1
|
Pandi-Perumal SR, Saravanan KM, Paul S, Spence DW, Chidambaram SB. Unraveling the Mysteries of Sleep: Exploring Phylogenomic Sleep Signals in the Recently Characterized Archaeal Phylum Lokiarchaeota near Loki's Castle. Int J Mol Sci 2024; 26:60. [PMID: 39795919 PMCID: PMC11719702 DOI: 10.3390/ijms26010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role. Our findings indicate that a conserved suite of genes associated with energy metabolism and cellular repair is involved, thus suggesting that sleep plays a primordial role in cellular maintenance. The data cited lend credence to the idea that sleep improves organismal fitness across evolutionary time by acting as a restorative process. Notably, our approach demonstrates that phylogenomics is more useful than standard phylogenetics for clarifying common evolutionary traits. By offering insight into the evolutionary history of sleep and putting forth a novel model framework for sleep research across taxa, these findings contribute to our growing understanding of the molecular foundation of sleep. This study lays the groundwork for further investigations into the importance of sleep in various organisms. Such investigations could have consequences for improving human health and more generally could provide a deeper comprehension of the fundamental processes of life.
Collapse
Affiliation(s)
- Seithikurippu R. Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology & Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Special Interest Group—Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
2
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
3
|
Bezares Calderón LA, Shahidi R, Jékely G. Mechanism of barotaxis in marine zooplankton. eLife 2024; 13:RP94306. [PMID: 39298255 PMCID: PMC11412693 DOI: 10.7554/elife.94306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.
Collapse
Affiliation(s)
| | - Réza Shahidi
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Electron Microscopy Core Facility (EMCF), Heidelberg UniversityHeidelbergGermany
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Centre for Organismal Studies (COS), Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
4
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
5
|
Payton L, Last KS, Grigor J, Noirot C, Hüppe L, Conway DVP, Dannemeyer M, Wilcockson D, Meyer B. Revealing the profound influence of diapause on gene expression: Insights from the annual transcriptome of the copepod Calanus finmarchicus. Mol Ecol 2024; 33:e17425. [PMID: 38847383 DOI: 10.1111/mec.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- CNRS, Univ. Bordeaux, Bordeaux INP, EPOC, UMR 5805, Arcachon, F-33120, France
| | - Kim S Last
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - Jordan Grigor
- Scottish Association for Marine Science, Oban, Argyll, UK
| | - Céline Noirot
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, Castanet-Tolosan, France
| | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - David V P Conway
- Marine Biological Association of the UK, the Laboratory, Plymouth, UK
| | - Mona Dannemeyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Wollesen T, Rodriguez Monje SV, Oel AP, Arendt D. Characterization of eyes, photoreceptors, and opsins in developmental stages of the arrow worm Spadella cephaloptera (Chaetognatha). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:342-353. [PMID: 36855226 PMCID: PMC10952353 DOI: 10.1002/jez.b.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | | | - Adam P. Oel
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Detlev Arendt
- Developmental Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
7
|
Raghavan V, Eichele G, Larink O, Karin EL, Söding J. RNA sequencing indicates widespread conservation of circadian clocks in marine zooplankton. NAR Genom Bioinform 2023; 5:lqad007. [PMID: 36814456 PMCID: PMC9939569 DOI: 10.1093/nargab/lqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are important eukaryotic constituents of marine ecosystems characterized by limited motility in the water. These metazoans predominantly occupy intermediate trophic levels and energetically link primary producers to higher trophic levels. Through processes including diel vertical migration (DVM) and production of sinking pellets they also contribute to the biological carbon pump which regulates atmospheric CO2 levels. Despite their prominent role in marine ecosystems, and perhaps, because of their staggering diversity, much remains to be discovered about zooplankton biology. In particular, the circadian clock, which is known to affect important processes such as DVM has been characterized only in a handful of zooplankton species. We present annotated de novo assembled transcriptomes from a diverse, representative cohort of 17 marine zooplankton representing six phyla and eight classes. These transcriptomes represent the first sequencing data for a number of these species. Subsequently, using translated proteomes derived from this data, we demonstrate in silico the presence of orthologs to most core circadian clock proteins from model metazoans in all sequenced species. Our findings, bolstered by sequence searches against publicly available data, indicate that the molecular machinery underpinning endogenous circadian clocks is widespread and potentially well conserved across marine zooplankton taxa.
