1
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
2
|
He H, Zhou Q, Zhang Y, Li Y, Ding L, Shen T, Liu S, Peng S, Huang M, Zhou H, Cheng L, Xie R, Zhang Q, Lu J, Li L, Yang J, Bai S, Lin T, Chen X. PTBP1 Regulates DNMT3B Alternative Splicing by Interacting With RALY to Enhance the Radioresistance of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405997. [PMID: 39287090 DOI: 10.1002/advs.202405997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Radiotherapy is a curative arsenal for prostate cancer (PCa), but radioresistance seriously compromises its effectiveness. Dysregulated RNA splicing factors are extensively involved in tumor progression. Nonetheless, the role of splicing factors in radioresistance remains largely unexplored in PCa. Here, 23 splicing factors that are differentially expressed between PCa and adjacent normal tissues across multiple public PCa databases are identified. Among those genes, polypyrimidine tract binding protein 1 (PTBP1) is significantly upregulated in PCa and is positively associated with advanced clinicopathological features and poor prognosis. Gain- and loss-of-function experiments demonstrate that PTBP1 markedly reinforces genomic DNA stability to desensitize PCa cells to irradiation in vitro and in vivo. Mechanistically, PTBP1 interacts with the heterogeneous nuclear ribonucleoproteins (hnRNP) associated with lethal yellow protein homolog (RALY) and regulates exon 5 splicing of DNA methyltransferase 3b (DNMT3B) from DNMT3B-S to DNMT3B-L. Furthermore, upregulation of DNMT3B-L induces promoter methylation of dual-specificity phosphatase-2 (DUSP2) and subsequently inhibits DUSP2 expression, thereby increasing radioresistance in PCa. The findings highlight the role of splicing factors in inducing aberrant splicing events in response to radiotherapy and the potential role of PTBP1 and DNMT3B-L in reversing radioresistance in PCa.
Collapse
Affiliation(s)
- Haixia He
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yi Li
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lin Ding
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ting Shen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hua Zhou
- Department of Urology, Pu'er People's Hospital of Yunnan Province, Pu'er, 665000, China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liting Li
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Yang
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shoumin Bai
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
3
|
Polimeni B, Marasca F, Ranzani V, Bodega B. IRescue: uncertainty-aware quantification of transposable elements expression at single cell level. Nucleic Acids Res 2024; 52:e93. [PMID: 39271103 PMCID: PMC11514465 DOI: 10.1093/nar/gkae793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit tissue-specific transcription. However, understanding their role in cellular diversity across most tissues remains a challenge, when employing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue (Interspersed Repeats single-cell quantifier), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue incorporates a unique UMI deduplication algorithm to rectify sequencing errors and employs an Expectation-Maximization procedure to effectively redistribute the counts of multi-mapping reads. Our study showcases the precision of IRescue through analysis of both simulated and real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. By linking the expression patterns of TE signatures to specific conditions and biological contexts, we unveil insights into their potential roles in cellular heterogeneity and disease progression.
Collapse
Affiliation(s)
- Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Burattin FV, Vadalà R, Panepuccia M, Ranzani V, Crosti M, Colombo FA, Ruberti C, Erba E, Prati D, Nittoli T, Montini G, Ronchi A, Pugni L, Mosca F, Ricciardi S, Abrignani S, Pietrasanta C, Marasca F, Bodega B. LINE1 modulate human T cell function by regulating protein synthesis during the life span. SCIENCE ADVANCES 2024; 10:eado2134. [PMID: 39383231 PMCID: PMC11463280 DOI: 10.1126/sciadv.ado2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
The molecular mechanisms responsible for the heightened reactivity of quiescent T cells in human early life remain largely elusive. Our previous research identified that quiescent adult naïve CD4+ T cells express LINE1 (long interspersed nuclear elements 1) spliced in previously unknown isoforms, and their down-regulation marks the transition to activation. Here, we unveil that neonatal naïve T cell quiescence is characterized by enhanced energy production and protein synthesis. This phenotype is associated with the absence of LINE1 expression attributed to tonic T cell receptor/mTOR complex 1 (mTORC1) signaling and (polypyrimidine tract-binding protein 1 (PTBP1)-mediated LINE1 splicing suppression. The absence of LINE1 expression primes these cells for rapid execution of the activation program by directly regulating protein synthesis. LINE1 expression progressively increases in childhood and adults, peaking in elderly individuals, and, by decreasing protein synthesis, contributes to immune senescence in aging. Our study proposes LINE1 as a critical player of human T cell function across the human life span.
Collapse
Affiliation(s)
- Filippo V. Burattin
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Rebecca Vadalà
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Michele Panepuccia
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- SEMM, European School of Molecular Medicine, Milan 20139, Italy
| | - Valeria Ranzani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Mariacristina Crosti
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Federico A. Colombo
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Teresa Nittoli
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giovanni Montini
- Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Andrea Ronchi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Sara Ricciardi
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
| | - Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan 20122, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
5
|
Siachisumo C, Luzzi S, Aldalaqan S, Hysenaj G, Dalgliesh C, Cheung K, Gazzara MR, Yonchev ID, James K, Kheirollahi Chadegani M, Ehrmann IE, Smith GR, Cockell SJ, Munkley J, Wilson SA, Barash Y, Elliott DJ. An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression. eLife 2024; 12:RP89705. [PMID: 39356106 PMCID: PMC11446547 DOI: 10.7554/elife.89705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Collapse
Affiliation(s)
- Chileleko Siachisumo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Sara Luzzi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Saad Aldalaqan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - Ivaylo D Yonchev
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Katherine James
- School of Computing, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Ingrid E Ehrmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Jennifer Munkley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Stuart A Wilson
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - David J Elliott
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
6
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2024:10.1038/s41576-024-00774-2. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Masuda A, Okamoto T, Kawachi T, Takeda JI, Hamaguchi T, Ohno K. Blending and separating dynamics of RNA-binding proteins develop architectural splicing networks spreading throughout the nucleus. Mol Cell 2024; 84:2949-2965.e10. [PMID: 39053456 DOI: 10.1016/j.molcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
The eukaryotic nucleus has a highly organized structure. Although the spatiotemporal arrangement of spliceosomes on nascent RNA drives splicing, the nuclear architecture that directly supports this process remains unclear. Here, we show that RNA-binding proteins (RBPs) assembled on RNA form meshworks in human and mouse cells. Core and accessory RBPs in RNA splicing make two distinct meshworks adjacently but distinctly distributed throughout the nucleus. This is achieved by mutual exclusion dynamics between the charged and uncharged intrinsically disordered regions (IDRs) of RBPs. These two types of meshworks compete for spatial occupancy on pre-mRNA to regulate splicing. Furthermore, the optogenetic enhancement of the RBP meshwork causes aberrant splicing, particularly of genes involved in neurodegeneration. Genetic mutations associated with neurodegenerative diseases are often found in the IDRs of RBPs, and cells harboring these mutations exhibit impaired meshwork formation. Our results uncovered the spatial organization of RBP networks to drive RNA splicing.
