrod JD, Burlingame AL, Loh KM, Barna M. A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nat Commun 2022; 13:5491. [PMID: 36123354 PMCID: PMC9485161 DOI: 10.1038/s41467-022-33263-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023] Open
Abstract
Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zhen Shi
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Genentech Inc, South San Francisco, CA, 94080, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Adele F Xu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Gerald C Tiu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | | | - Jeffrey D Axelrod
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kyle M Loh
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Multiple Viral Protein Genome-Linked Proteins Compensate for Viral Translation in a Positive-Sense Single-Stranded RNA Virus Infection. J Virol 2022; 96:e0069922. [PMID: 35993738 PMCID: PMC9472611 DOI: 10.1128/jvi.00699-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.
Collapse
|
30
|
Roberts L, Wieden HJ. The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1. Nucleic Acids Res 2022; 50:9355-9367. [PMID: 36039756 PMCID: PMC9458429 DOI: 10.1093/nar/gkac697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Internal ribosome entry sites (IRESs) are RNA elements capable of initiating translation on an internal portion of a messenger RNA. The intergenic region (IGR) IRES of the Dicistroviridae virus family folds into a triple pseudoknot tertiary structure, allowing it to recruit the ribosome and initiate translation in a structure dependent manner. This IRES has also been reported to drive translation in Escherichia coli and to date is the only described translation initiation signal that functions across domains of life. Here we show that unlike in the eukaryotic context the tertiary structure of the IGR IRES is not required for prokaryotic ribosome recruitment. In E. coli IGR IRES translation efficiency is dependent on ribosomal protein S1 in conjunction with an AG-rich Shine-Dalgarno-like element, supporting a model where the translational activity of the IGR IRESs is due to S1-mediated canonical prokaryotic translation.
Collapse
Affiliation(s)
- Luc Roberts
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
31
|
Kögel A, Keidel A, Bonneau F, Schäfer IB, Conti E. The human SKI complex regulates channeling of ribosome-bound RNA to the exosome via an intrinsic gatekeeping mechanism. Mol Cell 2022; 82:756-769.e8. [PMID: 35120588 PMCID: PMC8860381 DOI: 10.1016/j.molcel.2022.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
The superkiller (SKI) complex is the cytoplasmic co-factor and regulator of the RNA-degrading exosome. In human cells, the SKI complex functions mainly in co-translational surveillance-decay pathways, and its malfunction is linked to a severe congenital disorder, the trichohepatoenteric syndrome. To obtain insights into the molecular mechanisms regulating the human SKI (hSKI) complex, we structurally characterized several of its functional states in the context of 80S ribosomes and substrate RNA. In a prehydrolytic ATP form, the hSKI complex exhibits a closed conformation with an inherent gating system that effectively traps the 80S-bound RNA into the hSKI2 helicase subunit. When active, hSKI switches to an open conformation in which the gating is released and the RNA 3′ end exits the helicase. The emerging picture is that the gatekeeping mechanism and architectural remodeling of hSKI underpin a regulated RNA channeling system that is mechanistically conserved among the cytoplasmic and nuclear helicase-exosome complexes. hSKI has closed and open states connected to different helicase conformations The intrinsic closed state traps the RNA 3′ end and blocks the RNA exit path ATP induces the open state of hSKI, allowing 80S ribosome-bound RNA extraction The hSKI open state primes hSKI2 for channeling RNA to the cytosolic exosome
Collapse
Affiliation(s)
- Alexander Kögel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Achim Keidel
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
32
|
The hinge region of the Israeli acute paralysis virus internal ribosome entry site directs ribosomal positioning, translational activity and virus infection. J Virol 2022; 96:e0133021. [PMID: 35019716 DOI: 10.1128/jvi.01330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All viruses must usurp host ribosomes for viral protein synthesis. Dicistroviruses utilize an InterGenic Region Internal Ribosome Entry Site (IGR IRES) to directly recruit ribosomes and mediate translation initiation from a non-AUG start codon. The IGR IRES adopts a three-pseudoknot structure that is comprised of a ribosome binding domain of pseudoknot II and III (PKII and PKIII), and a tRNA-like anticodon domain (PKI) connected via a short, one to three nucleotide hinge region. Recent cryo-EM structural analysis of the dicistrovirus Taura syndrome virus (TSV) IGR IRES bound to the ribosome suggests that the hinge region may facilitate translocation of the IRES from the ribosomal A to P site. In this study, we provide mechanistic and functional insights into the role of the hinge region in IGR IRES translation. Using the honeybee dicistrovirus, Israeli acute paralysis virus (IAPV), as a model, we demonstrate that mutations of the hinge region resulted in decreased IRES-dependent translation in vitro. Toeprinting primer extension analysis of mutant IRESs bound to purified ribosomes and in rabbit reticulocyte lysates showed defects in the initial ribosome positioning on the IRES. Finally, using a hybrid dicistrovirus clone, mutations in the hinge region of the IAPV IRES resulted in decreased viral yield. Our work reveals an unexpected role of the hinge region of the dicistrovirus IGR IRES coordinating the two independently folded domains of the IRES to properly position the ribosome to start translation. IMPORTANCE Viruses must use the host cell machinery to direct viral protein expression for productive infection. One such mechanism is an internal ribosome entry site which can directly recruit host cell machinery. In this study, we have identified a novel sequence in an IRES that provides insight into the mechanism of viral gene expression. Specifically, this novel sequence promotes viral IRES activity by directly guiding the host cell machinery to start gene expression at a specific site.
