1
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. Science 2025; 387:426-431. [PMID: 39636933 PMCID: PMC7617353 DOI: 10.1126/science.adr7920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central component of several crucial processes in repairing DNA and protecting genome integrity, forms filaments on DNA, which are tightly regulated. One of these RAD51 regulators is FIGNL1 (fidgetin-like 1), which prevents RAD51 genotoxic chromatin association in normal cells and persistent RAD51 foci upon DNA damage. The cryogenic electron microscopy-imaged structure of FIGNL1 in complex with RAD51 reveals that FIGNL1 forms a nonplanar hexamer and encloses RAD51 N terminus in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a distinct mechanism for removing RAD51 from bound substrates and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
2
|
Chu SSH, Xing G, Jha VK, Ling H. The Shu complex is an ATPase that regulates Rad51 filaments during homologous recombination in the DNA damage response. DNA Repair (Amst) 2025; 145:103792. [PMID: 39647428 DOI: 10.1016/j.dnarep.2024.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Rad51 filaments are Rad51-coated single-stranded DNA and essential in homologous recombination (HR). The yeast Shu complex (Shu) is a conserved regulator of homologous recombination, working through its modulation on Rad51 filaments to direct HR-associated DNA damage response. However, the biochemical properties of Shu remain unclear, which hinders molecular insights into Shu's role in HR and the DNA damage response. In this work, we biochemically characterized Shu and analyzed its molecular actions on single-stranded DNA and Rad51 filaments. First, we revealed that Shu preferentially binds fork-shaped DNA with 20nt ssDNA components. Then, we identified and validated, through site-specific mutagenesis, that Shu is an ATPase and hydrolyzes ATP in a DNA-dependent manner. Furthermore, we showed that Shu interacts with ssDNA and Rad51 filaments and alters the properties of ssDNA and the filaments with a 5'-3' polarity. The alterations depend on the ATP hydrolysis of Shu, suggesting that the ATPase activity of Shu is important in regulating its functions. The preference of Shu for acting on the 5' end of Rad51 filaments aligns with the observation that Shu promotes lesion bypass at the lagging strand of a replication fork. Our work on Shu, a prototype modulator of Rad51 filaments in eukaryotes, provides a general molecular mechanism for Rad51-mediated error-free DNA lesion bypass.
Collapse
Affiliation(s)
- Sam S H Chu
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Vikash K Jha
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
3
|
Wuri L, Zarutskie PW, Arosh JA, Banu SK. Employment of a Newly Defined In Vitro Fertilization Protocol to Determine the Cytoskeletal Machinery, DNA Damage, and Subsequent DNA Repair Resulting from Endocrine Disruption by Hexavalent Chromium in Rat Metaphase II Oocytes. Curr Protoc 2024; 4:e70060. [PMID: 39711520 DOI: 10.1002/cpz1.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
These protocols describe a detailed method to determine the DNA damage and F-actin and microtubule defects of metaphase II oocytes caused by hexavalent chromium, Cr(VI), an endocrine disrupting chemical (EDC). The protocol provides systematic steps to determine protein expression encoded by pluripotency proteins such as Oct4, Nanog, and Cdx2 during early embryonic development. Occupational or environmental exposure to EDCs has significantly increased infertility in both men and women. The urinary concentration of the EDC bisphenol A in patients undergoing in vitro fertilization (IVF) is directly related to decreased implantation rates and the number of metaphase II oocytes recovered. This protocol outlines crucial steps in assessing the structure of F-actin and microtubules, DNA damage, and repair mechanisms in metaphase II oocytes as well as pluripotency protein markers of early-stage embryos. IVF techniques to achieve fertility goals in both humans and animals are of paramount importance. The interplay between F-actin and microtubules is crucial for bipolar spindle assembly and correct partitioning of the nuclear genome in mammalian oocyte meiosis. EDCs induce DNA damage and impair DNA repair mechanisms, compromising oocyte quality. In human IVF, this results in failure to implant, early miscarriage, and live births with congenital disorders, thus decreasing success rates and increasing poor outcomes. The application of IVF protocols in rats to understand EDC-mediated defects in the cytoskeletal network of metaphase II oocytes is not well established. We present a newly defined rat IVF protocol and demonstrate outcomes using these protocols to determine the adverse effects of Cr(VI) on metaphase II oocytes. Basic Protocol 1 includes steps to superovulate rats, dissect ampullae, retrieve oocytes/eggs, perform immunofluorescence staining of cytoskeletal machinery (microtubules and F-actin), and assess expression of the DNA double-strand break marker γ-H2AX and the DNA repair protein RAD51 in control and Cr(VI)-exposed rats. Basic Protocol 2 describes methods for detecting the pluripotency proteins Oct4, Nanog, and Cdx2 during early embryonic development in control rats. © 2024 Wiley Periodicals LLC. Basic Protocol 1: In vivo EDC treatment of rats and immunostaining of treated oocytes Basic Protocol 2: In vitro fertilization and immunostaining of early-stage embryos.
Collapse
Affiliation(s)
- Liga Wuri
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Paul W Zarutskie
- Department of Clinical Medicine & Primary Care, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas
| | - Joe A Arosh
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
4
|
Akita M, Girvan P, Spirek M, Novacek J, Rueda D, Prokop Z, Krejci L. Mechanism of BCDX2-mediated RAD51 nucleation on short ssDNA stretches and fork DNA. Nucleic Acids Res 2024; 52:11738-11752. [PMID: 39268578 PMCID: PMC11514458 DOI: 10.1093/nar/gkae770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Homologous recombination (HR) factors are crucial for DSB repair and processing stalled replication forks. RAD51 paralogs, including RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3, have emerged as essential tumour suppressors, forming two subcomplexes, BCDX2 and CX3. Mutations in these genes are associated with cancer susceptibility and Fanconi anaemia, yet their biochemical activities remain unclear. This study reveals a linear arrangement of BCDX2 subunits compared to the RAD51 ring. BCDX2 shows a strong affinity towards single-stranded DNA (ssDNA) via unique binding mechanism compared to RAD51, and a contribution of DX2 subunits in binding branched DNA substrates. We demonstrate that BCDX2 facilitates RAD51 loading on ssDNA by suppressing the cooperative requirement of RAD51 binding to DNA and stabilizing the filament. Notably, BCDX2 also promotes RAD51 loading on short ssDNA and reversed replication fork substrates. Moreover, while mutants defective in ssDNA binding retain the ability to bind branched DNA substrates, they still facilitate RAD51 loading onto reversed replication forks. Our study provides mechanistic insights into how the BCDX2 complex stimulates the formation of BRCA2-independent RAD51 filaments on short stretches of ssDNA present at ssDNA gaps or stalled replication forks, highlighting its role in genome maintenance and DNA repair.
