1
|
Wang S, Siddique R, Hall MC, Rice PA, Chang L. Structure of TnsABCD transpososome reveals mechanisms of targeted DNA transposition. Cell 2024; 187:6865-6881.e16. [PMID: 39383864 PMCID: PMC11606762 DOI: 10.1016/j.cell.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Tn7-like transposons are characterized by their ability to insert specifically into host chromosomes. Recognition of the attachment (att) site by TnsD recruits the TnsABC proteins to form the transpososome and facilitate transposition. Although this pathway is well established, atomic-level structural insights of this process remain largely elusive. Here, we present the cryo-electron microscopy (cryo-EM) structures of the TnsC-TnsD-att DNA complex and the TnsABCD transpososome from the Tn7-like transposon in Peltigera membranacea cyanobiont 210A, a type I-B CRISPR-associated transposon. Our structures reveal a striking bending of the att DNA, featured by the intercalation of an arginine side chain of TnsD into a CC/GG dinucleotide step. The TnsABCD transpososome structure reveals TnsA-TnsB interactions and demonstrates that TnsC not only recruits TnsAB but also directly participates in the transpososome assembly. These findings provide mechanistic insights into targeted DNA insertion by Tn7-like transposons, with implications for improving the precision and efficiency of their genome-editing applications.
Collapse
Affiliation(s)
- Shukun Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Romana Siddique
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Seong H, Yoon JG, Nham E, Choi YJ, Noh JY, Cheong HJ, Kim WJ, Kim EH, Kim C, Han YH, Lim S, Song JY. The gut microbiota modifies antibody durability and booster responses after SARS-CoV-2 vaccination. J Transl Med 2024; 22:827. [PMID: 39242525 PMCID: PMC11380214 DOI: 10.1186/s12967-024-05637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coronavirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vaccination, its impact on the longevity of vaccine-induced antibodies remains unexplored. METHODS A prospective cohort study was conducted involving 44 healthy adults who received two doses of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using a SARS-CoV-2 spike protein immunoassay. RESULTS Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccination. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic amino acid synthesis. CONCLUSIONS The findings of this study underscored the potential interaction between the gut microbiome and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of specific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Hye Seong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Yu Jung Choi
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Chulwoo Kim
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Hee Han
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Sooyeon Lim
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| | - Joon Young Song
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Shen Y, Krishnan SS, Petassi MT, Hancock MA, Peters JE, Guarné A. Assembly of the Tn7 targeting complex by a regulated stepwise process. Mol Cell 2024; 84:2368-2381.e6. [PMID: 38834067 PMCID: PMC11364213 DOI: 10.1016/j.molcel.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/08/2024] [Accepted: 05/12/2024] [Indexed: 06/06/2024]
Abstract
The Tn7 family of transposons is notable for its highly regulated integration mechanisms, including programmable RNA-guided transposition. The targeting pathways rely on dedicated target selection proteins from the TniQ family and the AAA+ adaptor TnsC to recruit and activate the transposase at specific target sites. Here, we report the cryoelectron microscopy (cryo-EM) structures of TnsC bound to the TniQ domain of TnsD from prototypical Tn7 and unveil key regulatory steps stemming from unique behaviors of ATP- versus ADP-bound TnsC. We show that TnsD recruits ADP-bound dimers of TnsC and acts as an exchange factor to release one protomer with exchange to ATP. This loading process explains how TnsC assembles a heptameric ring unidirectionally from the target site. This unique loading process results in functionally distinct TnsC protomers within the ring, providing a checkpoint for target immunity and explaining how insertions at programmed sites precisely occur in a specific orientation across Tn7 elements.
Collapse
Affiliation(s)
- Yao Shen
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Shreya S Krishnan
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Mark A Hancock
- Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada; Centre de recherche en biologie structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
4
|
de la Gándara Á, Spínola-Amilibia M, Araújo-Bazán L, Núñez-Ramírez R, Berger JM, Arias-Palomo E. Molecular basis for transposase activation by a dedicated AAA+ ATPase. Nature 2024; 630:1003-1011. [PMID: 38926614 PMCID: PMC11208146 DOI: 10.1038/s41586-024-07550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.