Collapse
|
33
|
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 2021; 49:11491-11511. [PMID: 34648019 PMCID: PMC8599844 DOI: 10.1093/nar/gkab908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
Collapse
Affiliation(s)
- Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Molecular Reproduction, Development and Genetics (MRDG), Biological Sciences Building, Indian Institute of Science, Bangalore 560012, India
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Villamayor
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
| | | | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1060-1094. [PMID: 34565312 PMCID: PMC8436584 DOI: 10.1134/s0006297921090042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Ivan I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia O Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vadim I Agol
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute of Poliomyelitis, Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
35
|
In Vitro Reconstitution of Yeast Translation System Capable of Synthesizing Long Polypeptide and Recapitulating Programmed Ribosome Stalling. Methods Protoc 2021; 4:mps4030045. [PMID: 34287320 PMCID: PMC8293373 DOI: 10.3390/mps4030045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The rates of translation elongation or termination in eukaryotes are modulated through cooperative molecular interactions involving mRNA, the ribosome, aminoacyl- and nascent polypeptidyl-tRNAs, and translation factors. To investigate the molecular mechanisms underlying these processes, we developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors, utilizing CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing not only short oligopeptides but also long reporter proteins such as nanoluciferase. By setting appropriate translation reaction conditions, such as the Mg2+/polyamine concentration, the arrest of translation elongation by known ribosome-stalling sequences (e.g., polyproline and CGA codon repeats) is properly recapitulated in this system. We describe protocols for the preparation of the system components, manipulation of the system, and detection of the translation products. We also mention critical parameters for setting up the translation reaction conditions. This reconstituted translation system not only facilitates biochemical analyses of translation but is also useful for various applications, such as structural and functional studies with the aim of designing drugs that act on eukaryotic ribosomes, and the development of systems for producing novel functional proteins by incorporating unnatural amino acids by eukaryotic ribosomes.
Collapse
|
36
|
Wu S, Li X, Wang G. tRNA-like structures and their functions. FEBS J 2021; 289:5089-5099. [PMID: 34117728 DOI: 10.1111/febs.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
tRNA-like structures (TLSs) were first identified in the RNA genomes of turnip yellow mosaic virus. Since then, TLSs have been found in many other species including mammals, and the RNAs harboring these structures range from viral genomic RNAs to mRNAs and noncoding RNAs. Some progress has also been made on understanding their functions that include regulation of RNA replication, translation enhancement, RNA-protein interaction, and more. In this review, we summarize the current knowledge about the regulations and functions of these TLSs. Possible future directions of the field are also briefly discussed.
Collapse
Affiliation(s)
- Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
37
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
38
|
Wang X, Vlok M, Flibotte S, Jan E. Resurrection of a Viral Internal Ribosome Entry Site from a 700 Year Old Ancient Northwest Territories Cripavirus. Viruses 2021; 13:v13030493. [PMID: 33802878 PMCID: PMC8002689 DOI: 10.3390/v13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022] Open
Abstract
The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Marli Vlok
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (X.W.); (M.V.)