Collapse
Affiliation(s)
| | | | - Otto Larink
- Evolutionary Biology, Zoological Institute, Technical University Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Eli Levy Karin
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | | |
Collapse
|
8
|
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022; 11:cells11243966. [PMID: 36552730 PMCID: PMC9776813 DOI: 10.3390/cells11243966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Aide Macias-Muñoz
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart J. Jaeger
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Correspondence:
| |
Collapse
|
9
|
Yang Y, Han W, Zhang A, Zhao M, Cong W, Jia Y, Wang D, Zhao R. Chronic corticosterone disrupts the circadian rhythm of CRH expression and m 6A RNA methylation in the chicken hypothalamus. J Anim Sci Biotechnol 2022; 13:29. [PMID: 35255992 PMCID: PMC8902767 DOI: 10.1186/s40104-022-00677-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH), the major secretagogue of the hypothalamic-pituitary-adrenal (HPA) axis, is intricately intertwined with the clock genes to regulate the circadian rhythm of various body functions. N6-methyladenosine (m6A) RNA methylation is involved in the regulation of circadian rhythm, yet it remains unknown whether CRH expression and m6A modification oscillate with the clock genes in chicken hypothalamus and how the circadian rhythms change under chronic stress. RESULTS Chronic exposure to corticosterone (CORT) eliminated the diurnal patterns of plasma CORT and melatonin levels in the chicken. The circadian rhythms of clock genes in hippocampus, hypothalamus and pituitary are all disturbed to different extent in CORT-treated chickens. The most striking changes occur in hypothalamus in which the diurnal fluctuation of CRH mRNA is flattened, together with mRNA of other feeding-related neuropeptides. Interestingly, hypothalamic m6A level oscillates in an opposite pattern to CRH mRNA, with lowest m6A level after midnight (ZT18) corresponding to the peak of CRH mRNA before dawn (ZT22). CORT diminished the circadian rhythm of m6A methylation with significantly increased level at night. Further site-specific m6A analysis on 3'UTR of CRH mRNA indicates that higher m6A on 3'UTR of CRH mRNA coincides with lower CRH mRNA at night (ZT18 and ZT22). CONCLUSIONS Our results indicate that chronic stress disrupts the circadian rhythms of CRH expression in hypothalamus, leading to dysfunction of HPA axis in the chicken. RNA m6A modification is involved in the regulation of circadian rhythms in chicken hypothalamus under both basal and chronic stress conditions.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wanwan Han
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Aijia Zhang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mindie Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wei Cong
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Arendt D, Urzainqui IQ, Vergara HM. The conserved core of the nereid brain: Circular CNS, apical nervous system and lhx6-arx-dlx neurons. Curr Opin Neurobiol 2021; 71:178-187. [PMID: 34861534 DOI: 10.1016/j.conb.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
When bilaterian animals first emerged, an enhanced perception of the Precambrian environment was key to their stunning success. This occurred through the acquisition of an anterior brain, as found in most extant bilaterians. What were the core circuits of the first brain, and how do they relate to today's diversity? With two landmark resources - the full connectome and a multimodal cellular atlas combining gene expression and ultrastructure - the young worm of the marine annelid Platynereis dumerilii takes center stage in comparative bilaterian neuroanatomy. The new data suggest a composite structure of the ancestral bilaterian brain, with the anterior end of a circular CNS fused to a sensory-neurosecretory apical system, and with lhx6-arx-dlx chemosensory circuits giving rise to associative centers in the descending bilaterian lineages.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany.
| | - Idoia Quintana Urzainqui
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | | |
Collapse
|
11
|
Tan DX, Hardeland R. The Reserve/Maximum Capacity of Melatonin's Synthetic Function for the Potential Dimorphism of Melatonin Production and Its Biological Significance in Mammals. Molecules 2021; 26:7302. [PMID: 34885890 PMCID: PMC8659113 DOI: 10.3390/molecules26237302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
In this article, we attempt to classify a potential dimorphism of melatonin production. Thus, a new concept of "reserve or maximum capacity of melatonin synthetic function" is introduced to explain the subtle dimorphism of melatonin production in mammals. Considering ASMT/ASMTL genes in the pseudoautosomal region of sex chromosomes with high prevalence of mutation in males, as well as the sex bias of the mitochondria in which melatonin is synthesized, we hypothesize the existence of a dimorphism in melatonin production to favor females, which are assumed to possess a higher reserve capacity for melatonin synthesis than males. Under physiological conditions, this subtle dimorphism is masked by the fact that cells or tissues only need baseline melatonin production, which can be accomplished without exploiting the full potential of melatonin's synthetic capacity. This capacity is believed to exceed the already remarkable nocturnal increase as observed within the circadian cycle. However, during aging or under stressful conditions, the reserve capacity of melatonin's synthetic function is required to be activated to produce sufficiently high levels of melatonin for protective purposes. Females seem to possess a higher reserve/maximum capacity for producing more melatonin than males. Thus, this dimorphism of melatonin production becomes manifest and detectable under these conditions. The biological significance of the reserve/maximum capacity of melatonin's synthetic function is to improve the recovery rate of organisms from injury, to increase resistance to pathogen infection, and even to enhance their chances of survival by maximizing melatonin production under stressful conditions. The higher reserve/maximum capacity of melatonin synthesis in females may also contribute to the dimorphism in longevity, favoring females in mammals.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
12
|
Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z, Zhao B. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 2021; 35:e22040. [PMID: 34800293 DOI: 10.1096/fj.202002718rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Diabetic brains are more vulnerable to ischemia-reperfusion injury. Previous studies have proved that melatonin could protect against cerebral ischemia-reperfusion (CIR) injury in non-diabetic stroke models; however, its roles and the underlying mechanisms against CIR injury in diabetic mice remain unknown. Streptozotocin-induced diabetic mice and high-glucose-cultured HT22 cells were exposed to melatonin, with or without administration of the autophagy inhibitor 3-methyladenine (3-MA) and the specifically silent information regulator 1 (SIRT1) inhibitor EX527, and then subjected to CIR or oxygen-glucose deprivation/reperfusion operation. We found that diabetic mice showed aggravated brain damage, increased apoptosis and oxidative stress, and deficient autophagy following CIR compared with non-diabetic counterparts. Melatonin treatment exhibited improved histological damage, neurological outcomes, and cerebral infarct size. Intriguingly, melatonin markedly increased cell survival, anti-oxidative and anti-apoptosis effects, and significantly enhanced autophagy. However, these effects were largely attenuated by 3-MA or EX527. Additionally, our cellular experiments demonstrated that melatonin increased the SIRT1-BMAL1 pathway-related proteins' expression in a dose-dependent manner. In conclusion, these results indicate that melatonin treatment can protect against CIR-induced brain damage in diabetic mice, which may be achieved by the autophagy enhancement mediated by the SIRT1-BMAL1 pathway.