Collapse
Affiliation(s)
| | | | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | | | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
5
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. Science 2023; 382:eadj8543. [PMID: 37972161 PMCID: PMC10771339 DOI: 10.1126/science.adj8543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 11/19/2023]
Abstract
CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to catalyze RNA-guided transposition of large genetic payloads. Type V-K CASTs offer potential technology advantages but lack accuracy, and the molecular basis for this drawback has remained elusive. Here, we reveal that type V-K CASTs maintain an RNA-independent, "untargeted" transposition pathway alongside RNA-dependent integration, driven by the local availability of TnsC filaments. Using cryo-electron microscopy, single-molecule experiments, and high-throughput sequencing, we found that a minimal, CRISPR-less transpososome preferentially directs untargeted integration at AT-rich sites, with additional local specificity imparted by TnsB. By exploiting this knowledge, we suppressed untargeted transposition and increased type V-K CAST specificity up to 98.1% in cells without compromising on-target integration efficiency. These findings will inform further engineering of CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Chandler M, Ross K, Varani AM. The insertion sequence excision enhancer: A PrimPol-based primer invasion system for immobilizing transposon-transmitted antibiotic resistance genes. Mol Microbiol 2023; 120:658-669. [PMID: 37574851 DOI: 10.1111/mmi.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Evolutionary studies often identify genes that have been exchanged between different organisms and the phrase Lateral or Horizontal Gene Transfer is often used in this context. However, they rarely provide any mechanistic information concerning how these gene transfers might have occurred. With the astonishing increase in the number of sequences in public databases over the past two or three decades, identical antibiotic resistance genes have been identified in many different sequence contexts. One explanation for this would be that genes are initially transmitted by transposons which have subsequently decayed and can no longer be detected. Here, we provide an overview of a protein, IEE (Insertion Sequence Excision Enhancer) observed to facilitate high-frequency excision of IS629 from clinically important Escherichia coli O157:H7 and subsequently shown to affect a large class of bacterial insertion sequences which all transpose using the copy-out-paste-in transposition mechanism. Excision depends on both IEE and transposase indicating association with the transposition process itself. We review genetic and biochemical data and propose that IEE immobilizes genes carried by compound transposons by removing the flanking insertion sequence (IS) copies. The biochemical activities of IEE as a primase with the capacity to recognize DNA microhomologies and the observation that its effect appears restricted to IS families which use copy-out-paste-in transposition, suggests IS deletion occurs by abortive transposition involving strand switching (primer invasion) during the copy-out step. This reinforces the proposal made for understanding the widespread phenomenon loss of ISApl1 flanking mcr-1 in the compound transposon Tn6330 which we illustrate with a detailed model. This model also provides a convincing way to explain the high levels of IEE-induced precise IS excision.
Collapse
Affiliation(s)
- Mick Chandler
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Karen Ross
- Protein Information Resource, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Alessandro M Varani
- School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Sao Paulo, Brazil
| |
Collapse
|
7
|
George JT, Acree C, Park JU, Kong M, Wiegand T, Pignot YL, Kellogg EH, Greene EC, Sternberg SH. Mechanism of target site selection by type V-K CRISPR-associated transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548620. [PMID: 37503092 PMCID: PMC10370016 DOI: 10.1101/2023.07.14.548620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike canonical CRISPR-Cas systems that rely on RNA-guided nucleases for target cleavage, CRISPR-associated transposases (CASTs) repurpose nuclease-deficient CRISPR effectors to facilitate RNA-guided transposition of large genetic payloads. Type V-K CASTs offer several potential upsides for genome engineering, due to their compact size, easy programmability, and unidirectional integration. However, these systems are substantially less accurate than type I-F CASTs, and the molecular basis for this difference has remained elusive. Here we reveal that type V-K CASTs undergo two distinct mobilization pathways with remarkably different specificities: RNA-dependent and RNA-independent transposition. Whereas RNA-dependent transposition relies on Cas12k for accurate target selection, RNA-independent integration events are untargeted and primarily driven by the local availability of TnsC filaments. The cryo-EM structure of the untargeted complex reveals a TnsB-TnsC-TniQ transpososome that encompasses two turns of a TnsC filament and otherwise resembles major architectural aspects of the Cas12k-containing transpososome. Using single-molecule experiments and genome-wide meta-analyses, we found that AT-rich sites are preferred substrates for untargeted transposition and that the TnsB transposase also imparts local specificity, which collectively determine the precise insertion site. Knowledge of these motifs allowed us to direct untargeted transposition events to specific hotspot regions of a plasmid. Finally, by exploiting TnsB's preference for on-target integration and modulating the availability of TnsC, we suppressed RNA-independent transposition events and increased type V-K CAST specificity up to 98.1%, without compromising the efficiency of on-target integration. Collectively, our results reveal the importance of dissecting target site selection mechanisms and highlight new opportunities to leverage CAST systems for accurate, kilobase-scale genome engineering applications.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Christopher Acree
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yanis Luca Pignot
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Present address: Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Elizabeth H. Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Future address: Department of Structural Biology. St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric C. Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Spínola-Amilibia M, Araújo-Bazán L, de la Gándara Á, Berger JM, Arias-Palomo E. IS21 family transposase cleaved donor complex traps two right-handed superhelical crossings. Nat Commun 2023; 14:2335. [PMID: 37087515 PMCID: PMC10122671 DOI: 10.1038/s41467-023-38071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Transposases are ubiquitous enzymes that catalyze DNA rearrangement events with broad impacts on gene expression, genome evolution, and the spread of drug-resistance in bacteria. Here, we use biochemical and structural approaches to define the molecular determinants by which IstA, a transposase present in the widespread IS21 family of mobile elements, catalyzes efficient DNA transposition. Solution studies show that IstA engages the transposon terminal sequences to form a high-molecular weight complex and promote DNA integration. A 3.4 Å resolution structure of the transposase bound to transposon ends corroborates our biochemical findings and reveals that IstA self-assembles into a highly intertwined tetramer that synapses two supercoiled terminal inverted repeats. The three-dimensional organization of the IstA•DNA cleaved donor complex reveals remarkable similarities with retroviral integrases and classic transposase systems, such as Tn7 and bacteriophage Mu, and provides insights into IS21 transposition.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Lidia Araújo-Bazán
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Álvaro de la Gándara
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ernesto Arias-Palomo
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.