Collapse
Affiliation(s)
- Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takaaki Okamoto
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Kawachi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
8
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024:10.1038/s41576-024-00749-3. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
9
|
Li X, Bie L, Wang Y, Hong Y, Zhou Z, Fan Y, Yan X, Tao Y, Huang C, Zhang Y, Sun X, Li JXH, Zhang J, Chang Z, Xi Q, Meng A, Shen X, Xie W, Liu N. LINE-1 transcription activates long-range gene expression. Nat Genet 2024; 56:1494-1502. [PMID: 38849613 DOI: 10.1038/s41588-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) is a retrotransposon group that constitutes 17% of the human genome and shows variable expression across cell types. However, the control of L1 expression and its function in gene regulation are incompletely understood. Here we show that L1 transcription activates long-range gene expression. Genome-wide CRISPR-Cas9 screening using a reporter driven by the L1 5' UTR in human cells identifies functionally diverse genes affecting L1 expression. Unexpectedly, altering L1 expression by knockout of regulatory genes impacts distant gene expression. L1s can physically contact their distal target genes, with these interactions becoming stronger upon L1 activation and weaker when L1 is silenced. Remarkably, L1s contact and activate genes essential for zygotic genome activation (ZGA), and L1 knockdown impairs ZGA, leading to developmental arrest in mouse embryos. These results characterize the regulation and function of L1 in long-range gene activation and reveal its importance in mammalian ZGA.
Collapse
Affiliation(s)
- Xiufeng Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Luyao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqiang Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziqiang Zhou
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Fan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yibing Tao
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Chunyi Huang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongyan Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueyan Sun
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - John Xiao He Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Chang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoran Xi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Shen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nian Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Zheng R, Dunlap M, Bobkov GOM, Gonzalez-Figueroa C, Patel KJ, Lyu J, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Le Roux CA, Bartels MD, Vuong A, Flynn RA, Chang HY, Van Nostrand EL, Xiao X, Cheng C. hnRNPM protects against the dsRNA-mediated interferon response by repressing LINE-associated cryptic splicing. Mol Cell 2024; 84:2087-2103.e8. [PMID: 38815579 PMCID: PMC11204102 DOI: 10.1016/j.molcel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
RNA splicing is pivotal in post-transcriptional gene regulation, yet the exponential expansion of intron length in humans poses a challenge for accurate splicing. Here, we identify hnRNPM as an essential RNA-binding protein that suppresses cryptic splicing through binding to deep introns, maintaining human transcriptome integrity. Long interspersed nuclear elements (LINEs) in introns harbor numerous pseudo splice sites. hnRNPM preferentially binds at intronic LINEs to repress pseudo splice site usage for cryptic splicing. Remarkably, cryptic exons can generate long dsRNAs through base-pairing of inverted ALU transposable elements interspersed among LINEs and consequently trigger an interferon response, a well-known antiviral defense mechanism. Significantly, hnRNPM-deficient tumors show upregulated interferon-associated pathways and elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity by repressing cryptic splicing and suggest that targeting hnRNPM in tumors may be used to trigger an inflammatory immune response, thereby boosting cancer surveillance.
Collapse
Affiliation(s)
- Rong Zheng
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mikayla Dunlap
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Georg O M Bobkov
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos Gonzalez-Figueroa
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Khushali J Patel
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingyi Lyu
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel E Harvey
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tracey W Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte A Le Roux
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mason D Bartels
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy Vuong
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan A Flynn
- Center for Personal Dynamic Regulome, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulome, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chonghui Cheng
- Lester & Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
12
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
13
|
Islam Z, Polash A, Suzawa M, Chim B, Kuhn S, Sultana S, Cutrona N, Smith PT, Kabat J, Ganesan S, Foroushani A, Hafner M, Muljo SA. MATRIN3 deficiency triggers autoinflammation via cGAS-STING activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587645. [PMID: 38712171 PMCID: PMC11071297 DOI: 10.1101/2024.04.01.587645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.