Collapse
Affiliation(s)
- Masaki Akita
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Paul Girvan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Mario Spirek
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Cryo-Electron Microscopy and Tomography Core Facility, Central European Institute of Technology, Brno, Czech Republic
| | - David Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, UK
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Carver A, Yu TY, Yates LA, White T, Wang R, Lister K, Jasin M, Zhang X. Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603765. [PMID: 39071279 PMCID: PMC11275795 DOI: 10.1101/2024.07.16.603765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing and protecting genome integrity, forms filaments on DNA. RAD51 filaments are tightly regulated. One of these regulators is FIGNL1, that prevents persistent RAD51 foci post-damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that the FIGNL1 forms a non-planar hexamer and RAD51 N-terminus is enclosed in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from DNA and provides the molecular basis for FIGNL1 in maintaining genome stability.
Collapse
Affiliation(s)
- Alexander Carver
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
- These authors contributed equally to this study
| | - Tai-Yuan Yu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
- These authors contributed equally to this study
| | - Luke A Yates
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Katie Lister
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center
| | - Xiaodong Zhang
- DNA Processing Machines Laboratory, Francis Crick Institute, London, UK
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
6
|
Yan J, Bhadane R, Ran M, Ma X, Li Y, Zheng D, Salo-Ahen OMH, Zhang H. Development of Aptamer-DNAzyme based metal-nucleic acid frameworks for gastric cancer therapy. Nat Commun 2024; 15:3684. [PMID: 38693181 PMCID: PMC11063048 DOI: 10.1038/s41467-024-48149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.
Collapse
Affiliation(s)
- Jiaqi Yan
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Rajendra Bhadane
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Meixin Ran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yuanqiang Li
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, 20520, Turku, Finland
| | - Hongbo Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
7
|
Muhammad AA, Basto C, Peterlini T, Guirouilh-Barbat J, Thomas M, Veaute X, Busso D, Lopez B, Mazon G, Le Cam E, Masson JY, Dupaigne P. Human RAD52 stimulates the RAD51-mediated homology search. Life Sci Alliance 2024; 7:e202201751. [PMID: 38081641 PMCID: PMC10713436 DOI: 10.26508/lsa.202201751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.
Collapse
Affiliation(s)
- Ali Akbar Muhammad
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Clara Basto
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Thibaut Peterlini
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Melissa Thomas
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Xavier Veaute
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Bernard Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Gerard Mazon
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Eric Le Cam
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
8
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Kim S, Kim Y, Lee JY. Real-time single-molecule visualization using DNA curtains reveals the molecular mechanisms underlying DNA repair pathways. DNA Repair (Amst) 2024; 133:103612. [PMID: 38128155 DOI: 10.1016/j.dnarep.2023.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The demand for direct observation of biomolecular interactions provides new insights into the molecular mechanisms underlying many biological processes. Single-molecule imaging techniques enable real-time visualization of individual biomolecules, providing direct observations of protein machines. Various single-molecule imaging techniques have been developed and have contributed to breakthroughs in biological research. One such technique is the DNA curtain, a novel, high-throughput, single-molecule platform that integrates lipid fluidity, nano-fabrication, microfluidics, and fluorescence imaging. Many DNA metabolic reactions, such as replication, transcription, and chromatin dynamics, have been studied using DNA curtains. In particular, the DNA curtain platform has been intensively applied in investigating the molecular details of DNA repair processes. This article reviews DNA curtain techniques and their applications for imaging DNA repair proteins.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Youngseo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
10
|
Szakal B, Branzei D. Hot on RAD51C: structure and functions of RAD51C-XRCC3. Mol Oncol 2023; 17:1950-1952. [PMID: 37681281 PMCID: PMC10552886 DOI: 10.1002/1878-0261.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
A new study by Longo, Roy et al. has solved the structure of the RAD51C-XRCC3 (CX3) heterodimer with a bound ATP analog, identifying two main structural interfaces and defining separable replication fork stability roles. One function relates to the ability of RAD51C to bind and assemble CX3 on nascent DNA, with an impact on the ability of forks to restart upon replication stress. The other relates to effective CX3 heterodimer formation, required for 5' RAD51 filament capping, with effects on RAD51 filament disassembly, fork protection and influencing the persistence of reversed forks.
Collapse
Affiliation(s)
- Barnabas Szakal
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
| | - Dana Branzei
- IFOM ETS, The AIRC Institute of Molecular OncologyMilanItaly
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM‐CNR)PaviaItaly
| |
Collapse
|
11
|
Liu W, Polaczek P, Roubal I, Meng Y, Choe WC, Caron MC, Sedgeman C, Xi Y, Liu C, Wu Q, Zheng L, Masson JY, Shen B, Campbell J. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res 2023; 51:9144-9165. [PMID: 37526271 PMCID: PMC10516637 DOI: 10.1093/nar/gkad624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
FANCD2 protein, a key coordinator and effector of the interstrand crosslink repair pathway, is also required to prevent excessive nascent strand degradation at hydroxyurea-induced stalled forks. The RAD51 recombinase has also been implicated in regulation of resection at stalled replication forks. The mechanistic contributions of these proteins to fork protection are not well understood. Here, we used purified FANCD2 and RAD51 to study how each protein regulates DNA resection at stalled forks. We characterized three mechanisms of FANCD2-mediated fork protection: (1) The N-terminal domain of FANCD2 inhibits the essential DNA2 nuclease activity by directly binding to DNA2 accounting for over-resection in FANCD2 defective cells. (2) Independent of dimerization with FANCI, FANCD2 itself stabilizes RAD51 filaments to inhibit multiple nucleases, including DNA2, MRE11 and EXO1. (3) Unexpectedly, we uncovered a new FANCD2 function: by stabilizing RAD51 filaments, FANCD2 acts to stimulate the strand exchange activity of RAD51. Our work biochemically explains non-canonical mechanisms by which FANCD2 and RAD51 protect stalled forks. We propose a model in which the strand exchange activity of FANCD2 provides a simple molecular explanation for genetic interactions between FANCD2 and BRCA2 in the FA/BRCA fork protection pathway.