| |
Collapse
|
9
|
IS481EU Shows a New Connection between Eukaryotic and Prokaryotic DNA Transposons. BIOLOGY 2023; 12:biology12030365. [PMID: 36979057 PMCID: PMC10045372 DOI: 10.3390/biology12030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
DDD/E transposase gene is the most abundant gene in nature and many DNA transposons in all three domains of life use it for their transposition. A substantial number of eukaryotic DNA transposons show similarity to prokaryotic insertion sequences (ISs). The presence of IS481-like DNA transposons was indicated in the genome of Trichomonas vaginalis. Here, we surveyed IS481-like eukaryotic sequences using a bioinformatics approach and report a group of eukaryotic IS481-like DNA transposons, designated IS481EU, from parabasalids including T. vaginalis. The lengths of target site duplications (TSDs) of IS481EU are around 4 bps, around 15 bps, or around 25 bps, and strikingly, these discrete lengths of TSDs can be observed even in a single IS481EU family. Phylogenetic analysis indicated the close relationships of IS481EU with some of the prokaryotic IS481 family members. IS481EU was not well separated from IS3EU/GingerRoot in the phylogenetic analysis, but was distinct from other eukaryotic DNA transposons including Ginger1 and Ginger2. The unique characteristics of IS481EU in protein sequences and the distribution of TSD lengths support its placement as a new superfamily of eukaryotic DNA transposons.
Collapse
|
10
|
Dong X, Zhang C, Peng Y, Zhang HX, Shi LD, Wei G, Hubert CRJ, Wang Y, Greening C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat Commun 2022; 13:4885. [PMID: 35985998 PMCID: PMC9391474 DOI: 10.1038/s41467-022-32503-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Microbially mediated nitrogen cycling in carbon-dominated cold seep environments remains poorly understood. So far anaerobic methanotrophic archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1 clade) have been identified as diazotrophs in deep sea cold seep sediments. However, it is unclear whether other microbial groups can perform nitrogen fixation in such ecosystems. To fill this gap, we analyzed 61 metagenomes, 1428 metagenome-assembled genomes, and six metatranscriptomes derived from 11 globally distributed cold seeps. These sediments contain phylogenetically diverse nitrogenase genes corresponding to an expanded diversity of diazotrophic lineages. Diverse catabolic pathways were predicted to provide ATP for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen fixation genes among various diazotrophic groups in cold seeps were inferred to be genetically mobile and subject to purifying selection. Our findings extend the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold seep diazotrophs might contribute substantially to the global nitrogen balance.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Hong-Xi Zhang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China.
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
11
|
Shen Y, Gomez-Blanco J, Petassi MT, Peters JE, Ortega J, Guarné A. Structural basis for DNA targeting by the Tn7 transposon. Nat Struct Mol Biol 2022; 29:143-151. [PMID: 35173349 DOI: 10.1038/s41594-022-00724-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Tn7 transposable elements are unique for their highly specific, and sometimes programmable, target-site selection mechanisms and precise insertions. All the elements in the Tn7 family utilize an AAA+ adaptor (TnsC) to coordinate target-site selection with transpososome assembly and to prevent insertions at sites already containing a Tn7 element. Owing to its multiple functions, TnsC is considered the linchpin in the Tn7 element. Here we present the high-resolution cryo-EM structure of TnsC bound to DNA using a gain-of-function variant of the protein and a DNA substrate that together recapitulate the recruitment to a specific DNA target site. TnsC forms an asymmetric ring on target DNA that segregates target-site selection and interaction with the paired-end complex to opposite faces of the ring. Unlike most AAA+ ATPases, TnsC uses a DNA distortion to find the target site but does not remodel DNA to activate transposition. By recognizing pre-distorted substrates, TnsC creates a built-in regulatory mechanism where ATP hydrolysis abolishes ring formation proximal to an existing element. This work unveils how Tn7 and Tn7-like elements determine the strict spacing between the target and integration sites.