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Yu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Cao Y, Li Q, Zhou A, Ke Z, Chen S, Li M, Gong Z, Wang Z, Wu X. Notoginsenoside R1 Reverses Abnormal Autophagy in Hippocampal Neurons of Mice With Sleep Deprivation Through Melatonin Receptor 1A. Front Pharmacol 2021; 12:719313. [PMID: 34603030 PMCID: PMC8481657 DOI: 10.3389/fphar.2021.719313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) may cause serious neural injury in the central nervous system, leading to impairment of learning and memory. Melatonin receptor 1A (MTNR1A) plays an important role in the sleep regulation upon activation by melatonin. The present study aimed to investigate if notoginsenoside R1 (NGR1), an active compound isolated from Panax notoginseng, could alleviate neural injury, thus improve impaired learning and memory of SD mice, as well as to explore its underlying action mechanism through modulating MTNR1A. Our results showed that NGR1 administration improved the impaired learning and memory of SD mice. NGR1 prevented the morphological damage and the accumulation of autophagosomes in the hippocampus of SD mice. At the molecular level, NGR1 reversed the expressions of proteins involved in autophagy and apoptosis, such as beclin-1, LC3B, p62, Bcl-2, Bax, and cleaved-caspase 3. Furthermore, the effect of NGR1 was found to be closely related with the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway. On HT-22 cells induced by autophagy inducer rapamycin, NGR1 markedly attenuated excessive autophagy and apoptosis, and the alleviative effect was abolished by the MTNR1A inhibitor. Taken together, NGR1 was shown to alleviate the impaired learning and memory of SD mice, and its function might be exerted through reduction of excessive autophagy and apoptosis of hippocampal neurons by regulating the MTNR1A-mediated PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yin Cao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengqi Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mingrui Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Özpolat BD, Randel N, Williams EA, Bezares-Calderón LA, Andreatta G, Balavoine G, Bertucci PY, Ferrier DEK, Gambi MC, Gazave E, Handberg-Thorsager M, Hardege J, Hird C, Hsieh YW, Hui J, Mutemi KN, Schneider SQ, Simakov O, Vergara HM, Vervoort M, Jékely G, Tessmar-Raible K, Raible F, Arendt D. The Nereid on the rise: Platynereis as a model system. EvoDevo 2021; 12:10. [PMID: 34579780 PMCID: PMC8477482 DOI: 10.1186/s13227-021-00180-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
The Nereid Platynereis dumerilii (Audouin and Milne Edwards (Annales des Sciences Naturelles 1:195-269, 1833) is a marine annelid that belongs to the Nereididae, a family of errant polychaete worms. The Nereid shows a pelago-benthic life cycle: as a general characteristic for the superphylum of Lophotrochozoa/Spiralia, it has spirally cleaving embryos developing into swimming trochophore larvae. The larvae then metamorphose into benthic worms living in self-spun tubes on macroalgae. Platynereis is used as a model for genetics, regeneration, reproduction biology, development, evolution, chronobiology, neurobiology, ecology, ecotoxicology, and most recently also for connectomics and single-cell genomics. Research on the Nereid started with studies on eye development and spiralian embryogenesis in the nineteenth and early twentieth centuries. Transitioning into the molecular era, Platynereis research focused on posterior growth and regeneration, neuroendocrinology, circadian and lunar cycles, fertilization, and oocyte maturation. Other work covered segmentation, photoreceptors and other sensory cells, nephridia, and population dynamics. Most recently, the unique advantages of the Nereid young worm for whole-body volume electron microscopy and single-cell sequencing became apparent, enabling the tracing of all neurons in its rope-ladder-like central nervous system, and the construction of multimodal cellular atlases. Here, we provide an overview of current topics and methodologies for P. dumerilii, with the aim of stimulating further interest into our unique model and expanding the active and vibrant Platynereis community.
Collapse
Affiliation(s)
- B. Duygu Özpolat
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Nadine Randel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| | - Elizabeth A. Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Guillaume Balavoine
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Paola Y. Bertucci
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David E. K. Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB UK
| | | | - Eve Gazave
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Mette Handberg-Thorsager
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jörg Hardege
- Department of Biological & Marine Sciences, Hull University, Cottingham Road, Hull, HU67RX UK
| | - Cameron Hird
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Yu-Wen Hsieh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Nzumbi Mutemi
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephan Q. Schneider
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Hernando M. Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, Howland Street 25, London, W1T 4JG UK
| | - Michel Vervoort
- Institut Jacques Monod, University of Paris/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | | | - Florian Raible
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Mannino G, Pernici C, Serio G, Gentile C, Bertea CM. Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals-An Overview. Int J Mol Sci 2021; 22:ijms22189996. [PMID: 34576159 PMCID: PMC8469784 DOI: 10.3390/ijms22189996] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Melatonin is a ubiquitous indolamine, largely investigated for its key role in the regulation of several physiological processes in both animals and plants. In the last century, it was reported that this molecule may be produced in high concentrations by several species belonging to the plant kingdom and stored in specialized tissues. In this review, the main information related to the chemistry of melatonin and its metabolism has been summarized. Furthermore, the biosynthetic pathway characteristics of animal and plant cells have been compared, and the main differences between the two systems highlighted. Additionally, in order to investigate the distribution of this indolamine in the plant kingdom, distribution cluster analysis was performed using a database composed by 47 previously published articles reporting the content of melatonin in different plant families, species and tissues. Finally, the potential pharmacological and biostimulant benefits derived from the administration of exogenous melatonin on animals or plants via the intake of dietary supplements or the application of biostimulant formulation have been largely discussed.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Carlo Pernici
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| | - Cinzia M. Bertea
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/A, 10135 Turin, Italy; (G.M.); (C.P.)
- Correspondence: (C.G.); (C.M.B.); Tel.: +39-091-2389-7423 (C.G.); +39-011-670-6361 (C.M.B.)
| |
Collapse
|
16
|
Introduction. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Index. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
|
19
|
Visions. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Visions of a Digital Future. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Science, Vision, Perspective. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
The Evolution of Eyes. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Computer Vision. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Vision of the Cosmos. Vision (Basel) 2021. [DOI: 10.1017/9781108946339.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Melatonin: From Neurobiology to Treatment. Brain Sci 2021; 11:brainsci11091121. [PMID: 34573143 PMCID: PMC8468230 DOI: 10.3390/brainsci11091121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023] Open
Abstract
Melatonin, the major regulator of the sleep/wake cycle, also plays important physiological and pharmacological roles in the control of neuronal plasticity and neuroprotection. Accordingly, the secretion of this hormone reaches the maximal extent during brain development (childhood-adolescence) while it is greatly reduced during aging, a condition associated to altered sleep pattern and reduced neuronal plasticity. Altogether, these properties of melatonin have allowed us to demonstrate in both experimental models and clinical studies the great chronobiotic efficacy and sleep promoting effects of exogenous melatonin. Thus, the prolonged release formulation of melatonin, present as a drug in the pharmaceutical market, has been recently recommended for the treatment of insomnia in over 55 years old subjects.