Collapse
Affiliation(s)
- Wenpeng Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivan Roubal
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Won-chae Choe
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Carl A Sedgeman
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Xi
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
- Colleges of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiong Wu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Longo MA, Roy S, Chen Y, Tomaszowski KH, Arvai AS, Pepper JT, Boisvert RA, Kunnimalaiyaan S, Keshvani C, Schild D, Bacolla A, Williams GJ, Tainer JA, Schlacher K. RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles. Nat Commun 2023; 14:4445. [PMID: 37488098 PMCID: PMC10366140 DOI: 10.1038/s41467-023-40096-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.
Collapse
Affiliation(s)
- Michael A Longo
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Chen
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Andrew S Arvai
- The Department of Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jordan T Pepper
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Caezanne Keshvani
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Albino Bacolla
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gareth J Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- Department of Molecular & Cellular Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Lukashchuk N, Barnicle A, Adelman CA, Armenia J, Kang J, Barrett JC, Harrington EA. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 2023; 13:1162644. [PMID: 37434977 PMCID: PMC10331135 DOI: 10.3389/fonc.2023.1162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients. One of the pathways often altered in advanced prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2 and other homologous recombination repair (HRR) genes. Alterations in the DDR pathway are particularly prevalent in metastatic prostate cancer. In this review, we summarise the prevalence of DDR alterations in primary and advanced prostate cancer and discuss the impact of alterations in the DDR pathway on aggressive disease phenotype, prognosis and the association of germline pathogenic alterations in DDR genes with risk of developing prostate cancer.
Collapse
Affiliation(s)
- Natalia Lukashchuk
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Alan Barnicle
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Carrie A. Adelman
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Oncology Data Science, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Jinyu Kang
- Global Medicines Development, Oncology Research and Development (R&D), AstraZeneca, Gaithersburg, MD, United States
| | - J. Carl Barrett
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Waltham, MA, United States
| | - Elizabeth A. Harrington
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
14
|
Appleby R, Bollschweiler D, Chirgadze DY, Joudeh L, Pellegrini L. A metal ion-dependent mechanism of RAD51 nucleoprotein filament disassembly. iScience 2023; 26:106689. [PMID: 37216117 PMCID: PMC10192527 DOI: 10.1016/j.isci.2023.106689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
The RAD51 ATPase polymerizes on single-stranded DNA to form nucleoprotein filaments (NPFs) that are critical intermediates in the reaction of homologous recombination. ATP binding maintains the NPF in a competent conformation for strand pairing and exchange. Once strand exchange is completed, ATP hydrolysis licenses the filament for disassembly. Here we show that the ATP-binding site of the RAD51 NPF contains a second metal ion. In the presence of ATP, the metal ion promotes the local folding of RAD51 into the conformation required for DNA binding. The metal ion is absent in the ADP-bound RAD51 filament, that rearranges in a conformation incompatible with DNA binding. The presence of the second metal ion explains how RAD51 couples the nucleotide state of the filament to DNA binding. We propose that loss of the second metal ion upon ATP hydrolysis drives RAD51 dissociation from the DNA and weakens filament stability, contributing to NPF disassembly.
Collapse
Affiliation(s)
- Robert Appleby
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Luay Joudeh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
15
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
16
|
Peng X, Zhang S, Wang Y, Zhou Z, Yu Z, Zhong Z, Zhang L, Chen Z, Claret FX, Elkabets M, Wang F, Sun F, Wang R, Liang H, Lin H, Kong D. Stellettin B Sensitizes Glioblastoma to DNA-Damaging Treatments by Suppressing PI3K-Mediated Homologous Recombination Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205529. [PMID: 36453577 PMCID: PMC9875605 DOI: 10.1002/advs.202205529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 06/02/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Liang Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Francois X. Claret
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Fan Sun
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Han Liang
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Hou‐Wen Lin
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| |
Collapse
|
17
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
18
|
Lee JD, Ryu WJ, Han HJ, Kim TY, Kim MH, Sohn J. Molecular Characterization of BRCA1 c.5339T>C Missense Mutation in DNA Damage Response of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14102405. [PMID: 35626017 PMCID: PMC9139203 DOI: 10.3390/cancers14102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
BRCA1 L1780P BRCT domain mutation has been recognized as a pathogenic mutation in patients with breast cancer. However, the molecular significance of this mutation has not yet been studied in triple-negative breast cancer (TNBC) cells in vitro. We established MDA-MB 231, HCC1937, and HCC1395 TNBC cell lines expressing BRCA1 L1780P mutant. BRCA1 L1780P mutant TNBC cells showed increased migration and invasion capacity, as well as increased sensitivity to olaparib and carboplatin compared to BRCA1 wild-type cells. BRCA1 L1780P mutant TNBC cells showed decreased RAD51 expression and reduced nuclear RAD51 foci formation following carboplatin and olaparib treatment. The molecular interaction between p-ATM and BRCA1 was abrogated following introduction of BRCA1 L1780P mutant plasmid in TNBC cells, suggesting that the BRCA1 L1780P mutation disrupts the p-ATM-BRCA1 protein-protein interaction. We established an olaparib-resistant BRCA1 L1780P mutant TNBC cell line by chronic drug treatment. Olaparib-resistant cell lines showed upregulation of RAD51 expression upon olaparib treatment, and reduction in RAD51 expression in olaparib-resistant cells restored olaparib sensitivity. Collectively, these results suggest that the BRCA1 L1780P mutation impairs RAD51 recruitment by disrupting p-ATM-BRCA1 interaction, which is a crucial molecular factor in homologous recombination and olaparib sensitivity. Further therapeutic targeting of RAD51 in BRCA1 L1780P mutant breast cancer is warranted.
Collapse
Affiliation(s)
- Jeong Dong Lee
- Department of Human Biology and Genomics, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Tae Yeong Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (M.H.K.); (J.S.); Tel.: +82-2-2228-8135 (M.H.K. & J.S.)