Collapse
Affiliation(s)
- Yao Shen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Josue Gomez-Blanco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | | | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Joaquin Ortega
- Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University Montreal, Montreal, Quebec, Canada
| | - Alba Guarné
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Centre de Recherche and Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Querques I, Schmitz M, Oberli S, Chanez C, Jinek M. Target site selection and remodelling by type V CRISPR-transposon systems. Nature 2021; 599:497-502. [PMID: 34759315 PMCID: PMC7613401 DOI: 10.1038/s41586-021-04030-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.
Collapse
Affiliation(s)
- Irma Querques
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Seraina Oberli
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Park JU, Tsai AWL, Mehrotra E, Petassi MT, Hsieh SC, Ke A, Peters JE, Kellogg EH. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 2021; 373:768-774. [PMID: 34385391 DOI: 10.1126/science.abi8976] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022]
Abstract
CRISPR-associated transposition systems allow guide RNA-directed integration of a single DNA cargo in one orientation at a fixed distance from a programmable target sequence. We used cryo-electron microscopy (cryo-EM) to define the mechanism that underlies this process by characterizing the transposition regulator, TnsC, from a type V-K CRISPR-transposase system. In this scenario, polymerization of adenosine triphosphate-bound TnsC helical filaments could explain how polarity information is passed to the transposase. TniQ caps the TnsC filament, representing a universal mechanism for target information transfer in Tn7/Tn7-like elements. Transposase-driven disassembly establishes delivery of the element only to unused protospacers. Finally, TnsC transitions to define the fixed point of insertion, as revealed by structures with the transition state mimic ADP•AlF3 These mechanistic findings provide the underpinnings for engineering CRISPR-associated transposition systems for research and therapeutic applications.
Collapse
Affiliation(s)
- Jung-Un Park
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amy Wei-Lun Tsai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eshan Mehrotra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Shan-Chi Hsieh
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Zeng H, Xu H, Liu G, Wei Y, Zhang J, Shi H. Physiological and metagenomic strategies uncover the rhizosphere bacterial microbiome succession underlying three common environmental stresses in cassava. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125143. [PMID: 33858103 DOI: 10.1016/j.jhazmat.2021.125143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The most common environmental pollutants such as cadmium (Cd), glyphosate and tetracycline have led to profoundly adverse impacts on plant productivity. However, how tropical crops such as cassava sense these pollutants via roots and how rhizosphere microbiome interacts with the host and pollutants remain largely unknown. In this study, we found these stresses significantly inhibited plant growth and triggered cell damage in a dosage-dependent manner, and the toxic effect on redox homeostasis was correlated with antioxidant metabolism. Using metagenomics technique, we found the rhizosphere microbiomes dynamically altered as the dose of these stresses increased. We also identified stressor-associated metagenome-assembled genomes and microbial metabolic pathways as well as mobile genetic elements in the rhizosphere microbiomes. Next, a co-occurrence network of both physiological and microbiome features was constructed to explore how these pollutants derived oxidative damage through the microbiome succession. Notably, phyllosphere transplantation of Agrobacterium tumefaciens or Pseudomonas stutzeri can significantly alleviate the negative effects of stresses on cassava growth and redox homeostasis. Collectively, this study demonstrated the dynamics of rhizosphere bacterial microbiome of cassava under three common environmental stresses, and A. tumefaciens and P. stutzeri could be developed as potential beneficial bacteria to alleviate Cd, glyphosate and tetracycline-triggered damage to cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
15
|
Puri N, Fernandez AJ, O'Shea Murray VL, McMillan S, Keck JL, Berger JM. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader. eLife 2021; 10:64232. [PMID: 34036936 PMCID: PMC8213410 DOI: 10.7554/elife.64232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
In many bacteria and eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+(ATPases Associated with various cellular Activities) ATPases. How loading factors use ATP to control helicase deposition is poorly understood. Here, we dissect how specific ATPase elements of Escherichia coli DnaC, an archetypal loader for the bacterial DnaB helicase, play distinct roles in helicase loading and the activation of DNA unwinding. We have identified a new element, the arginine-coupler, which regulates the switch-like behavior of DnaC to prevent futile ATPase cycling and maintains loader responsiveness to replication restart systems. Our data help explain how the ATPase cycle of a AAA+-family helicase loader is channeled into productive action on its target; comparative studies indicate that elements analogous to the Arg-coupler are present in related, switch-like AAA+ proteins that control replicative helicase loading in eukaryotes, as well as in polymerase clamp loading and certain classes of DNA transposases.
