1
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
2
|
Yu Z, Li X, Quan Y, Chen J, Liu J, Zheng N, Liu S, Wang Y, Liu W, Qiu C, Wang Y, Zheng R, Qin J. Itaconate alleviates diet-induced obesity via activation of brown adipocyte thermogenesis. Cell Rep 2024; 43:114142. [PMID: 38691458 DOI: 10.1016/j.celrep.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Despite medical advances, there remains an unmet need for better treatment of obesity. Itaconate, a product of the decarboxylation of the tricarboxylic acid cycle intermediate cis-aconitate, plays a regulatory role in both metabolism and immunity. Here, we show that itaconate, as an endogenous compound, counteracts high-fat-diet (HFD)-induced obesity through leptin-independent mechanisms in three mouse models. Specifically, itaconate reduces weight gain, reverses hyperlipidemia, and improves glucose tolerance in HFD-fed mice. Additionally, itaconate enhances energy expenditure and the thermogenic capacity of brown adipose tissue (BAT). Unbiased proteomic analysis reveals that itaconate upregulates key proteins involved in fatty acid oxidation and represses the expression of lipogenic genes. Itaconate may provoke a major metabolic reprogramming by inducing fatty acid oxidation and suppression of fatty acid synthesis in BAT. These findings highlight itaconate as a potential activator of BAT-mediated thermogenesis and a promising candidate for anti-obesity therapy.
Collapse
Affiliation(s)
- Zihan Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xianju Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanni Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jiawen Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Nairen Zheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuwen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yini Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wanlin Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chen Qiu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Jun Qin
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
3
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Liu Y, Song L, Zheng N, Shi J, Wu H, Yang X, Xue N, Chen X, Li Y, Sun C, Chen C, Tang L, Ni X, Wang Y, Shi Y, Guo J, Wang G, Zhang Z, Qin J. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1866-1880. [PMID: 35290573 PMCID: PMC8922985 DOI: 10.1007/s11427-021-2070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Signaling pathway alterations in COVID-19 of living humans as well as therapeutic targets of the host proteins are not clear. We analyzed 317 urine proteomes, including 86 COVID-19, 55 pneumonia and 176 healthy controls, and identified specific RNA virus detector protein DDX58/RIG-I only in COVID-19 samples. Comparison of the COVID-19 urinary proteomes with controls revealed major pathway alterations in immunity, metabolism and protein localization. Biomarkers that may stratify severe symptoms from moderate ones suggested that macrophage induced inflammation and thrombolysis may play a critical role in worsening the disease. Hyper activation of the TCA cycle is evident and a macrophage enriched enzyme CLYBL is up regulated in COVID-19 patients. As CLYBL converts the immune modulatory TCA cycle metabolite itaconate through the citramalyl-CoA intermediate to acetyl-CoA, an increase in CLYBL may lead to the depletion of itaconate, limiting its anti-inflammatory function. These observations suggest that supplementation of itaconate and inhibition of CLYBL are possible therapeutic options for treating COVID-19, opening an avenue of modulating host defense as a means of combating SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China
| | - Lan Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jinwen Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hongxing Wu
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Xing Yang
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Nianci Xue
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xing Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Yimin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Disease, Guangzhou, 510120, China
| | - Changqing Sun
- Joint Center for Translational Medicine, Tianjin Medical University Baodi Clinical College, Tianjin, 301800, China
| | - Cha Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lijuan Tang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaotian Ni
- Beijing Pineal Health Management Co. Ltd, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yaling Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Jianwen Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Guangshun Wang
- Joint Center for Translational Medicine, Tianjin Medical University Baodi Clinical College, Tianjin, 301800, China.
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
5
|
Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 2021; 95:1161-1178. [DOI: 10.1007/s00204-021-02974-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
|
6
|
Itaconate: A Metabolite Regulates Inflammation Response and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5404780. [PMID: 32724492 PMCID: PMC7382747 DOI: 10.1155/2020/5404780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Metabolic products can lead to crucial biological function alterations. Itaconate is probably the best example of how a metabolic process can be diverted to generate an immunomodulator effect in macrophages. Through inflammatory stimuli, such as lipopolysaccharide, the immune response gene 1 is activated and promotes the production of itaconate from the tricarboxylic acid cycle by decarboxylating cis-aconitate. Itaconate has been reported to have multiple immunoregulatory and antioxidative effects. In addition, reports have described its antibacterial and protumor effects. The involved mechanism in these effects includes the activation of nuclear factor E2-related factor 2 by alkylation of Kelch-like ECH-associated protein 1, inhibition of aerobic glycolysis by targeting glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase A, inhibition of succinate dehydrogenase, and blockade of IκBζ translation. All of these discoveries elucidated the transformation of the pro- into anti-inflammatory status in macrophages, which is crucial in innate immunity and set the ground for the emerging therapeutic implications of itaconate. In this review, we point out that itaconate is a novel and pivotal metabolic determinant of the immunoregulatory response in macrophages and highlight studies that have improved our understanding of the connection between the immune response and metabolism. In addition, we shed light on the therapeutic potential of itaconate and its derivatives to treat inflammatory diseases.
Collapse
|
7
|
Integrative analysis of proteomic and metabonomics data for identification of pathways related to Rhizoma Paridis-induced hepatotoxicity. Sci Rep 2020; 10:6540. [PMID: 32300172 PMCID: PMC7162872 DOI: 10.1038/s41598-020-63632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical reports on hepatotoxicity that arise from Rhizoma Paridis have recently received widespread attention. Because the hepatotoxicity mechanism is little understood, this research strived to investigate the hepatotoxicity mechanism of Rhizoma Paridis extracts based on iTRAQ quantitative proteomics and metabonomics. The extraction solutions were administrated to rats for 7 days by gavage, and the hepatotoxicity was assessed through quantification of biochemical indexes and Oil red O staining. Additionally, the mechanism of hepatotoxicity was investigated by metabonomics based upon GC-MS and iTRAQ quantitative proteomics. The biochemical and histopathological analysis stood out that Rhizoma Paridis extract could induce liver injury, which was proved by the formation of fat droplets, the changes of mitochondrial structure, and biochemical parameters. The iTRAQ proteomics and metabonomics revealed that Rhizoma Paridis-induced hepatotoxicity was chiefly connected with the abnormal activity of mitochondrion function, which brought about oxidative stress injuries and inflammation, finally causing cell apoptosis. Collectively, we have provided previously uncharacterized hepatotoxic mechanism induced by Rhizoma Paridis and a reference to ensure its safe use in the future.
Collapse
|
8
|
A genetic epidemiological study in British adults and older adults shows a high heritability of the combined indicator of vitamin B12 status (cB12) and connects B12 status with utilization of mitochondrial substrates and energy metabolism. J Nutr Biochem 2019; 70:156-163. [DOI: 10.1016/j.jnutbio.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
|
9
|
Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. J Leukoc Biol 2019; 106:359-367. [DOI: 10.1002/jlb.3ru1218-496r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jordan T. Noe
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
| | - Robert A. Mitchell
- Department of Biochemistry and Molecular GeneticsUniversity of Louisville Louisville Kentucky USA
- J.G. Brown Cancer CenterUniversity of Louisville Louisville Kentucky USA
- Department of Microbiology and ImmunologyUniversity of Louisville Louisville Kentucky USA
- Department of MedicineUniversity of Louisville Louisville Kentucky USA
| |
Collapse
|