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (M.H.K.); (J.S.); Tel.: +82-2-2228-8135 (M.H.K. & J.S.)
| |
Collapse
|
19
|
Histone chaperone ASF1 acts with RIF1 to promote DNA end joining in BRCA1-deficient cells. J Biol Chem 2022; 298:101979. [PMID: 35472331 PMCID: PMC9127577 DOI: 10.1016/j.jbc.2022.101979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Replication timing regulatory factor 1 (RIF1) acts downstream of p53-binding protein 53BP1 to inhibit the resection of DNA broken ends, which plays critical roles in determining the DNA double-strand break repair pathway choice between nonhomologous end joining and homologous recombination (HR). However, the mechanism by which this choice is made is not yet clear. In this study, we identified that histone chaperone protein ASF1 associates with RIF1 and regulates RIF1-dependent functions in the DNA damage response. Similar to loss of RIF1, we found that loss of ASF1 resulted in resistance to poly (ADP-ribose) polymerase (PARP) inhibition in BRCA1-deficient cells with restored HR and decreased telomere fusion in telomeric repeat–binding protein 2 (TRF2)-depleted cells. Moreover, we showed that these functions of ASF1 are dependent on its interaction with RIF1 but not on its histone chaperone activity. Thus, our study supports a new role for ASF1 in dictating double-strand break repair choice. Considering that the status of 53BP1–RIF1 axis is important in determining the outcome of PARP inhibitor–based therapy in BRCA1- or HR-deficient cancers, the identification of ASF1 function in this critical pathway uncovers an interesting connection between these S-phase events, which may reveal new strategies to overcome PARP inhibitor resistance.
Collapse
|
20
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
21
|
Chen D, Gervai JZ, Póti Á, Németh E, Szeltner Z, Szikriszt B, Gyüre Z, Zámborszky J, Ceccon M, d'Adda di Fagagna F, Szallasi Z, Richardson AL, Szüts D. BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1. Nat Commun 2022; 13:226. [PMID: 35017534 PMCID: PMC8752635 DOI: 10.1038/s41467-021-27872-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, H-1085, Hungary
| | - Judit Zámborszky
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Marta Ceccon
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, H-1092, Hungary
| | | | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
22
|
McGlacken-Byrne SM, Le Quesne Stabej P, Del Valle I, Ocaka L, Gagunashvili A, Crespo B, Moreno N, James C, Bacchelli C, Dattani MT, Williams HJ, Kelberman D, Achermann JC, Conway GS. ZSWIM7 Is Associated With Human Female Meiosis and Familial Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:e254-e263. [PMID: 34402903 PMCID: PMC8684494 DOI: 10.1210/clinem/dgab597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Primary ovarian insufficiency (POI) affects 1% of women and is associated with significant medical consequences. A genetic cause for POI can be found in up to 30% of women, elucidating key roles for these genes in human ovary development. OBJECTIVE We aimed to identify the genetic mechanism underlying early-onset POI in 2 sisters from a consanguineous pedigree. METHODS Genome sequencing and variant filtering using an autosomal recessive model was performed in the 2 affected sisters and their unaffected family members. Quantitative reverse transcriptase PCR (qRT-PCR) and RNA sequencing were used to study the expression of key genes at critical stages of human fetal gonad development (Carnegie Stage 22/23, 9 weeks post conception (wpc), 11 wpc, 15/16 wpc, 19/20 wpc) and in adult tissue. RESULTS Only 1 homozygous variant cosegregating with the POI phenotype was found: a single nucleotide substitution in zinc finger SWIM-type containing 7 (ZSWIM7), NM_001042697.2: c.173C > G; resulting in predicted loss-of-function p.(Ser58*). qRT-PCR demonstrated higher expression of ZSWIM7 in the 15/16 wpc ovary compared with testis, corresponding to peak meiosis in the fetal ovary. RNA sequencing of fetal gonad samples showed that ZSWIM7 has a similar temporal expression profile in the developing ovary to other homologous recombination genes. MAIN CONCLUSIONS Disruption of ZSWIM7 is associated with POI in humans. ZSWIM7 is likely to be important for human homologous recombination; these findings expand the range of genes associated with POI in women.
Collapse
Affiliation(s)
- Sinéad M McGlacken-Byrne
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Institute for Women’s Health, University College London, London WC1N 1EH, UK
- Correspondence: Sinéad McGlacken-Byrne, Wellcome Trust Clinical Training Fellow, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK.
| | - Polona Le Quesne Stabej
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Louise Ocaka
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Berta Crespo
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nadjeda Moreno
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chela James
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Chiara Bacchelli
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Hywel J Williams
- Division of Cancer and Genetics, Genetic and Genomic Medicine, Cardiff University, Cardiff CF14 4AY, UK
| | - Dan Kelberman
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gerard S Conway
- Institute for Women’s Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
23
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
24
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
25
|
Roy U, Kwon Y, Sung P, Greene EC. Single-molecule studies of yeast Rad51 paralogs. Methods Enzymol 2021; 661:343-362. [PMID: 34776219 DOI: 10.1016/bs.mie.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homologous recombination (HR) is a conserved mechanism essential for the accurate repair of DNA double stranded breaks and the exchange of genetic information during meiosis. The key steps in HR are carried out by the RecA/Rad51 class of recombinases, which form a helical filament on single-stranded DNA (ssDNA) and catalyze homology search and strand exchange with a complementary duplex DNA target. In eukaryotes, assembly of the Rad51-ssDNA filament requires regulatory factors called mediators, including Rad51 paralogs. A mechanistic understanding of the role of Rad51 paralogs in HR has been hampered by the transient and diverse nature of intermediates formed with the Rad51-ssDNA filament, which cannot be resolved by traditional ensemble methods. The biochemical characterization of Rad51 paralogs, including the S. cerevisiae complex Rad55-Rad57 has also been limited by their propensity to aggregate. Here we describe the preparation of monodisperse GFP-tagged Rad55-Rad57 complex and the methodology for its analysis in our single-molecule DNA curtain assay.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, United States
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
26
|
Kong M, Greene EC. Mechanistic Insights From Single-Molecule Studies of Repair of Double Strand Breaks. Front Cell Dev Biol 2021; 9:745311. [PMID: 34869333 PMCID: PMC8636147 DOI: 10.3389/fcell.2021.745311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
27
|
Graziano S, Coll-Bonfill N, Teodoro-Castro B, Kuppa S, Jackson J, Shashkova E, Mahajan U, Vindigni A, Antony E, Gonzalo S. Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability. J Biol Chem 2021; 297:101301. [PMID: 34648766 PMCID: PMC8571089 DOI: 10.1016/j.jbc.2021.101301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease–mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination–deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Nuria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Barbara Teodoro-Castro
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Sahiti Kuppa
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Elena Shashkova
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Urvashi Mahajan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Edwin Antony
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
28
|
Prakash R, Freyer L, Saiz N, Gavrilov S, Wang RQ, Romanienko PJ, Lacy E, Hadjantonakis AK, Jasin M. XRCC3 loss leads to midgestational embryonic lethality in mice. DNA Repair (Amst) 2021; 108:103227. [PMID: 34601382 DOI: 10.1016/j.dnarep.2021.103227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
RAD51 paralogs are key components of the homologous recombination (HR) machinery. Mouse mutants have been reported for four of the canonical RAD51 paralogs, and each of these mutants exhibits embryonic lethality, although at different gestational stages. However, the phenotype of mice deficient in the fifth RAD51 paralog, XRCC3, has not been reported. Here we report that Xrcc3 knockout mice exhibit midgestational lethality, with mild phenotypes beginning at about E8.25 but severe developmental abnormalities evident by E9.0-9.5. The most obvious phenotypes are small size and a failure of the embryo to turn to a fetal position. A knockin mutation at a key ATPase residue in the Walker A box results in embryonic lethality at a similar stage. Death of knockout mice can be delayed a few days for some embryos by homozygous or heterozygous Trp53 mutation, in keeping with an important role for XRCC3 in promoting genome integrity. Given that XRCC3 is a unique member of one of two RAD51 paralog complexes with RAD51C, these results demonstrate that both RAD51 paralog complexes are required for mouse development.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Regeneron Pharmaceuticals, Tarrytown, New York, NY, United States
| | - Laina Freyer
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Institut Pasteur, Paris, France
| | - Néstor Saiz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Rockefeller University Press, New York, NY, United States
| | - Svetlana Gavrilov
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Bristol-Myers Squibb, New York, NY, United States
| | - Raymond Q Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Peter J Romanienko
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States; Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elizabeth Lacy
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 430 East 67 Street, New York, NY 10065, United States.