Collapse
Affiliation(s)
- Neha Puri
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| | - Valerie L O'Shea Murray
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States.,Saul Ewing Arnstein & Lehr, LLP, Centre Square West, Philadelphia, United States
| | - Sarah McMillan
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
16
|
Fernandez L, Peura S, Eiler A, Linz AM, McMahon KD, Bertilsson S. Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake. Front Microbiol 2020; 11:1500. [PMID: 32714313 PMCID: PMC7341956 DOI: 10.3389/fmicb.2020.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Aquatic N-fixation is generally associated with the growth and mass development of Cyanobacteria in nitrogen-deprived photic zones. However, sequenced genomes and environmental surveys suggest active aquatic N-fixation also by many non-cyanobacterial groups. Here, we revealed the seasonal variation and genomic diversity of potential N-fixers in a humic bog lake using metagenomic data and nif gene clusters analysis. Groups with diazotrophic operons were functionally divergent and included Cholorobi, Geobacter, Desulfobacterales, Methylococcales, and Acidobacteria. In addition to nifH (a gene that encodes the dinitrogenase reductase component of the molybdenum nitrogenase), we also identified sequences corresponding to vanadium and iron-only nitrogenase genes. Within the Chlorobi population, the nitrogenase (nifH) cluster was included in a well-structured retrotransposon. Furthermore, the presence of light-harvesting photosynthesis genes implies that anoxygenic photosynthesis may fuel nitrogen fixation under the prevailing low-irradiance conditions. The presence of rnf genes (related to the expression of H+/Na+-translocating ferredoxin: NAD+ oxidoreductase) in Methylococcales and Desulfobacterales suggests that other energy-generating processes may drive the costly N-fixation in the absence of photosynthesis. The highly reducing environment of the anoxic bottom layer of Trout Bog Lake may thus also provide a suitable niche for active N-fixers and primary producers. While future studies on the activity of these potential N-fixers are needed to clarify their role in freshwater nitrogen cycling, the metagenomic data presented here enabled an initial characterization of previously overlooked diazotrophs in freshwater biomes.
Collapse
Affiliation(s)
- Leyden Fernandez
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Alexandra M. Linz
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI, United States
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Hickman AB, Voth AR, Ewis H, Li X, Craig NL, Dyda F. Structural insights into the mechanism of double strand break formation by Hermes, a hAT family eukaryotic DNA transposase. Nucleic Acids Res 2019; 46:10286-10301. [PMID: 30239795 PMCID: PMC6212770 DOI: 10.1093/nar/gky838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Some DNA transposons relocate from one genomic location to another using a mechanism that involves generating double-strand breaks at their transposon ends by forming hairpins on flanking DNA. The same double-strand break mode is employed by the V(D)J recombinase at signal-end/coding-end junctions during the generation of antibody diversity. How flanking hairpins are formed during DNA transposition has remained elusive. Here, we describe several co-crystal structures of the Hermes transposase bound to DNA that mimics the reaction step immediately prior to hairpin formation. Our results reveal a large DNA conformational change between the initial cleavage step and subsequent hairpin formation that changes which strand is acted upon by a single active site. We observed that two factors affect the conformational change: the complement of divalent metal ions bound by the catalytically essential DDE residues, and the identity of the –2 flanking base pair. Our data also provides a mechanistic link between the efficiency of hairpin formation (an A:T basepair is favored at the –2 position) and Hermes' strong target site preference. Furthermore, we have established that the histidine residue within a conserved C/DxxH motif present in many transposase families interacts directly with the scissile phosphate, suggesting a crucial role in catalysis.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Regier Voth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hosam Ewis
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Expanding the Diversity of Myoviridae Phages Infecting Lactobacillus plantarum-A Novel Lineage of Lactobacillus Phages Comprising Five New Members. Viruses 2019; 11:v11070611. [PMID: 31277436 PMCID: PMC6669764 DOI: 10.3390/v11070611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Lactobacillus plantarum is a bacterium with probiotic properties and promising applications in the food industry and agriculture. So far, bacteriophages of this bacterium have been moderately addressed. We examined the diversity of five new L. plantarum phages via whole genome shotgun sequencing and in silico protein predictions. Moreover, we looked into their phylogeny and their potential genomic similarities to other complete phage genome records through extensive nucleotide and protein comparisons. These analyses revealed a high degree of similarity among the five phages, which extended to the vast majority of predicted virion-associated proteins. Based on these, we selected one of the phages as a representative and performed transmission electron microscopy and structural protein sequencing tests. Overall, the results suggested that the five phages belong to the family Myoviridae, they have a long genome of 137,973-141,344 bp, a G/C content of 36.3-36.6% that is quite distinct from their host's, and surprisingly, 7 to 15 tRNAs. Only an average 41/174 of their predicted genes were assigned a function. The comparative analyses unraveled considerable genetic diversity for the five L. plantarum phages in this study. Hence, the new genus "Semelevirus" was proposed, comprising exclusively of the five phages. This novel lineage of Lactobacillus phages provides further insight into the genetic heterogeneity of phages infecting Lactobacillus sp. The five new Lactobacillus phages have potential value for the development of more robust starters through, for example, the selection of mutants insensitive to phage infections. The five phages could also form part of phage cocktails, which producers would apply in different stages of L. plantarum fermentations in order to create a range of organoleptic outputs.