Collapse
|
26
|
Buijs RM, Soto Tinoco EC, Hurtado Alvarado G, Escobar C. The circadian system: From clocks to physiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:233-247. [PMID: 34225965 DOI: 10.1016/b978-0-12-819975-6.00013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival. In fasting, the body temperature drops to a lower level only at the beginning of the sleep phase. Stressful conditions raise blood pressure relatively more during the active period than during the rest phase. Extensive, mostly reciprocal SCN interactions, with hypothalamic networks, induce these physiological adjustments by hormonal and autonomic control of the body's organs. More importantly, in addition to SCN's hormonal and autonomic influences, SCN induced behavior, such as rhythmic food intake, induces the oscillation of many genes in all tissues, including the so-called clock genes, which have an essential role as a transcriptional driving force for numerous cellular processes. Consequently, the light-dark cycle, the rhythm of the SCN, and the resulting rhythm in behavior need to be perfectly synchronized, especially where it involves synchronizing food intake with the activity phase. If these rhythms are not synchronous for extended periods of times, such as during shift work, light exposure at night, or frequent night eating, disease may develop. As such, our circadian system is a perfect illustration of how hypothalamic-driven processes depend on and interact with each other and need to be in seamless synchrony with the body's physiology.
Collapse
Affiliation(s)
- Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Eva C Soto Tinoco
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Gabriela Hurtado Alvarado
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carolina Escobar
- Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
27
|
Veedin Rajan VB, Häfker NS, Arboleda E, Poehn B, Gossenreiter T, Gerrard E, Hofbauer M, Mühlestein C, Bileck A, Gerner C, Ribera d'Alcala M, Buia MC, Hartl M, Lucas RJ, Tessmar-Raible K. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat Ecol Evol 2021; 5:204-218. [PMID: 33432133 PMCID: PMC7611595 DOI: 10.1038/s41559-020-01356-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.
Collapse
Affiliation(s)
- Vinoth Babu Veedin Rajan
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - N Sören Häfker
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Enrique Arboleda
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France
| | - Birgit Poehn
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | | | - Elliot Gerrard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Maximillian Hofbauer
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | | | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Markus Hartl
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Kristin Tessmar-Raible
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria.
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Krishnamurthy D, Li H, Benoit du Rey F, Cambournac P, Larson AG, Li E, Prakash M. Scale-free vertical tracking microscopy. Nat Methods 2020; 17:1040-1051. [PMID: 32807956 DOI: 10.1038/s41592-020-0924-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022]
Abstract
The behavior and microscale processes associated with freely suspended organisms, along with sinking particles underlie key ecological processes in the ocean. Mechanistically studying such multiscale processes in the laboratory presents a considerable challenge for microscopy: how to measure single cells at microscale resolution, while allowing them to freely move hundreds of meters in the vertical direction? Here we present a solution in the form of a scale-free, vertical tracking microscope, based on a 'hydrodynamic treadmill' with no bounds for motion along the axis of gravity. Using this method to bridge spatial scales, we assembled a multiscale behavioral dataset of nonadherent planktonic cells and organisms. Furthermore, we demonstrate a 'virtual-reality system for single cells', wherein cell behavior directly controls its ambient environmental parameters, enabling quantitative behavioral assays. Our method and results exemplify a new paradigm of multiscale measurement, wherein one can observe and probe macroscale and ecologically relevant phenomena at microscale resolution. Beyond the marine context, we foresee that our method will allow biological measurements of cells and organisms in a suspended state by freeing them from the confines of the coverslip.
Collapse
Affiliation(s)
- Deepak Krishnamurthy
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hongquan Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Pierre Cambournac
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Adam G Larson
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ethan Li
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Pisani D, Rota-Stabelli O, Feuda R. Sensory Neuroscience: A Taste for Light and the Origin of Animal Vision. Curr Biol 2020; 30:R773-R775. [DOI: 10.1016/j.cub.2020.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Unadkat K, Whittall JB. Unexpected predicted length variation for the coding sequence of the sleep related gene, BHLHE41 in gorilla amidst strong purifying selection across mammals. PLoS One 2020; 15:e0223203. [PMID: 32287315 PMCID: PMC7156063 DOI: 10.1371/journal.pone.0223203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 12/05/2022] Open
Abstract
There is a molecular basis for many sleep patterns and disorders involving circadian clock genes. In humans, "short-sleeper" behavior has been linked to specific amino acid substitutions in BHLHE41 (DEC2), yet little is known about variation at these sites and across this gene in mammals. We compare BHLHE41 coding sequences for 27 mammals. Approximately half of the coding sequence was invariable at the nucleotide level and close to three-quarters of the amino acid alignment was identical. No other mammals had the same "short-sleeper" amino acid substitutions previously described from humans. Phylogenetic analyses based on the nucleotides of the coding sequence alignment are consistent with established mammalian relationships confirming orthology among the sampled sequences. Significant purifying selection was detected in about two-thirds of the variable codons and no codons exhibited significant signs of positive selection. Unexpectedly, the gorilla BHLHE41 sequence has a 318 bp insertion at the 5' end of the coding sequence and a deletion of 195 bp near the 3' end of the coding sequence (including the two short sleeper variable sites). Given the strong signal of purifying selection across this gene, phylogenetic congruence with expected relationships and generally conserved function among mammals investigated thus far, we suggest the indels predicted in the gorilla BHLHE41 may represent an annotation error and warrant experimental validation.