| |
Collapse
|
29
|
Špírek M, Taylor MRG, Belan O, Boulton SJ, Krejci L. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat Commun 2021; 12:5545. [PMID: 34545070 PMCID: PMC8452638 DOI: 10.1038/s41467-021-25830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that ‘nucleotide proofreading’ activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR. A RAD51 paralog complex, RFS-1/RIP-1, is shown to control ssDNA binding and dissociation by RAD-51 differentially in the presence and absence of nucleotide cofactors. These nucleotide proofreading activities drive a preferential accumulation of RAD-51-ssDNA complexes with optimal nucleotide content.
Collapse
Affiliation(s)
- Mário Špírek
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic.,Department of Biology Masaryk University, 62500, Brno, Czech Republic
| | | | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lumir Krejci
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic. .,Department of Biology Masaryk University, 62500, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
30
|
The Role of the Rad55-Rad57 Complex in DNA Repair. Genes (Basel) 2021; 12:genes12091390. [PMID: 34573372 PMCID: PMC8472222 DOI: 10.3390/genes12091390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Homologous recombination (HR) is a mechanism conserved from bacteria to humans essential for the accurate repair of DNA double-stranded breaks, and maintenance of genome integrity. In eukaryotes, the key DNA transactions in HR are catalyzed by the Rad51 recombinase, assisted by a host of regulatory factors including mediators such as Rad52 and Rad51 paralogs. Rad51 paralogs play a crucial role in regulating proper levels of HR, and mutations in the human counterparts have been associated with diseases such as cancer and Fanconi Anemia. In this review, we focus on the Saccharomyces cerevisiae Rad51 paralog complex Rad55–Rad57, which has served as a model for understanding the conserved role of Rad51 paralogs in higher eukaryotes. Here, we discuss the results from early genetic studies, biochemical assays, and new single-molecule observations that have together contributed to our current understanding of the molecular role of Rad55–Rad57 in HR.
Collapse
|
31
|
Rein HL, Bernstein KA, Baldock RA. RAD51 paralog function in replicative DNA damage and tolerance. Curr Opin Genet Dev 2021; 71:86-91. [PMID: 34311385 DOI: 10.1016/j.gde.2021.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
RAD51 paralog gene mutations are observed in both hereditary breast and ovarian cancers. Classically, defects in RAD51 paralog function are associated with homologous recombination (HR) deficiency and increased genomic instability. Several recent investigative advances have enabled characterization of non-canonical RAD51 paralog function during DNA replication. Here we discuss the role of the RAD51 paralogs and their associated complexes in integrating a robust response to DNA replication stress. We highlight recent discoveries suggesting that the RAD51 paralogs complexes mediate lesion-specific tolerance of replicative stress following exposure to alkylating agents and the requirement for the Shu complex in fork restart upon fork stalling by dNTP depletion. In addition, we describe the role of the BCDX2 complex in restraining and promoting fork remodeling in response to fluctuating dNTP pools. Finally, we highlight recent work demonstrating a requirement for RAD51C in recognizing and tolerating methyl-adducts. In each scenario, RAD51 paralog complexes play a central role in lesion recognition and bypass in a replicative context. Future studies will determine how these critical functions for RAD51 paralog complexes contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Robert A Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK.
| |
Collapse
|
32
|
Prakash R, Sandoval T, Morati F, Zagelbaum JA, Lim PX, White T, Taylor B, Wang R, Desclos ECB, Sullivan MR, Rein HL, Bernstein KA, Krawczyk PM, Gautier J, Modesti M, Vanoli F, Jasin M. Distinct pathways of homologous recombination controlled by the SWS1-SWSAP1-SPIDR complex. Nat Commun 2021; 12:4255. [PMID: 34253720 PMCID: PMC8275761 DOI: 10.1038/s41467-021-24205-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Homology-directed repair (HDR), a critical DNA repair pathway in mammalian cells, is complex, leading to multiple outcomes with different impacts on genomic integrity. However, the factors that control these different outcomes are often not well understood. Here we show that SWS1-SWSAP1-SPIDR controls distinct types of HDR. Despite their requirement for stable assembly of RAD51 recombinase at DNA damage sites, these proteins are not essential for intra-chromosomal HDR, providing insight into why patients and mice with mutations are viable. However, SWS1-SWSAP1-SPIDR is critical for inter-homolog HDR, the first mitotic factor identified specifically for this function. Furthermore, SWS1-SWSAP1-SPIDR drives the high level of sister-chromatid exchange, promotes long-range loss of heterozygosity often involved with cancer initiation, and impels the poor growth of BLM helicase-deficient cells. The relevance of these genetic interactions is evident as SWSAP1 loss prolongs Blm-mutant embryo survival, suggesting a possible druggable target for the treatment of Bloom syndrome.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas Sandoval
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Morati
- Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Jennifer A Zagelbaum
- Department of Genetics and Development and Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pei-Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett Taylor
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emilie C B Desclos
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Meghan R Sullivan
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hayley L Rein
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Przemek M Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jean Gautier
- Department of Genetics and Development and Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
33
|
Belan O, Moore G, Kaczmarczyk A, Newton MD, Anand R, Boulton SJ, Rueda DS. Generation of versatile ss-dsDNA hybrid substrates for single-molecule analysis. STAR Protoc 2021; 2:100588. [PMID: 34169285 PMCID: PMC8209646 DOI: 10.1016/j.xpro.2021.100588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we describe a rapid and versatile protocol to generate gapped DNA substrates for single-molecule (SM) analysis using optical tweezers via site-specific Cas9 nicking and force-induced melting. We provide examples of single-stranded (ss) DNA gaps of different length and position. We outline protocols to visualize these substrates by replication protein A-enhanced Green Fluorescent Protein (RPA-eGFP) and SYTOX Orange staining using commercially available optical tweezers (C-TRAP). Finally, we demonstrate the utility of these substrates for SM analysis of bidirectional growth of RAD-51-ssDNA filaments. For complete details on the use and execution of this protocol, please refer to Belan et al. (2021).