Collapse
Affiliation(s)
- Zohirul Islam
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Masataka Suzawa
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Bryan Chim
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Skyler Kuhn
- Integrated Data Sciences Section, Research Technologies Branch (RTB), NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sabrina Sultana
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Nicholas Cutrona
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Patrick T. Smith
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Juraj Kabat
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Sundar Ganesan
- Biological Imaging Section, RTB, NIAID, NIH; Bethesda, Maryland 20892, USA
| | - Amir Foroushani
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease (NIAMS), NIH; Bethesda, Maryland 20892, USA
| | - Stefan A. Muljo
- Integrative Immunobiology Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Warden CD, Wu X. Critical Differential Expression Assessment for Individual Bulk RNA-Seq Projects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579728. [PMID: 38405814 PMCID: PMC10888899 DOI: 10.1101/2024.02.10.579728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Finding the right balance of quality and quantity can be important, and it is essential that project quality does not drop below the level where important main conclusions are missed or misstated. We use knock-out and over-expression studies as a simplification to test recovery of a known causal gene in RNA-Seq cell line experiments. When single-end RNA-Seq reads are aligned with STAR and quantified with htseq-count, we found potential value in testing the use of the Generalized Linear Model (GLM) implementation of edgeR with robust dispersion estimation more frequently for either single-variate or multi-variate 2-group comparisons (with the possibility of defining criteria less stringent than |fold-change| > 1.5 and FDR < 0.05). When considering a limited number of patient sample comparisons with larger sample size, there might be some decreased variability between methods (except for DESeq1). However, at the same time, the ranking of the gene identified using immunohistochemistry (for ER/PR/HER2 in breast cancer samples from The Cancer Genome Atlas) showed as possible shift in performance compared to the cell line comparisons, potentially highlighting utility for standard statistical tests and/or limma-based analysis with larger sample sizes. If this continues to be true in additional studies and comparisons, then that could be consistent with the possibility that it may be important to allocate time for potential methods troubleshooting for genomics projects. Analysis of public data presented in this study does not consider all experimental designs, and presentation of downstream analysis is limited. So, any estimate from this simplification would be an underestimation of the true need for some methods testing for every project. Additionally, this set of independent cell line experiments has a limitation in being able to determine the frequency of missing a highly important gene if the problem is rare (such as 10% or lower). For example, if there was an assumption that only one method can be tested for "initial" analysis, then it is not completely clear to the extent that using edgeR-robust might perform better than DESeq2 in the cell line experiments. Importantly, we do not wish to cause undue concern, and we believe that it should often be possible to define a gene expression differential expression workflow that is suitable for some purposes for many samples. Nevertheless, at the same time, we provide a variety of measures that we believe emphasize the need to critically assess every individual project and maximize confidence in published results.
Collapse
Affiliation(s)
- Charles D Warden
- Integrative Genomics Core, Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA
| | - Xiwei Wu
- Integrative Genomics Core, Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
15
|
Khan M, Chen XXL, Dias M, Santos JR, Kour S, You J, van Bruggen R, Youssef MMM, Wan YW, Liu Z, Rosenfeld JA, Tan Q, Pandey UB, Yalamanchili HK, Park J. MATR3 pathogenic variants differentially impair its cryptic splicing repression function. FEBS Lett 2024; 598:415-436. [PMID: 38320753 DOI: 10.1002/1873-3468.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Matrin-3 (MATR3) is an RNA-binding protein implicated in neurodegenerative and neurodevelopmental diseases. However, little is known regarding the role of MATR3 in cryptic splicing within the context of functional genes and how disease-associated variants impact this function. We show that loss of MATR3 leads to cryptic exon inclusion in many transcripts. We reveal that ALS-linked S85C pathogenic variant reduces MATR3 solubility but does not impair RNA binding. In parallel, we report a novel neurodevelopmental disease-associated M548T variant, located in the RRM2 domain, which reduces protein solubility and impairs RNA binding and cryptic splicing repression functions of MATR3. Altogether, our research identifies cryptic events within functional genes and demonstrates how disease-associated variants impact MATR3 cryptic splicing repression function.
Collapse
Affiliation(s)
- Mashiat Khan
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Xiao Xiao Lily Chen
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Michelle Dias
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Justin You
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Rebekah van Bruggen
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Mohieldin M M Youssef
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ying-Wooi Wan
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Hari Krishna Yalamanchili
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
16
|
Singh S, Borkar MR, Bhatt LK. Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotox Res 2024; 42:9. [PMID: 38270797 DOI: 10.1007/s12640-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of neuronal function and structure. While several genetic and environmental factors have been implicated in the pathogenesis of these disorders, emerging evidence suggests that transposable elements (TEs), once considered "junk DNA," play a significant role in their development and progression. TEs are mobile genetic elements capable of moving within the genome, and their dysregulation has been associated with genomic instability, altered gene expression, and neuroinflammation. This review provides an overview of TEs, including long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and endogenous retroviruses (ERVs), mechanisms of repression and derepression, and their potential impact on neurodegeneration. The evidence linking TEs to AD, PD, and ALS by shedding light on the complex interactions between TEs and neurodegeneration has been discussed. Furthermore, the therapeutic potential of targeting TEs in neurodegenerative diseases has been explored. Understanding the role of TEs in neurodegeneration holds promise for developing novel therapeutic strategies aimed at mitigating disease progression and preserving neuronal health.
Collapse
Affiliation(s)
- Shrishti Singh
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Bhanuben Nanavati College of Pharmacy, SVKM's DrVile Parle (W), Mumbai, India.
| |
Collapse
|
17
|
He H, Jamal M, Zeng X, Lei Y, Xiao D, Wei Z, Zhang C, Zhang X, Pan S, Ding Q, Tan H, Xie S, Zhang Q. Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes. Cell Cycle 2024; 23:15-35. [PMID: 38252499 PMCID: PMC11005806 DOI: 10.1080/15384101.2024.2305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknown. Here, we document the biological function of MATR3 in HCC based on integrated bioinformatics analysis and functional studies. According to the TCGA database, MATR3 expression was found to be positively correlated with clinicopathological characteristics in HCC. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve displayed the diagnostic and prognostic potentials of MATR3 in HCC patients, respectively. Pathway enrichment analysis represented the enrichment of MATR3 in various molecular pathways, including the regulation of the cell cycle. Functional assays in HCC cell lines showed reduced proliferation of cells with stable silencing of MATR3. At the same time, the suppressive effects of MATR3 depletion on HCC development were verified by xenograft tumor experiments. Moreover, MATR3 repression also resulted in cell cycle arrest by modulating the expression of cell cycle-associated genes. In addition, the interaction of MATR3 with cell cycle-regulating factors in HCC cells was further corroborated with co-immunoprecipitation and mass spectrometry (Co-IP/MS). Furthermore, CIBERSORT and TIMER analyses showed an association between MATR3 and immune infiltration in HCC. In general, this study highlights the novel oncogenic function of MATR3 in HCC, which could comprehensively address how aberrant changes in the cell cycle promote HCC development. MATR3 might serve as a prognostic predictor and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianshan Ding
- School of Medicine, Northwest University, Xian, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Tong B, Sun Y. Activation of Young LINE-1 Elements by CRISPRa. Int J Mol Sci 2023; 25:424. [PMID: 38203595 PMCID: PMC10778729 DOI: 10.3390/ijms25010424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long interspersed element-1 (LINE-1; L1s) are mobile genetic elements that comprise nearly 20% of the human genome. L1s have been shown to have important functions in various biological processes, and their dysfunction is thought to be linked with diseases and cancers. However, the roles of the repetitive elements are largely not understood. While the CRISPR activation (CRISPRa) system based on catalytically deadCas9 (dCas9) is widely used for genome-wide interrogation of gene function and genetic interaction, few studies have been conducted on L1s. Here, we report using the CRISPRa method to efficiently activate L1s in human L02 cells, a derivative of the HeLa cancer cell line. After CRISPRa, the young L1 subfamilies such as L1HS/L1PA1 and L1PA2 are found to be expressed at higher levels than the older L1s. The L1s with high levels of transcription are closer to full-length and are more densely occupied by the YY1 transcription factor. The activated L1s can either be mis-spliced to form chimeric transcripts or act as alternative promoters or enhancers to facilitate the expression of neighboring genes. The method described here can be used for studying the functional roles of young L1s in cultured cells of interest.