Collapse
|
19
|
Arias-Palomo E, Puri N, O'Shea Murray VL, Yan Q, Berger JM. Physical Basis for the Loading of a Bacterial Replicative Helicase onto DNA. Mol Cell 2019; 74:173-184.e4. [PMID: 30797687 DOI: 10.1016/j.molcel.2019.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 02/02/2023]
Abstract
In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Department of Structural & Chemical Biology, Centro de Investigaciones Biológicas, CIB-CSIC 28040 Madrid, Spain.
| | - Neha Puri
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valerie L O'Shea Murray
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qianyun Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Hosseini R, Kuepper J, Koebbing S, Blank LM, Wierckx N, de Winde JH. Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements. Microb Biotechnol 2017; 10:1558-1568. [PMID: 28401676 PMCID: PMC5658596 DOI: 10.1111/1751-7915.12495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Organic solvent‐tolerant bacteria are outstanding and versatile hosts for the bio‐based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent‐tolerant Pseudomonas putida S12 contains many such mobile elements that play a major role in the regulation and adaptation to various stress conditions, including the regulation of expression of the solvent efflux pump SrpABC. We recently sequenced the genome of P. putida S12. Detailed annotation identified a threefold higher copy number of the mobile element ISS12 in contrast to earlier observations. In this study, we describe the mobile genetic elements and elaborate on the role of ISS12 in the establishment and maintenance of solvent tolerance in P. putida. We identified three different variants of ISS12 of which a single variant exhibits a high translocation rate. One copy of this variant caused a loss of solvent tolerance in the sequenced strain by disruption of srpA. Solvent tolerance could be restored by applying selective pressure, leading to a clean excision of the mobile element.
Collapse
Affiliation(s)
- Rohola Hosseini
- Microbial Biotechnology and Health, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jannis Kuepper
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Sebastian Koebbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Johannes H de Winde
- Microbial Biotechnology and Health, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Monroe N, Han H, Shen PS, Sundquist WI, Hill CP. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 2017; 6. [PMID: 28379137 PMCID: PMC5413351 DOI: 10.7554/elife.24487] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI:http://dx.doi.org/10.7554/eLife.24487.001 Membranes surround multiple compartments within cells as well as the cell itself. In living cells, these membranes are remodeled continuously. This allows cells to divide, move molecules between different compartments and perform other essential activities. One important remodeling event is known as fission, which splits a membrane into separate parts. Large repeating structures (or polymers) of ESCRT-III proteins play a crucial role in membrane fission. Breaking apart ESCRT-III polymers triggers membrane fission and also recycles the ESCRT-III proteins so that they can be used again. An enzyme called Vps4 converts chemical energy (stored in the form of a molecule called ATP) into the mechanical force that breaks apart the ESCRT-III polymers. The active form of Vps4 consists of six Vps4 subunits working together to form a complex that includes a cofactor protein called Vta1. Monroe et al. have now used a technique called cryo-electron microscopy to determine the structure of an active yeast Vps4-Vta1 complex while it is bound to a segment of an ESCRT-III protein. This revealed that four of the six Vps4 subunits form a helix (which resembles a spiral staircase) that binds ESCRT-III in its central pore. The structure implies that binding of ATP causes the Vps4 helix to grow at one end and that converting ATP into a molecule called ADP (to release energy) causes disassembly at the other end. The two additional Vps4 subunits move from the disassembling end to the growing end of the helix. In this manner, Vps4 ‘walks’ along ESCRT-III, thereby pulling it through the pore at the center of the Vps4 complex and triggering breakdown of the ESCRT-III polymer. Further work is now needed to understand exactly how this activity leads to membrane fission. DOI:http://dx.doi.org/10.7554/eLife.24487.002
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Han Han
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Peter S Shen
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
22
|
Karlowicz A, Wegrzyn K, Gross M, Kaczynska D, Ropelewska M, Siemiątkowska M, Bujnicki JM, Konieczny I. Defining the crucial domain and amino acid residues in bacterial Lon protease for DNA binding and processing of DNA-interacting substrates. J Biol Chem 2017; 292:7507-7518. [PMID: 28292931 DOI: 10.1074/jbc.m116.766709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lon protease previously has been shown to interact with DNA, but the role of this interaction for Lon proteolytic activity has not been characterized. In this study, we used truncated Escherichia coli Lon constructs, bioinformatics analysis, and site-directed mutagenesis to identify Lon domains and residues crucial for Lon binding with DNA and effects on Lon proteolytic activity. We found that deletion of Lon's ATPase domain abrogated interactions with DNA. Substitution of positively charged amino acids in this domain in full-length Lon with residues conferring a net negative charge disrupted binding of Lon to DNA. These changes also affected the degradation of nucleic acid-binding protein substrates of Lon, intracellular localization of Lon, and cell morphology. In vivo tests revealed that Lon-DNA interactions are essential for Lon activity in cell division control. In summary, we demonstrate that the ability of Lon to bind DNA is determined by its ATPase domain, that this binding is required for processing protein substrates in nucleoprotein complexes, and that Lon may help regulate DNA replication in response to growth conditions.