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - George Moore
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthew D. Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|
34
|
Liu M, Chen H, Chen X, Xiong J, Song Z. Silencing UCHL3 enhances radio-sensitivity of non-small cell lung cancer cells by inhibiting DNA repair. Aging (Albany NY) 2021; 13:14277-14288. [PMID: 34016790 PMCID: PMC8202860 DOI: 10.18632/aging.203043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
UCHL3 belongs to the UCH family and is involved in multiple biological processes. However, the biological functions and underlying mechanisms of action of UCHL3 in radio-sensitivity of non-small cell lung cancer (NSCLC) remain unknown. Here, we reported that the expression of UCHL3 was significantly up-regulated in NSCLC tissues and cell lines, and associated with poor prognosis of NSCLC patients. The expression of UCHL3 of NSCLC cells was increased after exposure to ionizing radiation (IR). Moreover, we found that knockdown of UCHL3 enhanced the radio-sensitivity of NSCLC cells both in vitro and in vivo. Furthermore, γH2AX foci staining and Western blot analysis showed that knockdown of UCHL3 increased IR-induced DNA damage. Knockdown of UCHL3 in NSCLC cells decreased homologous recombination (HR) repair efficiency and RAD51 foci formation. Collectively, our study revealed that knockdown of UCHL3 enhanced the radio-sensitivity of NSCLC cells and increased IR-induced DNA damage via impairing HR repair.
Collapse
Affiliation(s)
- Miaowen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Huimin Chen
- Department of Hemodialysis, Nanchang First Hospital, Nanchang, Jiangxi, People’s Republic of China
| | - Xinyue Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhiwang Song
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
35
|
Tang M, Li S, Chen J. Ubiquitylation in DNA double-strand break repair. DNA Repair (Amst) 2021; 103:103129. [PMID: 33990032 DOI: 10.1016/j.dnarep.2021.103129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Genome integrity is constantly challenged by various DNA lesions with DNA double-strand breaks (DSBs) as the most cytotoxic lesions. In order to faithfully repair DSBs, DNA damage response (DDR) signaling networks have evolved, which organize many multi-protein complexes to deal with the encountered DNA damage. Spatiotemporal dynamics of these protein complexes at DSBs are mainly modulated by post-translational modifications (PTMs). One of the most well-studied PTMs in DDR is ubiquitylation which can orchestrate cellular responses to DSBs, promote accurate DNA repair, and maintain genome integrity. Here, we summarize the recent advances of ubiquitin-dependent signaling in DDR and discuss how ubiquitylation crosstalks with other PTMs to control fundamental biological processes in DSB repair.
Collapse
Affiliation(s)
- Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Golan T, O'Kane GM, Denroche RE, Raitses-Gurevich M, Grant RC, Holter S, Wang Y, Zhang A, Jang GH, Stossel C, Atias D, Halperin S, Berger R, Glick Y, Park JP, Cuggia A, Williamson L, Wong HL, Schaeffer DF, Renouf DJ, Borgida A, Dodd A, Wilson JM, Fischer SE, Notta F, Knox JJ, Zogopoulos G, Gallinger S. Genomic Features and Classification of Homologous Recombination Deficient Pancreatic Ductal Adenocarcinoma. Gastroenterology 2021; 160:2119-2132.e9. [PMID: 33524400 DOI: 10.1053/j.gastro.2021.01.220] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Homologous recombination deficiency (HRD) in pancreatic ductal adenocarcinoma (PDAC), remains poorly defined beyond germline (g) alterations in BRCA1, BRCA2, and PALB2. METHODS We interrogated whole genome sequencing (WGS) data on 391 patients, including 49 carriers of pathogenic variants (PVs) in gBRCA and PALB2. HRD classifiers were applied to the dataset and included (1) the genomic instability score (GIS) used by Myriad's MyChoice HRD assay; (2) substitution base signature 3 (SBS3); (3) HRDetect; and (4) structural variant (SV) burden. Clinical outcomes and responses to chemotherapy were correlated with HRD status. RESULTS Biallelic tumor inactivation of gBRCA or PALB2 was evident in 43 of 49 germline carriers identifying HRD-PDAC. HRDetect (score ≥0.7) predicted gBRCA1/PALB2 deficiency with highest sensitivity (98%) and specificity (100%). HRD genomic tumor classifiers suggested that 7% to 10% of PDACs that do not harbor gBRCA/PALB2 have features of HRD. Of the somatic HRDetecthi cases, 69% were attributed to alterations in BRCA1/2, PALB2, RAD51C/D, and XRCC2, and a tandem duplicator phenotype. TP53 loss was more common in BRCA1- compared with BRCA2-associated HRD-PDAC. HRD status was not prognostic in resected PDAC; however in advanced disease the GIS (P = .02), SBS3 (P = .03), and HRDetect score (P = .005) were predictive of platinum response and superior survival. PVs in gATM (n = 6) or gCHEK2 (n = 2) did not result in HRD-PDAC by any of the classifiers. In 4 patients, BRCA2 reversion mutations associated with platinum resistance. CONCLUSIONS Germline and parallel somatic profiling of PDAC outperforms germline testing alone in identifying HRD-PDAC. An additional 7% to 10% of patients without gBRCA/PALB2 mutations may benefit from DNA damage response agents.