- Correspondence: ; Tel.: +1-604-827-4226
| |
Collapse
|
39
|
Kosmicki JA, Horowitz JE, Banerjee N, Lanche R, Marcketta A, Maxwell E, Bai X, Sun D, Backman JD, Sharma D, Kang HM, O'Dushlaine C, Yadav A, Mansfield AJ, Li AH, Watanabe K, Gurski L, McCarthy SE, Locke AE, Khalid S, O'Keeffe S, Mbatchou J, Chazara O, Huang Y, Kvikstad E, O'Neill A, Nioi P, Parker MM, Petrovski S, Runz H, Szustakowski JD, Wang Q, Wong E, Cordova-Palomera A, Smith EN, Szalma S, Zheng X, Esmaeeli S, Davis JW, Lai YP, Chen X, Justice AE, Leader JB, Mirshahi T, Carey DJ, Verma A, Sirugo G, Ritchie MD, Rader DJ, Povysil G, Goldstein DB, Kiryluk K, Pairo-Castineira E, Rawlik K, Pasko D, Walker S, Meynert A, Kousathanas A, Moutsianas L, Tenesa A, Caulfield M, Scott R, Wilson JF, Baillie JK, Butler-Laporte G, Nakanishi T, Lathrop M, Richards JB, Jones M, Balasubramanian S, Salerno W, Shuldiner AR, Marchini J, Overton JD, Habegger L, Cantor MN, Reid JG, Baras A, Abecasis GR, Ferreira MA. A catalog of associations between rare coding variants and COVID-19 outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.10.28.20221804. [PMID: 33655273 PMCID: PMC7924298 DOI: 10.1101/2020.10.28.20221804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.
Collapse
Affiliation(s)
- J A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J E Horowitz
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - N Banerjee
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - R Lanche
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Marcketta
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Maxwell
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - X Bai
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sun
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sharma
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H M Kang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - C O'Dushlaine
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Yadav
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A J Mansfield
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A H Li
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Watanabe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Gurski
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S E McCarthy
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A E Locke
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Khalid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S O'Keeffe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Mbatchou
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - O Chazara
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Y Huang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - E Kvikstad
- Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - A O'Neill
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - P Nioi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - M M Parker
- Alnylam Pharmaceuticals, 675 West Kendall St, Cambridge, MA 02142, USA
| | - S Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - H Runz
- Biogen, 300 Binney St, Cambridge, MA 02142, USA
| | - J D Szustakowski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Q Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - E Wong
- Biogen, 300 Binney St, Cambridge, MA 02142, USA
| | | | - E N Smith
- Takeda California Inc., 9625 Towne Centre Dr, San Diego, CA 92121, USA
| | - S Szalma
- Takeda California Inc., 9625 Towne Centre Dr, San Diego, CA 92121, USA
| | - X Zheng
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - S Esmaeeli
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - J W Davis
- AbbVie, Inc., 1 N. Waukegan Rd, North Chicago, IL 60064, USA
| | - Y-P Lai
- Pfizer, Inc., 1 Portland Street, Cambridge MA 02139, USA
| | - X Chen
- Pfizer, Inc., 1 Portland Street, Cambridge MA 02139, USA
| | | | | | | | | | - A Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Povysil
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - D B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - K Kiryluk
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - E Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - K Rawlik
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - D Pasko
- Genomics England, London EC1M 6BQ, UK
| | - S Walker
- Genomics England, London EC1M 6BQ, UK
| | - A Meynert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | - A Tenesa
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Teviot Place, Edinburgh EH8 9AG, UK
| | - M Caulfield
- Genomics England, London EC1M 6BQ, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - R Scott
- Genomics England, London EC1M 6BQ, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - J F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Teviot Place, Edinburgh EH8 9AG, UK
| | - J K Baillie
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
| | - G Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec H3A 0G4, Canada
| | - T Nakanishi
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Research Fellow, Japan Society for the Promotion of Science
| | - M Lathrop
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Canadian Centre for Computational Genomics, McGill University, Montréal, Québec H3A 0G4, Canada
| | - J B Richards
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Human Genetics, McGill University, Montréal, Québec H3A 0G4, Canada
- Department of Twins Research, King's College London, London WC2R 2LS, UK
| | - M Jones
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Balasubramanian
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - W Salerno
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Marchini
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Overton
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Habegger
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M N Cantor
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J G Reid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G R Abecasis
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M A Ferreira
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| |
Collapse
|
40
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021; 118:e2017715118. [PMID: 33479166 PMCID: PMC8017934 DOI: 10.1073/pnas.2017715118] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
41
|
Lapointe CP, Grosely R, Johnson AG, Wang J, Fernández IS, Puglisi JD. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci U S A 2021. [PMID: 33479166 DOI: 10.1101/2020.08.20.259770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY 10032
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
42
|
Abe T, Nagai R, Imataka H, Takeuchi-Tomita N. Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA. J Biochem 2021; 167:441-450. [PMID: 32053165 DOI: 10.1093/jb/mvaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
We developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors and programmed by CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing the active reporter protein, nanoLuciferase, with a molecular weight of 19 kDa. The protein synthesis by the system is appropriately regulated by controlling its composition, including translation factors, amino acids and antibiotics. We found that a high eEF1A concentration relative to the ribosome concentration is critically required for efficient IRES-mediated translation initiation, to ensure its dominance over IRES-independent random internal translation initiation.