Collapse
Affiliation(s)
- Krishna Unadkat
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, California, United States of America
| |
Collapse
|
31
|
Zakki SA, Muhammad JS, Li JL, Sun L, Li ML, Feng QW, Li YL, Cui ZG, Inadera H. Melatonin triggers the anticancer potential of phenylarsine oxide via induction of apoptosis through ROS generation and JNK activation. Metallomics 2020; 12:396-407. [PMID: 31959998 DOI: 10.1039/c9mt00238c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Melatonin, a safe endogenous hormone and a natural supplement, has recently been recognized to have antiproliferative effects and the ability to sensitize cells to other anticancer therapies. Phenylarsine oxide (PAO) has anticancer potential but it is considered as a toxic agent. In this study we combined melatonin to reduce the toxicity while securing the anti-cancer effects of PAO. Cell viability was determined by MTT assay, whereas cytotoxic assays were performed using an LDH cytotoxicity assay kit. Cell cycle analysis, Annexin V/PI staining, the mitochondrial membrane potential (MMP), mitochondrial calcium and reactive oxygen species (ROS) generation were analyzed using flow cytometry. Sytox stained cells were visualized by fluorescence microscopy and the expression of proteins was detected by western blotting. Melatonin increased the anticancer potential of PAO by decreasing the cell viability and increasing LDH release in various cancer cells. The mode of cell death was determined to be typical apoptosis, as evidenced by Annexin V/PI-stained cells, PARP cleavage, and caspase-3 activation, and with significant modulations in the expression of proapoptotic, antiapoptotic and cell cycle-related proteins. ROS generation played a critical role in induction of cell death by this combined treatment, which is validated by reversal of cytotoxicity upon cotreatment with NAC. Furthermore, the activation of MAPKs, especially JNK, contributed to the induction of cell death, accompanied by endoplasmic reticulum stress and autophagy, affirmed by the abrogation of cytotoxicity after JNK-IN-8 and TUDCA application. Melatonin showed promising potential as a chemotherapeutic agent in combination with PAO to achieve a better anticancer response.
Collapse
Affiliation(s)
- Shahbaz Ahmad Zakki
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maugars G, Nourizadeh-Lillabadi R, Weltzien FA. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front Endocrinol (Lausanne) 2020; 11:538196. [PMID: 33071966 PMCID: PMC7541902 DOI: 10.3389/fendo.2020.538196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In order to improve our understanding of melatonin signaling, we have reviewed and revised the evolutionary history of melatonin receptor genes (mtnr) in vertebrates. All gnathostome mtnr genes have a conserved gene organization with two exons, except for mtnr1b paralogs of some teleosts that show intron gains. Phylogeny and synteny analyses demonstrate the presence of four mtnr subtypes, MTNR1A, MTNR1B, MTNR1C, MTNR1D that arose from duplication of an ancestral mtnr during the vertebrate tetraploidizations (1R and 2R). In tetrapods, mtnr1d was lost, independently, in mammals, in archosaurs and in caecilian amphibians. All four mtnr subtypes were found in two non-teleost actinopterygian species, the spotted gar and the reedfish. As a result of teleost tetraploidization (3R), up to seven functional mtnr genes could be identified in teleosts. Conservation of the mtnr 3R-duplicated paralogs differs among the teleost lineages. Synteny analysis showed that the mtnr1d was conserved as a singleton in all teleosts resulting from an early loss after tetraploidization of one of the teleost 3R and salmonid 4R paralogs. Several teleosts including the eels and the piranha have conserved both 3R-paralogs of mtnr1a, mtnr1b, and mtnr1c. Loss of one of the 3R-paralogs depends on the lineage: mtnr1ca was lost in euteleosts whereas mtnr1cb was lost in osteoglossomorphs and several ostariophysians including the zebrafish. We investigated the tissue distribution of mtnr expression in a large range of tissues in medaka. The medaka has conserved the four vertebrate paralogs, and these are expressed in brain and retina, and, differentially, in peripheral tissues. Photoperiod affects mtnr expression levels in a gene-specific and tissue-specific manner. This study provides new insights into the repertoire diversification and functional evolution of the mtnr gene family in vertebrates.
Collapse
|
33
|
Marinković M, Berger J, Jékely G. Neuronal coordination of motile cilia in locomotion and feeding. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190165. [PMID: 31884921 PMCID: PMC7017327 DOI: 10.1098/rstb.2019.0165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efficient ciliary locomotion and transport require the coordination of motile cilia. Short-range coordination of ciliary beats can occur by biophysical mechanisms. Long-range coordination across large or disjointed ciliated fields often requires nervous system control and innervation of ciliated cells by ciliomotor neurons. The neuronal control of cilia is best understood in invertebrate ciliated microswimmers, but similar mechanisms may operate in the vertebrate body. Here, we review how the study of aquatic invertebrates contributed to our understanding of the neuronal control of cilia. We summarize the anatomy of ciliomotor systems and the physiological mechanisms that can alter ciliary activity. We also discuss the most well-characterized ciliomotor system, that of the larval annelid Platynereis. Here, pacemaker neurons drive the rhythmic activation of cholinergic and serotonergic ciliomotor neurons to induce ciliary arrests and beating. The Platynereis ciliomotor neurons form a distinct part of the larval nervous system. Similar ciliomotor systems likely operate in other ciliated larvae, such as mollusc veligers. We discuss the possible ancestry and conservation of ciliomotor circuits and highlight how comparative experimental approaches could contribute to a better understanding of the evolution and function of ciliary systems. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.