Collapse
Affiliation(s)
- Anna Karlowicz
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marta Gross
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Dagmara Kaczynska
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Małgorzata Siemiątkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland, and
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland, and.,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Igor Konieczny
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland,
| |
Collapse
|
23
|
Sysoeva TA. Assessing heterogeneity in oligomeric AAA+ machines. Cell Mol Life Sci 2017; 74:1001-1018. [PMID: 27669691 PMCID: PMC11107579 DOI: 10.1007/s00018-016-2374-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
ATPases Associated with various cellular Activities (AAA+ ATPases) are molecular motors that use the energy of ATP binding and hydrolysis to remodel their target macromolecules. The majority of these ATPases form ring-shaped hexamers in which the active sites are located at the interfaces between neighboring subunits. Structural changes initiate in an active site and propagate to distant motor parts that interface and reshape the target macromolecules, thereby performing mechanical work. During the functioning cycle, the AAA+ motor transits through multiple distinct states. Ring architecture and placement of the catalytic sites at the intersubunit interfaces allow for a unique level of coordination among subunits of the motor. This in turn results in conformational differences among subunits and overall asymmetry of the motor ring as it functions. To date, a large amount of structural information has been gathered for different AAA+ motors, but even for the most characterized of them only a few structural states are known and the full mechanistic cycle cannot be yet reconstructed. Therefore, the first part of this work will provide a broad overview of what arrangements of AAA+ subunits have been structurally observed focusing on diversity of ATPase oligomeric ensembles and heterogeneity within the ensembles. The second part of this review will concentrate on methods that assess structural and functional heterogeneity among subunits of AAA+ motors, thus bringing us closer to understanding the mechanism of these fascinating molecular motors.
Collapse
Affiliation(s)
- Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
24
|
Fuller JR, Rice PA. Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal. eLife 2017; 6. [PMID: 28177285 PMCID: PMC5357137 DOI: 10.7554/elife.21777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The transposition of bacteriophage Mu serves as a model system for understanding DDE transposases and integrases. All available structures of these enzymes at the end of the transposition reaction, including Mu, exhibit significant bends in the transposition target site DNA. Here we use Mu to investigate the ramifications of target DNA bending on the transposition reaction. Enhancing the flexibility of the target DNA or prebending it increases its affinity for transpososomes by over an order of magnitude and increases the overall reaction rate. This and FRET confirm that flexibility is interrogated early during the interaction between the transposase and a potential target site, which may be how other DNA binding proteins can steer selection of advantageous target sites. We also find that the conformation of the target DNA after strand transfer is involved in preventing accidental catalysis of the reverse reaction, as conditions that destabilize this conformation also trigger reversal. DOI:http://dx.doi.org/10.7554/eLife.21777.001 Pieces of DNA called transposons can move or copy themselves around the genome. Some viruses – such as HIV and Mu (a virus that infects bacteria) – act as transposons to hide their DNA by inserting it into their host’s genome. Mu, HIV and many transposons all work in the same, somewhat unusual way. Like many chemical reactions, joining DNAs together needs a source of energy to make it happen, yet these viruses and transposons do not need high energy inputs to work. In addition, they do not look for a specific DNA sequence to insert their DNA into. This gives them the advantage of inserting copies of their DNA anywhere in the host’s genome, but also means that multiple copies might mistakenly insert into each other. Visualizations of the insertion process show that the DNA that the viruses insert their DNA into is always bent like a U-turn. Why does this bending occur? It may be that the bending helps the virus to choose where in the DNA to insert and acts as a way to power the chemical reaction that joins the DNA. To investigate this possibility, Fuller and Rice performed experiments using purified fragments of DNA and the enzyme from Mu that does the DNA joining chemistry. The results revealed that making the insertion site DNA easier to bend made the insertion much faster. Furthermore, a mutant enzyme that struggled to bend the DNA had trouble keeping the chemistry going, and so the viral DNA would accidentally pop back out after it was joined. Thus the insertion site DNA is like a spring: the enzyme puts a lot of energy into bending it, but once the viral DNA has been inserted that energy is released to power the reaction to completion. Fuller and Rice conclude that if other proteins were to pre-bend or otherwise make the DNA more flexible, this would tell the DNA-joining enzyme where to insert, which helps explain the roles of known targeting proteins for Mu and HIV. Further work is now needed to investigate whether these other targeting proteins exist for other viruses and transposons, and to identify them. DOI:http://dx.doi.org/10.7554/eLife.21777.002
Collapse
Affiliation(s)
- James R Fuller
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
25
|
Kelch BA. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers 2017; 105:532-46. [PMID: 26918303 DOI: 10.1002/bip.22827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
26
|
Unlocking Tn3-family transposase activity in vitro unveils an asymetric pathway for transposome assembly. Proc Natl Acad Sci U S A 2017; 114:E669-E678. [PMID: 28096365 DOI: 10.1073/pnas.1611701114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tn3 family is a widespread group of replicative transposons that are notorious for their contribution to the dissemination of antibiotic resistance and the emergence of multiresistant pathogens worldwide. The TnpA transposase of these elements catalyzes DNA breakage and rejoining reactions required for transposition. It also is responsible for target immunity, a phenomenon that prevents multiple insertions of the transposon into the same genomic region. However, the molecular mechanisms whereby TnpA acts in both processes remain unknown. Here, we have developed sensitive biochemical assays for the TnpA transposase of the Tn3-family transposon Tn4430 and used these assays to characterize previously isolated TnpA mutants that are selectively affected in immunity. Compared with wild-type TnpA, these mutants exhibit deregulated activities. They spontaneously assemble a unique asymmetric synaptic complex in which one TnpA molecule simultaneously binds two transposon ends. In this complex, TnpA is in an activated state competent for DNA cleavage and strand transfer. Wild-type TnpA can form this complex only on precleaved ends mimicking the initial step of transposition. The data suggest that transposition is controlled at an early stage of transpososome assembly, before DNA cleavage, and that mutations affecting immunity have unlocked TnpA by stabilizing the protein in a monomeric activated synaptic configuration. We propose an asymmetric pathway for coupling active transpososome assembly with proper target recruitment and discuss this model with respect to possible immunity mechanisms.