Collapse
Affiliation(s)
- Talia Golan
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert E Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Maria Raitses-Gurevich
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Robert C Grant
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Spring Holter
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yifan Wang
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Chani Stossel
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Atias
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Halperin
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Raanan Berger
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Glick
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Patrick Park
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Adeline Cuggia
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Laura Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- BC Cancer, Vancouver Centre, Pancreas Centre BC, Canada
| | | | | | - Ayelet Borgida
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Dodd
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - George Zogopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Meier B, Volkova NV, Hong Y, Bertolini S, González-Huici V, Petrova T, Boulton S, Campbell PJ, Gerstung M, Gartner A. Protection of the C. elegans germ cell genome depends on diverse DNA repair pathways during normal proliferation. PLoS One 2021; 16:e0250291. [PMID: 33905417 PMCID: PMC8078821 DOI: 10.1371/journal.pone.0250291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Maintaining genome integrity is particularly important in germ cells to ensure faithful transmission of genetic information across generations. Here we systematically describe germ cell mutagenesis in wild-type and 61 DNA repair mutants cultivated over multiple generations. ~44% of the DNA repair mutants analysed showed a >2-fold increased mutagenesis with a broad spectrum of mutational outcomes. Nucleotide excision repair deficiency led to higher base substitution rates, whereas polh-1(Polη) and rev-3(Polζ) translesion synthesis polymerase mutants resulted in 50-400 bp deletions. Signatures associated with defective homologous recombination fall into two classes: 1) brc-1/BRCA1 and rad-51/RAD51 paralog mutants showed increased mutations across all mutation classes, 2) mus-81/MUS81 and slx-1/SLX1 nuclease, and him-6/BLM, helq-1/HELQ or rtel-1/RTEL1 helicase mutants primarily accumulated structural variants. Repetitive and G-quadruplex sequence-containing loci were more frequently mutated in specific DNA repair backgrounds. Tandem duplications embedded in inverted repeats were observed in helq-1 helicase mutants, and a unique pattern of 'translocations' involving homeologous sequences occurred in rip-1 recombination mutants. atm-1/ATM checkpoint mutants harboured structural variants specifically enriched in subtelomeric regions. Interestingly, locally clustered mutagenesis was only observed for combined brc-1 and cep-1/p53 deficiency. Our study provides a global view of how different DNA repair pathways contribute to prevent germ cell mutagenesis.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland
| | - Nadezda V. Volkova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland
| | - Simone Bertolini
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland
| | | | - Tsvetana Petrova
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland
| | | | - Peter J. Campbell
- Cancer, Ageing and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| |
Collapse
|
38
|
Biology on track: single-molecule visualisation of protein dynamics on linear DNA substrates. Essays Biochem 2021; 65:5-16. [PMID: 33236762 DOI: 10.1042/ebc20200019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Single-molecule fluorescence imaging techniques have become important tools in biological research to gain mechanistic insights into cellular processes. These tools provide unique access to the dynamic and stochastic behaviour of biomolecules. Single-molecule tools are ideally suited to study protein-DNA interactions in reactions reconstituted from purified proteins. The use of linear DNA substrates allows for the study of protein-DNA interactions with observation of the movement and behaviour of DNA-translocating proteins over long distances. Single-molecule studies using long linear DNA substrates have revealed unanticipated insights on the dynamics of multi-protein systems. In this review, we provide an overview of recent methodological advances, including the construction of linear DNA substrates. We highlight the versatility of these substrates by describing their application in different single-molecule fluorescence techniques, with a focus on in vitro reconstituted systems. We discuss insights from key experiments on DNA curtains, DNA-based molecular motor proteins, and multi-protein systems acting on DNA that relied on the use of long linear substrates and single-molecule visualisation. The quality and customisability of linear DNA substrates now allows the insertion of modifications, such as nucleosomes, to create conditions mimicking physiologically relevant crowding and complexity. Furthermore, the current technologies will allow future studies on the real-time visualisation of the interfaces between DNA maintenance processes such as replication and transcription.
Collapse
|
39
|
Abstract
In this issue of Molecular Cell, Roy et al. (2021) and Belan et al. (2021) demonstrate that the yeast and nematode RAD51 paralog complexes function as chaperones to promote the assembly of the RAD51 nucleoprotein filament on RPA-coated ssDNA.
Collapse
Affiliation(s)
- Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Switzerland.
| |
Collapse
|
40
|
Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol Cell 2021; 81:1058-1073.e7. [PMID: 33421363 PMCID: PMC7941204 DOI: 10.1016/j.molcel.2020.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.
Collapse
|
41
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
42
|
Janysek DC, Kim J, Duijf PHG, Dray E. Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. Transl Oncol 2021; 14:101012. [PMID: 33516088 PMCID: PMC7847957 DOI: 10.1016/j.tranon.2021.101012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cells are continuously subjected to DNA damaging agents. DNA damages are repaired by one of the many pathways guarding genomic integrity. When one or several DNA damage pathways are rendered inefficient, cells can accumulate mutations, which modify normal cellular pathways, favoring abnormal cell growth. This supports malignant transformation, which can occur when cells acquire resistance to cell cycle checkpoints, apoptosis, or growth inhibition signals. Mutations in genes involved in the repair of DNA double strand breaks (DSBs), such as BRCA1, BRCA2, or PALB2, significantly increase the risk of developing cancer of the breast, ovaries, pancreas, or prostate. Fortunately, the inability of these tumors to repair DNA breaks makes them sensitive to genotoxic chemotherapies, allowing for the development of therapies precisely tailored to individuals' genetic backgrounds. Unfortunately, as with many anti-cancer agents, drugs used to treat patients carrying a BRCA1 or BRCA2 mutation create a selective pressure, and over time tumors can become drug resistant. Here, we detail the cellular function of tumor suppressors essential in DNA damage repair pathways, present the mechanisms of action of inhibitors used to create synthetic lethality in BRCA carriers, and review the major molecular sources of drug resistance. Finally, we present examples of the many strategies being developed to circumvent drug resistance.