Collapse
Affiliation(s)
- Milena Marinković
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
34
|
Vopalensky P, Tosches MA, Achim K, Handberg-Thorsager M, Arendt D. From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biol 2019; 17:81. [PMID: 31640768 PMCID: PMC6805352 DOI: 10.1186/s12915-019-0705-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND During early development, patterns of cell division-embryonic cleavage-accompany the gradual restriction of blastomeres to specific cell fates. In Spiralia, which include annelids, mollusks, and flatworms, "spiral cleavage" produces a highly stereotypic, spiral-like arrangement of blastomeres and swimming trochophore-type larvae with rotational (spiral) symmetry. However, starting at larval stages, spiralian larvae acquire elements of bilateral symmetry, before they metamorphose into fully bilateral juveniles. How this spiral-to-bilateral transition occurs is not known and is especially puzzling for the early differentiating brain and head sensory organs, which emerge directly from the spiral cleavage pattern. Here we present the developmental cell lineage of the Platynereis larval episphere. RESULTS Live-imaging recordings from the zygote to the mid-trochophore stage (~ 30 hpf) of the larval episphere of the marine annelid Platynereis dumerilii reveal highly stereotypical development and an invariant cell lineage of early differentiating cell types. The larval brain and head sensory organs develop from 11 pairs of bilateral founders, each giving rise to identical clones on the right and left body sides. Relating the origin of each bilateral founder pair back to the spiral cleavage pattern, we uncover highly divergent origins: while some founder pairs originate from corresponding cells in the spiralian lineage on each body side, others originate from non-corresponding cells, and yet others derive from a single cell within one quadrant. Integrating lineage and gene expression data for several embryonic and larval stages, we find that the conserved head patterning genes otx and six3 are expressed in bilateral founders representing divergent lineage histories and giving rise to early differentiating cholinergic neurons and head sensory organs, respectively. CONCLUSIONS We present the complete developmental cell lineage of the Platynereis larval episphere, and thus the first comprehensive account of the spiral-to-bilateral transition in a developing spiralian. The bilateral symmetry of the head emerges from pairs of bilateral founders, similar to the trunk; however, the head founders are more numerous and show striking left-right asymmetries in lineage behavior that we relate to differential gene expression.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Maria Antonietta Tosches
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, 01307, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
35
|
Rawlinson KA, Lapraz F, Ballister ER, Terasaki M, Rodgers J, McDowell RJ, Girstmair J, Criswell KE, Boldogkoi M, Simpson F, Goulding D, Cormie C, Hall B, Lucas RJ, Telford MJ. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment. eLife 2019; 8:45465. [PMID: 31635694 PMCID: PMC6805122 DOI: 10.7554/elife.45465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane. Eyes are elaborate organs that many animals use to detect light and see, but light can also be sensed in other, simpler ways and for purposes other than seeing. All animals that perceive light rely on cells called photoreceptors, which come in two main types: ciliary or rhabdomeric. Sometimes, an organism has both types of photoreceptors, but one is typically more important than the other. For example, most vertebrates see using ciliary photoreceptors, while rhabdomeric photoreceptors underpin vision in invertebrates. Flatworms are invertebrates that have long been studied due to their ability to regenerate following injuries. These worms have rhabdomeric photoreceptors in their eyes, but they also have unusual cells outside their eyes that have cilia – slender protuberances from the cell body - and could potentially be light sensitive. One obvious way to test if a cell is a photoreceptor is to see if it produces any light-sensing proteins, such as opsins. Until recently it was thought that each type of photoreceptor produced a different opsin, which were therefore classified into rhabdomeric of ciliary opsins. However, recent work has identified a new type of opsin, called xenopsin, in the ciliary photoreceptors of the larvae of some marine invertebrates. To determine whether the cells outside the flatworm’s eye were ciliary photoreceptors, Rawlinson et al. examined the genetic code of 30 flatworm species looking for ciliary opsin and xenopsin genes. This search revealed that all the flatworm species studied contained the genetic sequence for xenopsin, but not for the ciliary opsin. Rawlinson et al. chose the tiger flatworm to perform further experiments. First, they showed that, in this species, xenopsin genes are active both in the eyes of larvae and in the unusual ciliary cells found outside the eyes of the adult. Next, they put the xenopsin from the tiger flatworm into human embryonic kidney cells, and found that when the protein is present these cells can respond to light. This demonstrates that the newly discovered xenopsin is light-sensitive, suggesting that the unusual ciliary cells found expressing this protein outside the eyes in flatworms are likely photoreceptive cells. It is unclear why flatworms have developed these unusual ciliary photoreceptor cells or what their purpose is outside the eye. Often, photoreceptor cells outside the eyes are used to align the ‘body clock’ with the day-night cycle. This can be a factor in healing, hinting perhaps that these newly found cells may have a role in flatworms’ ability to regenerate.
Collapse
Affiliation(s)
- Kate A Rawlinson
- Wellcome Sanger Institute, Hinxton, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Francois Lapraz
- Université Côte D'Azur, CNRS, Institut de Biologie Valrose, Nice, France
| | - Edward R Ballister
- New York University School of Medicine, New York, United States.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark Terasaki
- Marine Biological Laboratory, Woods Hole, United States.,University of Connecticut Health Center, Farmington, United States
| | - Jessica Rodgers
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard J McDowell
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johannes Girstmair
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katharine E Criswell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Miklos Boldogkoi
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fraser Simpson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | | | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
36
|
Analysis of the circadian transcriptome of the Antarctic krill Euphausia superba. Sci Rep 2019; 9:13894. [PMID: 31554872 PMCID: PMC6761102 DOI: 10.1038/s41598-019-50282-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a high latitude pelagic organism which plays a central role in the Southern Ocean ecosystem. E. superba shows daily and seasonal rhythms in physiology and behaviour, which are synchronized with the environmental cycles of its habitat. Recently, the main components of the krill circadian machinery have been identified and characterized. However, the exact mechanisms through which the endogenous timing system operates the control and regulation of the overt rhythms remains only partially understood. Here we investigate the involvement of the circadian clock in the temporal orchestration of gene expression by using a newly developed version of a krill microarray platform. The analysis of transcriptome data from krill exposed to both light-dark cycles (LD 18:6) and constant darkness (DD), has led to the identification of 1,564 putative clock-controlled genes. A remarkably large proportion of such genes, including several clock components (clock, period, cry2, vrille, and slimb), show oscillatory expression patterns in DD, with a periodicity shorter than 24 hours. Energy-storage pathways appear to be regulated by the endogenous clock in accordance with their ecological relevance in daily energy managing and overwintering. Our results provide the first representation of the krill circadian transcriptome under laboratory, free-running conditions.