Collapse
Affiliation(s)
- Bei Tong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
19
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
20
|
Ziff OJ, Harley J, Wang Y, Neeves J, Tyzack G, Ibrahim F, Skehel M, Chakrabarti AM, Kelly G, Patani R. Nucleocytoplasmic mRNA redistribution accompanies RNA binding protein mislocalization in ALS motor neurons and is restored by VCP ATPase inhibition. Neuron 2023; 111:3011-3027.e7. [PMID: 37480846 DOI: 10.1016/j.neuron.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by nucleocytoplasmic mislocalization of the RNA-binding protein (RBP) TDP-43. However, emerging evidence suggests more widespread mRNA and protein mislocalization. Here, we employed nucleocytoplasmic fractionation, RNA sequencing, and mass spectrometry to investigate the localization of mRNA and protein in induced pluripotent stem cell-derived motor neurons (iPSMNs) from ALS patients with TARDBP and VCP mutations. ALS mutant iPSMNs exhibited extensive nucleocytoplasmic mRNA redistribution, RBP mislocalization, and splicing alterations. Mislocalized proteins exhibited a greater affinity for redistributed transcripts, suggesting a link between RBP mislocalization and mRNA redistribution. Notably, treatment with ML240, a VCP ATPase inhibitor, partially restored mRNA and protein localization in ALS mutant iPSMNs. ML240 induced changes in the VCP interactome and lysosomal localization and reduced oxidative stress and DNA damage. These findings emphasize the link between RBP mislocalization and mRNA redistribution in ALS motor neurons and highlight the therapeutic potential of VCP inhibition.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| | - Jasmine Harley
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; Institute of Molecular and Cell Biology, A(∗)STAR Research Entities, Singapore 138673, Singapore
| | - Yiran Wang
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giulia Tyzack
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Fairouz Ibrahim
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK; National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, WC1N 3BG London, UK.
| |
Collapse
|
21
|
Liu HL, Lu XM, Wang HY, Hu KB, Wu QY, Liao P, Li S, Long ZY, Wang YT. The role of RNA splicing factor PTBP1 in neuronal development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119506. [PMID: 37263298 DOI: 10.1016/j.bbamcr.2023.119506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.
Collapse
Affiliation(s)
- Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
22
|
Kan Q, Li Q. Post-transcriptional and translational regulation of plant gene expression by transposons. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102438. [PMID: 37619514 DOI: 10.1016/j.pbi.2023.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
Transposons are mobile DNA sequences that can move within the genome and integrate in new genomic locations. They are widespread in eukaryotes and prokaryotes and can influence gene expression when landing within or nearby a gene. Although transposon-induced regulation of gene expression at the transcriptional level has been extensively studied, there has been less focus on regulation at the post-transcriptional and translational levels. Recent studies in maize (Zea mays) and other plant species suggest that transposon insertions can affect RNA processing, RNA stability, protein translation and protein stability. We will describe the diverse mechanisms by which transposons can influence gene expression at the post-transcriptional and translational levels, and discuss the interactions between these mechanisms.
Collapse
Affiliation(s)
- Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
23
|
Chu Z, Zhu M, Luo Y, Hu Y, Feng X, Wang H, Sunagawa M, Liu Y. PTBP1 plays an important role in the development of gastric cancer. Cancer Cell Int 2023; 23:195. [PMID: 37670313 PMCID: PMC10478210 DOI: 10.1186/s12935-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Polypyrimidine tract binding protein 1 (PTBP1) has been found to play an important role in the occurrence and development of various tumors. At present, the role of PTBP1 in gastric cancer (GC) is still unknown and worthy of further investigation. METHODS We used bioinformatics to analyze the expression of PTBP1 in patients with GC. Cell proliferation related experiments were used to detect cell proliferation after PTBP1 knockdown. Skeleton staining, scanning electron microscopy and transmission electron microscopy were used to observe the changes of actin skeleton. Proliferation and actin skeleton remodeling signaling pathways were detected by Western Blots. The relationship between PTBP1 and proliferation of gastric cancer cells was further detected by subcutaneous tumor transplantation. Finally, tissue microarray data from clinical samples were used to further explore the expression of PTBP1 in patients with gastric cancer and its correlation with prognosis. RESULTS Through bioinformatics studies, we found that PTBP1 was highly expressed in GC patients and correlated with poor prognosis. Cell proliferation and cycle analysis showed that PTBP1 down-regulation could significantly inhibit cell proliferation. The results of cell proliferation detection related experiments showed that PTBP1 down-regulation could inhibit the division and proliferation of GC cells. Furthermore, changes in the morphology of the actin skeleton of cells showed that PTBP1 down-regulation inhibited actin skeletal remodeling in GC cells. Western Blots showed that PTBP1 could regulate proliferation and actin skeleton remodeling signaling pathways. In addition, we constructed PTBP1 Cas9-KO mouse model and performed xenograft assays to further confirm that down-regulation of PTBP1 could inhibit the proliferation of GC cells. Finally, tissue microarray was used to further verify the close correlation between PTBP1 and poor prognosis in patients with GC. CONCLUSIONS Our study demonstrates for the first time that PTBP1 may affect the proliferation of GC cells by regulating actin skeleton remodeling. In addition, PTBP1 is closely related to actin skeleton remodeling and proliferation signaling pathways. We suppose that PTBP1 might be a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Zewen Chu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Miao Zhu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yaqi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Masataka Sunagawa
- Department of physiology, School of Medicine, Showa University, Tokyo, Japan.