Collapse
|
27
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
28
|
Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc Natl Acad Sci U S A 2016; 113:E4190-9. [PMID: 27402735 DOI: 10.1073/pnas.1603980113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.
Collapse
|
29
|
Nuñez J, Bai L, Harrington L, Hinder T, Doudna J. CRISPR Immunological Memory Requires a Host Factor for Specificity. Mol Cell 2016; 62:824-833. [DOI: 10.1016/j.molcel.2016.04.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
30
|
Morris ER, Grey H, McKenzie G, Jones AC, Richardson JM. A bend, flip and trap mechanism for transposon integration. eLife 2016; 5. [PMID: 27223327 PMCID: PMC5481204 DOI: 10.7554/elife.15537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions. Fluorescence experiments confirm dynamic base flipping in solution. Transposase residues W159, R186, F187 and K190 stabilise the target DNA distortions and are required for efficient transposon integration and transposition in vitro. Transposase recognises the flipped target adenines via base-specific interactions with backbone atoms, offering a molecular basis for TA target sequence selection. Our results will provide a template for re-designing mariner/Tc1 transposases with modified target specificities. DOI:http://dx.doi.org/10.7554/eLife.15537.001 The complete set of DNA in a cell is referred to as its genome. Most genomes contain short fragments of DNA called transposons that can jump from one place to another. Transposons carry sections of DNA with them when they move, which creates diversity and can influence the evolution of a species. Transposons are also being exploited to develop tools for biotechnology and medical applications. One family of transposons – the Mariner/Tc1 family – has proved particularly useful in these endeavours because it is widespread in nature and can jump around the genomes of a broad range of species, including mammals. DNA transposons are cut out of their position and then pasted at a new site by an enzyme called transposase, which is encoded by some of the DNA within the transposon. DNA is made up of strings of molecules called bases and Mariner/Tc1-family transposons can only insert into a new position in the genome at sites that have a specific sequence of two bases. However, it was not known how this target sequence is chosen and how the transposon inserts into it. Morris et al. have now used a technique called X-ray crystallography to build a three-dimensional model of a Mariner/Tc1-family transposon as it inserts into a new position. The model shows that, as the transposon is pasted into its new site, the surrounding DNA bends. This causes two DNA bases in the surrounding DNA to flip out from their normal position in the DNA molecule, which enables them to be recognised by the transposase. Further experiments showed that this base-flipping is dynamic, that is, the two bases continuously flip in and out of position. Furthermore, Morris et al. identified which parts of the transposase enzyme are required for the transposon to be efficiently pasted into the genome. Together these findings may help researchers to alter the transposase so that it can insert the transposon into different locations in a genome. This will hopefully lead to new tools for biotechnology and medical applications. DOI:http://dx.doi.org/10.7554/eLife.15537.002
Collapse
Affiliation(s)
- Elizabeth R Morris
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anita C Jones
- EaStCHEM School of Chemistry, Edinburgh, United Kingdom
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Tsai CL, Williams GJ, Perry JJP, Tainer JA. An AAA+ ATPase Clamshell Targets Transposition. Cell 2015; 162:701-3. [PMID: 26276624 DOI: 10.1016/j.cell.2015.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DNA transposition plays key roles in genome diversity, pathogenesis, and evolution. Yet, structural and mechanistic information on transposition targeting and regulation is limited. Arias-Palomo and Berger now define the decameric organization of the AAA+ ATPase IstB, unveiling key insights into its targeting and regulation of IstA transposase activity.
Collapse
Affiliation(s)
- Chi-Lin Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gareth J Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J Jefferson P Perry
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|