Collapse
Affiliation(s)
- Taisho Abe
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Riku Nagai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Hiroaki Imataka
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
43
|
Abaeva IS, Vicens Q, Bochler A, Soufari H, Simonetti A, Pestova TV, Hashem Y, Hellen CUT. The Halastavi árva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Cell Rep 2020; 33:108476. [PMID: 33296660 DOI: 10.1016/j.celrep.2020.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits. By using in vitro reconstitution and cryoelectron microscopy (cryo-EM), we now report that the HalV IGR IRES functions by the simplest initiation mechanism that involves binding to 80S ribosomes such that PKI is placed in the P site, so that the A site contains the first codon that is directly accessible for decoding without prior eEF2-mediated translocation of PKI.
Collapse
Affiliation(s)
- Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA
| | - Quentin Vicens
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Anthony Bochler
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Heddy Soufari
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Angelita Simonetti
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 15 rue René Descartes, 67000 Strasbourg, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| | - Yaser Hashem
- INSERM U1212 Acides Nucléiques: Régulations Naturelle et Artificielle, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, MSC 44, Brooklyn, NY 11203, USA.
| |
Collapse
|
44
|
Walters B, Axhemi A, Jankowsky E, Thompson SR. Binding of a viral IRES to the 40S subunit occurs in two successive steps mediated by eS25. Nucleic Acids Res 2020; 48:8063-8073. [PMID: 32609821 PMCID: PMC7430650 DOI: 10.1093/nar/gkaa547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism for how internal ribosome entry sites (IRESs) recruit ribosomes to initiate translation of an mRNA is not completely understood. We investigated how a 40S subunit was recruited by the cricket paralysis virus intergenic region (CrPV IGR) IRES to form a stable 40S-IRES complex. Kinetic binding studies revealed that formation of the complex between the CrPV IGR and the 40S subunit consisted of two-steps: an initial fast binding step of the IRES to the 40S ribosomal subunit, followed by a slow unimolecular reaction consistent with a conformational change that stabilized the complex. We further showed that the ribosomal protein S25 (eS25), which is required by functionally and structurally diverse IRESs, impacts both steps of the complex formation. Mutations in eS25 that reduced CrPV IGR IRES activity either decreased 40S-IRES complex formation, or increased the rate of the conformational change that was required to form a stable 40S-IRES complex. Our data are consistent with a model in which eS25 facilitates initial binding of the CrPV IGR IRES to the 40S while ensuring that the conformational change stabilizing the 40S-IRES complex does not occur prematurely.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Armend Axhemi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Akef A, McGraw K, Cappell SD, Larson DR. Ribosome biogenesis is a downstream effector of the oncogenic U2AF1-S34F mutation. PLoS Biol 2020; 18:e3000920. [PMID: 33137094 PMCID: PMC7660540 DOI: 10.1371/journal.pbio.3000920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/12/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023] Open
Abstract
U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) forms a heterodimeric complex with U2AF2 that is primarily responsible for 3' splice site selection. U2AF1 mutations have been identified in most cancers but are prevalent in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML), and the most common mutation is a missense substitution of serine-34 to phenylalanine (S34F). The U2AF heterodimer also has a noncanonical function as a translational regulator. Here, we report that the U2AF1-S34F mutation results in specific misregulation of the translation initiation and ribosome biogenesis machinery. The net result is an increase in mRNA translation at the single-cell level. Among the translationally up-regulated targets of U2AF1-S34F is Nucleophosmin 1 (NPM1), which is a major driver of myeloid malignancy. Depletion of NPM1 impairs the viability of the U2AF1-S34F mutant cells and causes ribosomal RNA (rRNA) processing defects, thus indicating an unanticipated synthetic interaction between U2AF1, NPM1, and ribosome biogenesis. Our results establish a unique molecular phenotype for the U2AF1 mutation that recapitulates translational misregulation in myeloid disease.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cell Cycle Checkpoints/genetics
- Cell Line
- Eukaryotic Initiation Factors/genetics
- Eukaryotic Initiation Factors/metabolism
- Gene Silencing
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Transgenic
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myeloid Progenitor Cells/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Abdalla Akef
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathy McGraw
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel R. Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Johnson AG, Flynn RA, Lapointe CP, Ooi YS, Zhao ML, Richards CM, Qiao W, Yamada SB, Couthouis J, Gitler AD, Carette JE, Puglisi JD. A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Res 2020; 48:7279-7297. [PMID: 32463448 PMCID: PMC7367175 DOI: 10.1093/nar/gkaa444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Yaw Shin Ooi
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Shizuka B Yamada
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Res 2020; 48:6170-6183. [PMID: 32266934 PMCID: PMC7293025 DOI: 10.1093/nar/gkaa221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.