| | - Yanqing Liu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
24
|
Luisier R, Andreassi C, Fournier L, Riccio A. The predicted RNA-binding protein regulome of axonal mRNAs. Genome Res 2023; 33:1497-1512. [PMID: 37582635 PMCID: PMC10620043 DOI: 10.1101/gr.277804.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their cytoarchitecture. The targeting of RNA transcripts to axons is one of the mechanisms that allows rapid local translation of proteins in response to extracellular signals. 3' Untranslated regions (UTRs) of mRNA are noncoding sequences that play a critical role in determining transcript localization and translation by interacting with specific RNA-binding proteins (RBPs). However, how 3' UTRs contribute to mRNA metabolism and the nature of RBP complexes responsible for these functions remains elusive. We performed 3' end sequencing of RNA isolated from cell bodies and axons of sympathetic neurons exposed to either nerve growth factor (NGF) or neurotrophin 3 (NTF3, also known as NT-3). NGF and NTF3 are growth factors essential for sympathetic neuron development through distinct signaling mechanisms. Whereas NTF3 acts mostly locally, NGF signal is retrogradely transported from axons to cell bodies. We discovered that both NGF and NTF3 affect transcription and alternative polyadenylation in the nucleus and induce the localization of specific 3' UTR isoforms to axons, including short 3' UTR isoforms found exclusively in axons. The integration of our data with CLIP sequencing data supports a model whereby long 3' UTR isoforms associate with RBP complexes in the nucleus and, upon reaching the axons, are remodeled locally into shorter isoforms. Our findings shed new light into the complex relationship between nuclear polyadenylation, mRNA localization, and local 3' UTR remodeling in developing neurons.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Idiap Research Institute, Martigny 1920, Switzerland;
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Lisa Fournier
- Idiap Research Institute, Martigny 1920, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
West C, Capitanchik C, Cheshire C, Luscombe NM, Chakrabarti A, Ule J. nf-core/clipseq - a robust Nextflow pipeline for comprehensive CLIP data analysis. Wellcome Open Res 2023; 8:286. [PMID: 37829674 PMCID: PMC10565428 DOI: 10.12688/wellcomeopenres.19453.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 10/14/2023] Open
Abstract
Crosslinking and immunoprecipitation (CLIP) technologies have become a central component of the molecular biologists' toolkit to study protein-RNA interactions and thus to uncover core principles of RNA biology. There has been a proliferation of CLIP-based experimental protocols, as well as computational tools, especially for peak-calling. Consequently, there is an urgent need for a well-documented bioinformatic pipeline that enshrines the principles of robustness, reproducibility, scalability, portability and flexibility while embracing the diversity of experimental and computational CLIP tools. To address this, we present nf-core/clipseq - a robust Nextflow pipeline for quality control and analysis of CLIP sequencing data. It is part of the international nf-core community effort to develop and curate a best-practice, gold-standard set of pipelines for data analysis. The standards enabled by Nextflow and nf-core, including workflow management, version control, continuous integration and containerisation ensure that these key needs are met. Furthermore, multiple tools are implemented ( e.g. for peak-calling), alongside visualisation of quality control metrics to empower the user to make their own informed decisions based on their data. nf-core/clipseq remains under active development, with plans to incorporate newly released tools to ensure that pipeline remains up-to-date and relevant for the community. Engagement with users and developers is encouraged through the nf-core GitHub repository and Slack channel to promote collaboration. It is available at https://nf-co.re/clipseq.
Collapse
Affiliation(s)
| | - Charlotte Capitanchik
- The Francis Crick Institute, London, England, UK
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Nicholas M. Luscombe
- The Francis Crick Institute, London, England, UK
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Jernej Ule
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
| |
Collapse
|
26
|
Boyle EA, Her HL, Mueller JR, Naritomi JT, Nguyen GG, Yeo GW. Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites. CELL GENOMICS 2023; 3:100317. [PMID: 37388912 PMCID: PMC10300551 DOI: 10.1016/j.xgen.2023.100317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023]
Abstract
Technology for crosslinking and immunoprecipitation (CLIP) followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To increase the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared with existing methods, Skipper on average calls 210%-320% more transcriptomic binding sites and sometimes >1,000% more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy, including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable, and state-of-the-art analysis of CLIP-seq data.
Collapse
Affiliation(s)
- Evan A. Boyle
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T. Naritomi
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Grady G. Nguyen
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Ni T, Chu Z, Tao L, Zhao Y, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y. PTBP1 drives c-Myc-dependent gastric cancer progression and stemness. Br J Cancer 2023; 128:1005-1018. [PMID: 36635500 PMCID: PMC10006230 DOI: 10.1038/s41416-022-02118-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) tumorigenesis and treatment failure are caused by cancer stem cells. Polypyrimidine tract binding protein 1 (PTBP1) was shown to be involved in the development of embryonic stem cells and is now being considered as a therapeutic target for tumour progression and stem-cell characteristics. METHODS PTBP1 expression in GC samples was detected using tissue microarrays. Proliferation, colony formation, spheroid formation and stem-cell analysis were used to examine PTBP1's role in tumorigenesis and stem-cell maintenance. In AGS and HGC-27 cells with or without PTBP1 deficiency, ubiquitin-related protein expression and co-precipitation assays were performed. RESULTS We identified that PTBP1 was aberrantly highly expressed and represented a novel prognostic factor in GC patients. PTBP1 maintained the tumorigenic activity and stem-cell characteristics of GC in vitro and in vivo. PTBP1 directly interacts with c-Myc and stabilises its protein levels by preventing its proteasomal degradation. This is mediated by upregulating the ubiquitin-specific proteases USP28 and limiting FBW7-mediated ubiquitination of c-Myc. Moreover, the depletion of PTBP1-caused tumour regression was significantly compromised by exogenous c-Myc expression. CONCLUSIONS By preserving the stability of c-Myc through the ubiquitin-proteasome pathway, the oncogene PTBP1 supports stem-cell-like phenotypes of GC and is involved in GC progression.