Collapse
|
37
|
Wu H, Liu J, Yin Y, Zhang D, Xia P, Zhu G. Therapeutic Opportunities in Colorectal Cancer: Focus on Melatonin Antioncogenic Action. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9740568. [PMID: 31637261 PMCID: PMC6766109 DOI: 10.1155/2019/9740568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) influences individual health worldwide with high morbidity and mortality. Melatonin, which shows multiple physiological functions (e.g., circadian rhythm, immune modulation, and antioncogenic action), can be present in almost all organisms and found in various tissues including gastrointestinal tract. Notably, melatonin disruption is closely associated with the elevation of CRC incidence, indicating that melatonin is effective in suppressing CRC development and progression. Mechanistically, melatonin favors in activating apoptosis and colon cancer immunity, while reducing proliferation, autophagy, metastasis, and angiogenesis, thereby exerting its anticarcinogenic effects. This review highlights that melatonin can be an adjuvant therapy and be beneficial in treating patients suffering from CRC.
Collapse
Affiliation(s)
- Hucong Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
38
|
A Behavioral Assay to Study Effects of Retinoid Pharmacology on Nervous System Development in a Marine Annelid. Methods Mol Biol 2019. [PMID: 31359398 DOI: 10.1007/978-1-4939-9585-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autonomous animal locomotion, such as swimming, is modulated by neuronal networks acting on cilia or muscles. Understanding how these networks are formed and coordinated is a complex scientific problem, which requires various technical approaches. Among others, behavioral studies of developing animals treated with exogenous substances have proven to be a successful approach for studying the functions of neuronal networks. One such substance crucial for the proper development of the nervous system is the vitamin A-derived morphogen retinoic acid (RA). In the larva of the marine annelid Platynereis dumerilii , for example, RA is involved in the specification and differentiation of individual neurons and responsible for orchestrating the swimming behavior of the developing larva. Here, we report a workflow to analyze the effects of RA on the locomotion of the P. dumerilii larva. We provide a protocol for both the treatment with RA and the recording of larval swimming behavior. Additionally, we present a pipeline for the analysis of the obtained data in terms of swimming speed and movement trajectory. This chapter thus summarizes the methodology for analyzing the effects of a specific drug treatment on larval swimming behavior. We expect this approach to be readily adaptable to a wide variety of pharmacological compounds and aquatic species.
Collapse
|
39
|
Leach WB, Reitzel AM. Transcriptional remodelling upon light removal in a model cnidarian: Losses and gains in gene expression. Mol Ecol 2019; 28:3413-3426. [PMID: 31264275 DOI: 10.1111/mec.15163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Organismal responses to light:dark cycles can result from two general processes: (a) direct response to light or (b) a free-running rhythm (i.e., a circadian clock). Previous research in cnidarians has shown that candidate circadian clock genes have rhythmic expression in the presence of diel lighting, but these oscillations appear to be lost quickly after removal of the light cue. Here, we measure whole-organism gene expression changes in 136 transcriptomes of the sea anemone Nematostella vectensis, entrained to a light:dark environment and immediately following light cue removal to distinguish two broadly defined responses in cnidarians: light entrainment and circadian regulation. Direct light exposure resulted in significant differences in expression for hundreds of genes, including more than 200 genes with rhythmic, 24-hr periodicity. Removal of the lighting cue resulted in the loss of significant expression for 80% of these genes after 1 day, including most of the hypothesized cnidarian circadian genes. Further, 70% of these candidate genes were phase-shifted. Most surprisingly, thousands of genes, some of which are involved in oxidative stress, DNA damage response and chromatin modification, had significant differences in expression in the 24 hr following light removal, suggesting that loss of the entraining cue may induce a cellular stress response. Together, our findings suggest that a majority of genes with significant differences in expression for anemones cultured under diel lighting are largely driven by the primary photoresponse rather than a circadian clock when measured at the whole animal level. These results provide context for the evolution of cnidarian circadian biology and help to disassociate two commonly confounded factors driving oscillating phenotypes.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
40
|
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential Impacts of the Head on Platynereis dumerilii Peripheral Circadian Rhythms. Front Physiol 2019; 10:900. [PMID: 31354531 PMCID: PMC6638195 DOI: 10.3389/fphys.2019.00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.
Collapse
Affiliation(s)
- Enrique Arboleda
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Martin Zurl
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Monika Waldherr
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Williams EA, Jékely G. Neuronal cell types in the annelid Platynereis dumerilii. Curr Opin Neurobiol 2019; 56:106-116. [DOI: 10.1016/j.conb.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
|
42
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
43
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. Genes (Basel) 2019; 10:genes10020121. [PMID: 30736361 PMCID: PMC6410235 DOI: 10.3390/genes10020121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin, the hormone of darkness, is a peculiar molecule found in most living organisms. Emerging as a potent broad-spectrum antioxidant, melatonin was repurposed into extra roles such as the modulation of circadian and seasonal rhythmicity, affecting numerous aspects of physiology and behaviour, including sleep entrainment and locomotor activity. Interestingly, the pineal gland—the melatonin synthesising organ in vertebrates—was suggested to be absent or rudimentary in some mammalian lineages, including Cetacea. In Cetacea, pineal regression is paralleled by their unique bio-rhythmicity, as illustrated by the unihemispheric sleeping behaviour and long-term vigilance. Here, we examined the genes responsible for melatonin synthesis (Aanat and Asmt) and signalling (Mtnr1a and Mtnr1b) in 12 toothed and baleen whale genomes. Based on an ample genomic comparison, we deduce that melatonin-related gene modules are eroded in Cetacea.
Collapse
|
45
|
Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, Almeda R, Shahidi R, Jékely G. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. eLife 2018; 7:36262. [PMID: 30547885 PMCID: PMC6294549 DOI: 10.7554/elife.36262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Startle responses triggered by aversive stimuli including predators are widespread across animals. These coordinated whole-body actions require the rapid and simultaneous activation of a large number of muscles. Here we study a startle response in a planktonic larva to understand the whole-body circuit implementation of the behaviour. Upon encountering water vibrations, larvae of the annelid Platynereis close their locomotor cilia and simultaneously raise the parapodia. The response is mediated by collar receptor neurons expressing the polycystins PKD1-1 and PKD2-1. CRISPR-generated PKD1-1 and PKD2-1 mutant larvae do not startle and fall prey to a copepod predator at a higher rate. Reconstruction of the whole-body connectome of the collar-receptor-cell circuitry revealed converging feedforward circuits to the ciliary bands and muscles. The wiring diagram suggests circuit mechanisms for the intersegmental and left-right coordination of the response. Our results reveal how polycystin-mediated mechanosensation can trigger a coordinated whole-body effector response involved in predator avoidance.