Collapse
Affiliation(s)
- Dawn C Janysek
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jennifer Kim
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Pascal H G Duijf
- Queensland University of Technology, IHBI at the Translational Research Institute, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, United States.
| |
Collapse
|
43
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Llovet P, Díez-Gómez B, Caloca MJ, Pérez-Segura P, Fraile-Bethencourt E, Colmena M, Carvalho S, Allen J, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers (Basel) 2020; 12:E3771. [PMID: 33333735 PMCID: PMC7765170 DOI: 10.3390/cancers12123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - María José Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
- Knight Cancer Research Building, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Marta Colmena
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| |
Collapse
|
44
|
Antibiotic-induced DNA damage results in a controlled loss of pH homeostasis and genome instability. Sci Rep 2020; 10:19422. [PMID: 33173044 PMCID: PMC7655802 DOI: 10.1038/s41598-020-76426-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Extracellular pH has been assumed to play little if any role in how bacteria respond to antibiotics and antibiotic resistance development. Here, we show that the intracellular pH of Escherichia coli equilibrates to the environmental pH following treatment with the DNA damaging antibiotic nalidixic acid. We demonstrate that this allows the environmental pH to influence the transcription of various DNA damage response genes and physiological processes such as filamentation. Using purified RecA and a known pH-sensitive mutant variant RecA K250R we show how pH can affect the biochemical activity of a protein central to control of the bacterial DNA damage response system. Finally, two different mutagenesis assays indicate that environmental pH affects antibiotic resistance development. Specifically, at environmental pH's greater than six we find that mutagenesis plays a significant role in producing antibiotic resistant mutants. At pH's less than or equal to 6 the genome appears more stable but extensive filamentation is observed, a phenomenon that has previously been linked to increased survival in the presence of macrophages.
Collapse
|
45
|
Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nat Commun 2020; 11:3531. [PMID: 32669601 PMCID: PMC7363682 DOI: 10.1038/s41467-020-17324-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) factors were recently implicated in DNA replication fork remodeling and protection. While maintaining genome stability, HR-mediated fork remodeling promotes cancer chemoresistance, by as-yet elusive mechanisms. Five HR cofactors – the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3 – recently emerged as crucial tumor suppressors. Albeit extensively characterized in DNA repair, their role in replication has not been addressed systematically. Here, we identify all RAD51 paralogs while screening for modulators of RAD51 recombinase upon replication stress. Single-molecule analysis of fork progression and architecture in isogenic cellular systems shows that the BCDX2 subcomplex restrains fork progression upon stress, promoting fork reversal. Accordingly, BCDX2 primes unscheduled degradation of reversed forks in BRCA2-defective cells, boosting genomic instability. Conversely, the CX3 subcomplex is dispensable for fork reversal, but mediates efficient restart of reversed forks. We propose that RAD51 paralogs sequentially orchestrate clinically relevant transactions at replication forks, cooperatively promoting fork remodeling and restart. Replication stress has been associated with transient remodelling of replication intermediates into reversed forks, followed by efficient fork restart. Here the authors systematically analyse the role of RAD51 paralogs in these transactions, providing insights on the mechanistic role of different complexes of these proteins.
Collapse
|
46
|
Abstract
Accurate DNA repair and replication are critical for genomic stability and cancer prevention. RAD51 and its gene family are key regulators of DNA fidelity through diverse roles in double-strand break repair, replication stress, and meiosis. RAD51 is an ATPase that forms a nucleoprotein filament on single-stranded DNA. RAD51 has the function of finding and invading homologous DNA sequences to enable accurate and timely DNA repair. Its paralogs, which arose from ancient gene duplications of RAD51, have evolved to regulate and promote RAD51 function. Underscoring its importance, misregulation of RAD51, and its paralogs, is associated with diseases such as cancer and Fanconi anemia. In this review, we focus on the mammalian RAD51 structure and function and highlight the use of model systems to enable mechanistic understanding of RAD51 cellular roles. We also discuss how misregulation of the RAD51 gene family members contributes to disease and consider new approaches to pharmacologically inhibit RAD51.
Collapse
Affiliation(s)
- Braulio Bonilla
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Sarah R Hengel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - McKenzie K Grundy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
47
|
Yu F, Yuan Z, Zhang D, Liu Y, Zhao Q, Wang H. High-affinity and undissociated capillary electrophoresis for DNA strand exchange analysis. Chem Commun (Camb) 2020; 56:7403-7406. [PMID: 32514506 DOI: 10.1039/d0cc02844d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By identification of a super-stable protein-DNA-affinity system, we developed a free-solution capillary electrophoresis approach for rapid and sensitive detection of fundamentally important DNA strand exchange reactions mediated by recombinases. We further extended this assay for identification of hyper-recombinases generated from bioengineering and detection of single DNA mismatches caused by replication error.
Collapse
Affiliation(s)
- Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing 100085, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Damasceno JD, Reis-Cunha J, Crouch K, Beraldi D, Lapsley C, Tosi LRO, Bartholomeu D, McCulloch R. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet 2020; 16:e1008828. [PMID: 32609721 PMCID: PMC7360064 DOI: 10.1371/journal.pgen.1008828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/14/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.
Collapse
Affiliation(s)
- Jeziel D. Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| | - João Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Dario Beraldi
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
| | - Luiz R. O. Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, SP, Brazil
| | - Daniella Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, United Kingdom
- * E-mail: (JDD); (RM)
| |
Collapse
|
49
|
Knadler C, Rolfsmeier M, Vallejo A, Haseltine C. Characterization of an archaeal recombinase paralog that exhibits novel anti-recombinase activity. Mutat Res 2020; 821:111703. [PMID: 32416400 DOI: 10.1016/j.mrfmmm.2020.111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 01/31/2023]
Abstract
The process of homologous recombination is heavily dependent on the RecA family of recombinases for repair of DNA double-strand breaks. These recombinases are responsible for identifying homologies and forming heteroduplex DNA between substrate ssDNA and dsDNA templates, activities that are modified by various accessory factors. In this work we describe the biochemical functions of the SsoRal2 recombinase paralog from the crenarchaeon Sulfolobus solfataricus. We found that the SsoRal2 protein is a DNA-independent ATPase that, unlike the other S. solfataricus paralogs, does not bind either ss- or dsDNA. Instead, SsoRal2 alters the ssDNA binding activity of the SsoRadA recombinase in conjunction with another paralog, SsoRal1. In the presence of SsoRal1, SsoRal2 has a modest effect on strand invasion but effectively abrogates strand exchange activity. Taken together, these results indicate that SsoRal2 assists in nucleoprotein filament modulation and control of strand exchange in S. solfataricus.
Collapse
Affiliation(s)
- Corey Knadler
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Michael Rolfsmeier
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Antonia Vallejo
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Cynthia Haseltine
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States.
| |
Collapse
|
50
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|