Collapse
Affiliation(s)
- Tengyang Ni
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Zewen Chu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Li Tao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Yang Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,Department of Pharmacy, College of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Miao Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142, Japan
| | - Haibo Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| | - Yanqing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, 225001, Yangzhou, PR China. .,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, 225001, Yangzhou, PR China.
| |
Collapse
|
28
|
Komatsu K, Sakaguchi K, Shimizu D, Yamoto K, Kato F, Miyairi I, Ogata T, Saitsu H. Characterization of KMT2A::MATR3 fusion in a patient with acute lymphoblastic leukemia and monitoring of minimal residual disease by nanoplate digital PCR. Pediatr Blood Cancer 2023; 70:e30120. [PMID: 36468647 DOI: 10.1002/pbc.30120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Kazuyuki Komatsu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Shimizu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fumiko Kato
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Miyairi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
29
|
Muys BR, Shrestha RL, Anastasakis DG, Pongor L, Li XL, Grammatikakis I, Polash A, Chari R, Gorospe M, Harris CC, Aladjem MI, Basrai MA, Hafner M, Lal A. Matrin3 regulates mitotic spindle dynamics by controlling alternative splicing of CDC14B. Cell Rep 2023; 42:112260. [PMID: 36924503 PMCID: PMC10132239 DOI: 10.1016/j.celrep.2023.112260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Matrin3 is an RNA-binding protein that regulates diverse RNA-related processes, including mRNA splicing. Although Matrin3 has been intensively studied in neurodegenerative diseases, its function in cancer remains unclear. Here, we report Matrin3-mediated regulation of mitotic spindle dynamics in colorectal cancer (CRC) cells. We comprehensively identified RNAs bound and regulated by Matrin3 in CRC cells and focused on CDC14B, one of the top Matrin3 targets. Matrin3 knockdown results in increased inclusion of an exon containing a premature termination codon in the CDC14B transcript and simultaneous down-regulation of the standard CDC14B transcript. Knockdown of CDC14B phenocopies the defects in mitotic spindle dynamics upon Matrin3 knockdown, and the elongated and misoriented mitotic spindle observed upon Matrin3 knockdown are rescued upon overexpression of CDC14B, suggesting that CDC14B is a key downstream effector of Matrin3. Collectively, these data reveal a role for the Matrin3/CDC14B axis in control of mitotic spindle dynamics.
Collapse
Affiliation(s)
- Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | | | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ahsan Polash
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD 21701, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute for Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20892, USA.
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Stamidis N, Żylicz JJ. RNA-mediated heterochromatin formation at repetitive elements in mammals. EMBO J 2023; 42:e111717. [PMID: 36847618 PMCID: PMC10106986 DOI: 10.15252/embj.2022111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
The failure to repress transcription of repetitive genomic elements can lead to catastrophic genome instability and is associated with various human diseases. As such, multiple parallel mechanisms cooperate to ensure repression and heterochromatinization of these elements, especially during germline development and early embryogenesis. A vital question in the field is how specificity in establishing heterochromatin at repetitive elements is achieved. Apart from trans-acting protein factors, recent evidence points to a role of different RNA species in targeting repressive histone marks and DNA methylation to these sites in mammals. Here, we review recent discoveries on this topic and predominantly focus on the role of RNA methylation, piRNAs, and other localized satellite RNAs.
Collapse
Affiliation(s)
- Nikolaos Stamidis
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jan Jakub Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Zheng R, Dunlap M, Lyu J, Gonzalez-Figueroa C, Bobkov G, Harvey SE, Chan TW, Quinones-Valdez G, Choudhury M, Vuong A, Flynn RA, Chang HY, Xiao X, Cheng C. LINE-associated cryptic splicing induces dsRNA-mediated interferon response and tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529804. [PMID: 36865202 PMCID: PMC9980139 DOI: 10.1101/2023.02.23.529804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
RNA splicing plays a critical role in post-transcriptional gene regulation. Exponential expansion of intron length poses a challenge for accurate splicing. Little is known about how cells prevent inadvertent and often deleterious expression of intronic elements due to cryptic splicing. In this study, we identify hnRNPM as an essential RNA binding protein that suppresses cryptic splicing through binding to deep introns, preserving transcriptome integrity. Long interspersed nuclear elements (LINEs) harbor large amounts of pseudo splice sites in introns. hnRNPM preferentially binds at intronic LINEs and represses LINE-containing pseudo splice site usage for cryptic splicing. Remarkably, a subgroup of the cryptic exons can form long dsRNAs through base-pairing of inverted Alu transposable elements scattered in between LINEs and trigger interferon immune response, a well-known antiviral defense mechanism. Notably, these interferon-associated pathways are found to be upregulated in hnRNPM-deficient tumors, which also exhibit elevated immune cell infiltration. These findings unveil hnRNPM as a guardian of transcriptome integrity. Targeting hnRNPM in tumors may be used to trigger an inflammatory immune response thereby boosting cancer surveillance.