Collapse
Affiliation(s)
- Luis A Bezares-Calderón
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sanja Jasek
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Csaba Verasztó
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sara Mendes
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rodrigo Almeda
- Centre for Ocean Life, Technical University of Denmark, Denmark, Kingdom of Denmark
| | - Réza Shahidi
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
46
|
Chou HC, Acevedo-Luna N, Kuhlman JA, Schneider SQ. PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans. BMC Genomics 2018; 19:618. [PMID: 30115014 PMCID: PMC6097317 DOI: 10.1186/s12864-018-4987-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The marine polychaete annelid Platynereis dumerilii has recently emerged as a prominent organism for the study of development, evolution, stem cells, regeneration, marine ecology, chronobiology and neurobiology within metazoans. Its phylogenetic position within the spiralian/ lophotrochozoan clade, the comparatively high conservation of ancestral features in the Platynereis genome, and experimental access to any stage within its life cycle, make Platynereis an important model for elucidating the complex regulatory and functional molecular mechanisms governing early development, later organogenesis, and various features of its larval and adult life. High resolution RNA-seq gene expression data obtained from specific developmental stages can be used to dissect early developmental mechanisms. However, the potential for discovery of these mechanisms relies on tools to search, retrieve, and compare genome-wide information within Platynereis, and across other metazoan taxa. RESULTS To facilitate exploration and discovery by the broader scientific community, we have developed a web-based, searchable online research tool, PdumBase, featuring the first comprehensive transcriptome database for Platynereis dumerilii during early stages of development (2 h ~ 14 h). Our database also includes additional stages over the P. dumerilii life cycle and provides access to the expression data of 17,213 genes (31,806 transcripts) along with annotation information sourced from Swiss-Prot, Gene Ontology, KEGG pathways, Pfam domains, TmHMM, SingleP, and EggNOG orthology. Expression data for each gene includes the stage, the normalized FPKM, the raw read counts, and information that can be leveraged for statistical analyses of differential gene expression and the construction of genome-wide co-expression networks. In addition, PdumBase offers early stage transcriptome expression data from five further species as a valuable resource for investigators interested in comparing early development in different organisms. To understand conservation of Platynereis gene models and to validate gene annotation, most Platynereis gene models include a comprehensive phylogenetic analysis across 18 species representing diverse metazoan taxa. CONCLUSIONS PdumBase represents the first online resource for the early developmental transcriptome of Platynereis dumerilii. It serves as a research platform for discovery and exploration of gene expression during early stages, throughout the Platynereis life cycle, and enables comparison to other model organisms. PdumBase is freely available at http://pdumbase.gdcb.iastate.edu .
Collapse
Affiliation(s)
- Hsien-Chao Chou
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
- Present address: Center for Cancer Research, National Institutes of Health, Rockville, MD 20894 USA
| | - Natalia Acevedo-Luna
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Julie A. Kuhlman
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | - Stephan Q. Schneider
- Department of Genetics, Developmental and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
47
|
Verasztó C, Gühmann M, Jia H, Rajan VBV, Bezares-Calderón LA, Piñeiro-Lopez C, Randel N, Shahidi R, Michiels NK, Yokoyama S, Tessmar-Raible K, Jékely G. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 2018; 7:36440. [PMID: 29809157 PMCID: PMC6019069 DOI: 10.7554/elife.36440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2018] [Indexed: 02/02/2023] Open
Abstract
Ciliary and rhabdomeric photoreceptor cells represent two main lines of photoreceptor-cell evolution in animals. The two cell types coexist in some animals, however how these cells functionally integrate is unknown. We used connectomics to map synaptic paths between ciliary and rhabdomeric photoreceptors in the planktonic larva of the annelid Platynereis and found that ciliary photoreceptors are presynaptic to the rhabdomeric circuit. The behaviors mediated by the ciliary and rhabdomeric cells also interact hierarchically. The ciliary photoreceptors are UV-sensitive and mediate downward swimming in non-directional UV light, a behavior absent in ciliary-opsin knockout larvae. UV avoidance overrides positive phototaxis mediated by the rhabdomeric eyes such that vertical swimming direction is determined by the ratio of blue/UV light. Since this ratio increases with depth, Platynereis larvae may use it as a depth gauge during vertical migration. Our results revealed a functional integration of ciliary and rhabdomeric photoreceptor cells in a zooplankton larva.
Collapse
Affiliation(s)
- Csaba Verasztó
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Martin Gühmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, United States
| | | | - Luis A Bezares-Calderón
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Nadine Randel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Réza Shahidi
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Nico K Michiels
- Department of Biology, University of Tübingen, Tübingen, Germany
| | - Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, United States
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
48
|
Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc Natl Acad Sci U S A 2018; 114:5878-5885. [PMID: 28584082 DOI: 10.1073/pnas.1610602114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.
Collapse
|
49
|
Achim K, Eling N, Vergara HM, Bertucci PY, Musser J, Vopalensky P, Brunet T, Collier P, Benes V, Marioni JC, Arendt D. Whole-Body Single-Cell Sequencing Reveals Transcriptional Domains in the Annelid Larval Body. Mol Biol Evol 2018; 35:1047-1062. [PMID: 29373712 PMCID: PMC5913682 DOI: 10.1093/molbev/msx336] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research.
Collapse
Affiliation(s)
- Kaia Achim
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nils Eling
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Paola Yanina Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jacob Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pavel Vopalensky
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Abstract
The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental NeurobiologyKing's College LondonLondonUK
| |
Collapse
|