Collapse
Affiliation(s)
- Ketty Pernod
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Laure Schaeffer
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Johana Chicher
- Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg - Esplanade, CNRS FRC1589, Université de Strasbourg, 2, allée Konrad Roentgen Descartes, F-67084 Strasbourg, France
| | - Eveline Hok
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Christian Rick
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, Rita Liddy Hollings Science Center, 58 Coming Street, Charleston, SC, USA
| | - Gilbert Eriani
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Michael Ryckelynck
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Franck Martin
- Institut de Biologie Moléculaire et Cellulaire, 'Architecture et Réactivité de l'ARN' CNRS UPR9002, Université de Strasbourg, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
48
|
Herrero del Valle A, Innis CA. Prospects for antimicrobial development in the cryo-EM era – a focus on the ribosome. FEMS Microbiol Rev 2020; 44:793-803. [DOI: 10.1093/femsre/fuaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Resistance to antimicrobial drugs used to treat bacterial, viral, fungal and parasitic infections is a major health concern requiring a coordinated response across the globe. An important aspect in the fight against antimicrobial resistance is the development of novel drugs that are effective against resistant pathogens. Drug development is a complex trans-disciplinary endeavor, in which structural biology plays a major role by providing detailed functional and mechanistic information on an antimicrobial target and its interactions with small molecule inhibitors. Although X-ray crystallography and nuclear magnetic resonance have until now been the methods of choice to characterize microbial targets and drive structure-based drug development, cryo-electron microscopy is rapidly gaining ground in these areas. In this perspective, we will discuss how cryo-electron microscopy is changing our understanding of an established antimicrobial target, the ribosome, and how methodological developments could help this technique become an integral part of the antimicrobial drug discovery pipeline.
Collapse
Affiliation(s)
- Alba Herrero del Valle
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| | - C Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
49
|
Ribosomes: An Exciting Avenue in Stem Cell Research. Stem Cells Int 2020; 2020:8863539. [PMID: 32695182 PMCID: PMC7362291 DOI: 10.1155/2020/8863539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell research has focused on genomic studies. However, recent evidence has indicated the involvement of epigenetic regulation in determining the fate of stem cells. Ribosomes play a crucial role in epigenetic regulation, and thus, we focused on the role of ribosomes in stem cells. Majority of living organisms possess ribosomes that are involved in the translation of mRNA into proteins and promote cellular proliferation and differentiation. Ribosomes are stable molecular machines that play a role with changes in the levels of RNA during translation. Recent research suggests that specific ribosomes actively regulate gene expression in multiple cell types, such as stem cells. Stem cells have the potential for self-renewal and differentiation into multiple lineages and, thus, require high efficiency of translation. Ribosomes induce cellular transdifferentiation and reprogramming, and disrupted ribosome synthesis affects translation efficiency, thereby hindering stem cell function leading to cell death and differentiation. Stem cell function is regulated by ribosome-mediated control of stem cell-specific gene expression. In this review, we have presented a detailed discourse on the characteristics of ribosomes in stem cells. Understanding ribosome biology in stem cells will provide insights into the regulation of stem cell function and cellular reprogramming.
Collapse
|
50
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|