Collapse
|
32
|
Zeng X, Lei Y, Pan S, Sun J, He H, Xiao D, Jamal M, Shen H, Zhou F, Shao L, Zhang Q. LncRNA15691 promotes T-ALL infiltration by upregulating CCR9 via increased MATR3 stability. J Leukoc Biol 2023; 113:203-215. [PMID: 36822174 DOI: 10.1093/jleuko/qiac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/18/2023] Open
Abstract
Our previous studies demonstrated that CCR9 plays an important role in several aspects of T-cell acute lymphoblastic leukemia progression and that CCR9 is a potential therapeutic target. However, the underlying mechanism that regulates CCR9 expression remains incompletely understood. In this study, bioinformatics analysis and validation in clinical samples revealed the lncRNA15691 to be positively correlated with CCR9 mRNA expression and significantly upregulated in T-cell acute lymphoblastic leukemia samples and CCR9high T-cell acute lymphoblastic leukemia cell lines. LncRNA15691, a previously uncharacterized lncRNA, was found to be located in both the cytoplasm and the nucleus via fluorescence in situ hybridization assay. In addition, lncRNA15691 upregulated the expression of CCR9 and was involved in T-cell acute lymphoblastic leukemia cell invasion. In vivo experiments showed that lncRNA15691 promoted leukemia cell homing/infiltration into the bone marrow, blood, and spleen, whereas the CCR9 ligand, CCL25, augmented the extramedullary infiltration of CCR9low leukemia cells overexpressing lncRNA15691 into blood, spleen, and liver. Subsequently, RNA protein pull-down assays, coupled with liquid chromatography-tandem mass spectrometry, were used to uncover potential lncRNA15691-interacting proteins, which were then validated by RNA immunoprecipitation. These mechanistic studies revealed that lncRNA15691 upregulated CCR9 expression via directly binding to and stabilizing MATR3 by inhibiting its nuclear degradation mediated by PKA. Collectively, our study revealed a novel mechanism of regulating CCR9 expression and implicated lncRNA15691 as a potential novel biomarker for T-cell acute lymphoblastic leukemia infiltration.
Collapse
Affiliation(s)
- Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, Hubei 430071, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Quiping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| |
Collapse
|
33
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
34
|
Gasparotto E, Burattin FV, Di Gioia V, Panepuccia M, Ranzani V, Marasca F, Bodega B. Transposable Elements Co-Option in Genome Evolution and Gene Regulation. Int J Mol Sci 2023; 24:ijms24032610. [PMID: 36768929 PMCID: PMC9917352 DOI: 10.3390/ijms24032610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The genome is no longer deemed as a fixed and inert item but rather as a moldable matter that is continuously evolving and adapting. Within this frame, Transposable Elements (TEs), ubiquitous, mobile, repetitive elements, are considered an alive portion of the genomes to date, whose functions, although long considered "dark", are now coming to light. Here we will review that, besides the detrimental effects that TE mobilization can induce, TEs have shaped genomes in their current form, promoting genome sizing, genomic rearrangements and shuffling of DNA sequences. Although TEs are mostly represented in the genomes by evolutionarily old, short, degenerated, and sedentary fossils, they have been thoroughly co-opted by the hosts as a prolific and original source of regulatory instruments for the control of gene transcription and genome organization in the nuclear space. For these reasons, the deregulation of TE expression and/or activity is implicated in the onset and progression of several diseases. It is likely that we have just revealed the outermost layers of TE functions. Further studies on this portion of the genome are required to unlock novel regulatory functions that could also be exploited for diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Erica Gasparotto
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Filippo Vittorio Burattin
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Valeria Di Gioia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- SEMM, European School of Molecular Medicine, 20139 Milan, Italy
| | - Michele Panepuccia
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Valeria Ranzani
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
| | - Federica Marasca
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Bodega
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
35
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
36
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
37
|
Petrić Howe M, Crerar H, Neeves J, Harley J, Tyzack GE, Klein P, Ramos A, Patani R, Luisier R. Physiological intron retaining transcripts in the cytoplasm abound during human motor neurogenesis. Genome Res 2022; 32:1808-1825. [PMID: 36180233 PMCID: PMC9712626 DOI: 10.1101/gr.276898.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Hamish Crerar
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jacob Neeves
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Jasmine Harley
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Giulia E Tyzack
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Pierre Klein
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, London WC1E 6XA, United Kingdom
| | - Rickie Patani
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, United Kingdom
| | - Raphaëlle Luisier
- Idiap Research Institute, Genomics and Health Informatics, CH-1920 Martigny, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
40
|
Xu J, Wang D, Ma H, Zhai X, Huo Y, Ren Y, Li W, Chang L, Lu D, Guo Y, Si Y, Gao Y, Wang X, Ma Y, Wang F, Yu J. KHSRP combines transcriptional and posttranscriptional mechanisms to regulate monocytic differentiation. BLOOD SCIENCE 2022; 4:103-115. [DOI: 10.1097/bs9.0000000000000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
|
41
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|
42
|
Ma G, Babarinde IA, Zhou X, Hutchins AP. Transposable Elements in Pluripotent Stem Cells and Human Disease. Front Genet 2022; 13:902541. [PMID: 35719395 PMCID: PMC9201960 DOI: 10.3389/fgene.2022.902541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can randomly integrate into other genomic sites. They have successfully replicated and now occupy around 40% of the total DNA sequence in humans. TEs in the genome have a complex relationship with the host cell, being both potentially deleterious and advantageous at the same time. Only a tiny minority of TEs are still capable of transposition, yet their fossilized sequence fragments are thought to be involved in various molecular processes, such as gene transcriptional activity, RNA stability and subcellular localization, and chromosomal architecture. TEs have also been implicated in biological processes, although it is often hard to reveal cause from correlation due to formidable technical issues in analyzing TEs. In this review, we compare and contrast two views of TE activity: one in the pluripotent state, where TEs are broadly beneficial, or at least mechanistically useful, and a second state in human disease, where TEs are uniformly considered harmful.
Collapse
|
43
|
Martinez NM, Su A, Burns MC, Nussbacher JK, Schaening C, Sathe S, Yeo GW, Gilbert WV. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell 2022; 82:645-659.e9. [PMID: 35051350 PMCID: PMC8859966 DOI: 10.1016/j.molcel.2021.12.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.
Collapse
Affiliation(s)
- Nicole M Martinez
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA
| | - Amanda Su
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA
| | - Margaret C Burns
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Cassandra Schaening
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Wendy V Gilbert
- Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Marasca F, Sinha S, Vadalà R, Polimeni B, Ranzani V, Paraboschi EM, Burattin FV, Ghilotti M, Crosti M, Negri ML, Campagnoli S, Notarbartolo S, Sartore-Bianchi A, Siena S, Prati D, Montini G, Viale G, Torre O, Harari S, Grifantini R, Soldà G, Biffo S, Abrignani S, Bodega B. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat Genet 2022; 54:180-193. [PMID: 35039641 DOI: 10.1038/s41588-021-00989-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
How gene expression is controlled to preserve human T cell quiescence is poorly understood. Here we show that non-canonical splicing variants containing long interspersed nuclear element 1 (LINE1) enforce naive CD4+ T cell quiescence. LINE1-containing transcripts are derived from CD4+ T cell-specific genes upregulated during T cell activation. In naive CD4+ T cells, LINE1-containing transcripts are regulated by the transcription factor IRF4 and kept at chromatin by nucleolin; these transcripts act in cis, hampering levels of histone 3 (H3) lysine 36 trimethyl (H3K36me3) and stalling gene expression. T cell activation induces LINE1-containing transcript downregulation by the splicing suppressor PTBP1 and promotes expression of the corresponding protein-coding genes by the elongating factor GTF2F1 through mTORC1. Dysfunctional T cells, exhausted in vitro or tumor-infiltrating lymphocytes (TILs), accumulate LINE1-containing transcripts at chromatin. Remarkably, depletion of LINE1-containing transcripts restores TIL effector function. Our study identifies a role for LINE1 elements in maintaining T cell quiescence and suggests that an abundance of LINE1-containing transcripts is critical for T cell effector function and exhaustion.
Collapse
Affiliation(s)
- Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Shruti Sinha
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Rebecca Vadalà
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Ph.D. Program in Translational and Molecular Medicine, DIMET, University of Milan-Bicocca, Monza, Italy
| | - Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Ph.D. Program in Translational and Molecular Medicine, DIMET, University of Milan-Bicocca, Monza, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | | | - Marco Ghilotti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Maria Luce Negri
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | | | - Samuele Notarbartolo
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Pediatric Nephrology and Dialysis Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Viale
- University of Milan, European Institute of Oncology IRCCS, Milan, Italy
| | - Olga Torre
- Department of Medical Sciences, San Giuseppe Hospital MultiMedica IRCCS, Milan, Italy
| | - Sergio Harari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Medical Sciences, San Giuseppe Hospital MultiMedica IRCCS, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- CheckmAb Srl, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Stefano Biffo
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
45
|
Aldalaqan S, Dalgliesh C, Luzzi S, Siachisumo C, Reynard LN, Ehrmann I, Elliott DJ. Cryptic splicing: common pathological mechanisms involved in male infertility and neuronal diseases. Cell Cycle 2021; 21:219-227. [PMID: 34927545 PMCID: PMC8855859 DOI: 10.1080/15384101.2021.2015672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a “guardian of the transcriptome” that protects against the use of aberrant (or “cryptic”) splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer’s disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.
Collapse
Affiliation(s)
- Saad Aldalaqan
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Caroline Dalgliesh
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Sara Luzzi
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Chileleko Siachisumo
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Louise N Reynard
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - Ingrid Ehrmann
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| | - David J Elliott
- Newcastle University Bioscience Institute, Newcastle University, Central Parkway Newcastle, UK
| |
Collapse
|
46
|
Petersen USS, Doktor TK, Andresen BS. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome. Hum Mutat 2021; 43:103-127. [PMID: 34837434 DOI: 10.1002/humu.24306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.
Collapse
Affiliation(s)
- Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
47
|
Heskett MB, Spellman PT, Thayer MJ. Differential Allelic Expression among Long Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040066. [PMID: 34698262 PMCID: PMC8544735 DOI: 10.3390/ncrna7040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNA) comprise a diverse group of non-protein-coding RNAs >200 bp in length that are involved in various normal cellular processes and disease states, and can affect coding gene expression through mechanisms in cis or in trans. Since the discovery of the first functional lncRNAs transcribed by RNA Polymerase II, H19 and Xist, many others have been identified and noted for their unusual transcriptional pattern, whereby expression from one chromosome homolog is strongly favored over the other, also known as mono-allelic or differential allelic expression. lncRNAs with differential allelic expression have been observed to play critical roles in developmental gene regulation, chromosome structure, and disease. Here, we will focus on known examples of differential allelic expression of lncRNAs and highlight recent research describing functional lncRNAs expressed from both imprinted and random mono-allelic expression domains.
Collapse
Affiliation(s)
- Michael B. Heskett
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Paul T. Spellman
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Mathew J. Thayer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
48
|
Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. Transposable elements as new players in neurodegenerative diseases. FEBS Lett 2021; 595:2733-2755. [PMID: 34626428 DOI: 10.1002/1873-3468.14205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases (NDs), including the most prevalent Alzheimer's disease and Parkinson disease, share common pathological features. Despite decades of gene-centric approaches, the molecular mechanisms underlying these diseases remain widely elusive. In recent years, transposable elements (TEs), long considered 'junk' DNA, have gained growing interest as pathogenic players in NDs. Age is the major risk factor for most NDs, and several repressive mechanisms of TEs, such as heterochromatinization, fail with age. Indeed, heterochromatin relaxation leading to TE derepression has been reported in various models of neurodegeneration and NDs. There is also evidence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43) may control the expression of TEs. The deleterious consequences of TE activation are not well known but they could include DNA damage and genomic instability, altered host gene expression, and/or neuroinflammation, which are common hallmarks of neurodegeneration and aging. TEs might thus represent an overlooked pathogenic culprit for both brain aging and neurodegeneration. Certain pathological effects of TEs might be prevented by inhibiting their activity, pointing to TEs as novel targets for neuroprotection.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rania Znaidi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Tom Bonnifet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rajiv L Joshi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
49
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
50
|
Santos-Rodriguez G, Voineagu I, Weatheritt RJ. Evolutionary dynamics of circular RNAs in primates. eLife 2021; 10:e69148. [PMID: 34542404 PMCID: PMC8516421 DOI: 10.7554/elife.69148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type. However, our analysis also revealed a subset of circRNAs with conserved neural expression across tens of millions of years of evolution. By comparing to species-specific circRNAs, we identified that the downstream intron of the conserved circRNAs display a dramatic lengthening during evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.
Collapse
Affiliation(s)
- Gabriela Santos-Rodriguez
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| |
Collapse
|