1
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch SC, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024:10.1038/s41588-024-01958-6. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - S Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Heinemann FS, Gershon PD. Differential Abundance of DNA Damage Sensors and Innate Immune Signaling Proteins in Inositol Polyphosphate 4-Phosphatase Type II-Negative Triple-Negative Breast Cancer Classified by Immunotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2212-2232. [PMID: 39147237 DOI: 10.1016/j.ajpath.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The influence of neoplastic cells on the tumor microenvironment is poorly understood. In this study, eight patient samples representing two immunotypes of triple-negative breast cancer (TNBC), defined by quantitative histologic criteria as T-cell desert and T-cell infiltrated (TCI), were compared via label-free quantitative protein mass spectrometry of material extracted directly from targeted regions of formalin-fixed, paraffin-embedded tissue sections. Of 2934 proteins quantitated, 439 were significantly differentially abundant, among which 361 were overabundant in TCI-TNBC. The 361-protein group included proteins involved in major histocompatibility complex-I antigen processing and presentation, viral defense, DNA damage response, and innate immune signaling. Immunohistochemical validation of selected proteins showed good positive correlation between neoplastic cell histoscores and label-free quantitation. Extension of immunohistochemical analysis to a total of 58 inositol polyphosphate 4-phosphatase type II-negative TNBC confirmed elevated levels of the DNA damage sensor interferon-γ-inducible protein 16, inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and pore-forming protein gasdermin D in TCI-TNBC neoplastic cells. By contrast, cGMP-AMP synthase inhibitor barrier to autointegration factor (BAF) was elevated in the neoplastic cells of T-cell desert TNBC. These findings demonstrate a previously unknown correlation between the degree of T-cell infiltration in inositol polyphosphate 4-phosphatase type II-negative TNBC and the levels, in cognate neoplastic cells, of proteins that modulate innate immune signaling in response to DNA damage.
Collapse
Affiliation(s)
- F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California.
| |
Collapse
|
3
|
Schade AE, Perurena N, Yang Y, Rodriguez CL, Krishnan A, Gardner A, Loi P, Xu Y, Nguyen VTM, Mastellone GM, Pilla NF, Watanabe M, Ota K, Davis RA, Mattioli K, Xiang D, Zoeller JJ, Lin JR, Morganti S, Garrido-Castro AC, Tolaney SM, Li Z, Barbie DA, Sorger PK, Helin K, Santagata S, Knott SRV, Cichowski K. AKT and EZH2 inhibitors kill TNBCs by hijacking mechanisms of involution. Nature 2024:10.1038/s41586-024-08031-6. [PMID: 39385030 DOI: 10.1038/s41586-024-08031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and has the highest rate of recurrence1. The predominant standard of care for advanced TNBC is systemic chemotherapy with or without immunotherapy; however, responses are typically short lived1,2. Thus, there is an urgent need to develop more effective treatments. Components of the PI3K pathway represent plausible therapeutic targets; more than 70% of TNBCs have alterations in PIK3CA, AKT1 or PTEN3-6. However, in contrast to hormone-receptor-positive tumours, it is still unclear whether or how triple-negative disease will respond to PI3K pathway inhibitors7. Here we describe a promising AKT-inhibitor-based therapeutic combination for TNBC. Specifically, we show that AKT inhibitors synergize with agents that suppress the histone methyltransferase EZH2 and promote robust tumour regression in multiple TNBC models in vivo. AKT and EZH2 inhibitors exert these effects by first cooperatively driving basal-like TNBC cells into a more differentiated, luminal-like state, which cannot be effectively induced by either agent alone. Once TNBCs are differentiated, these agents kill them by hijacking signals that normally drive mammary gland involution. Using a machine learning approach, we developed a classifier that can be used to predict sensitivity. Together, these findings identify a promising therapeutic strategy for this highly aggressive tumour type and illustrate how deregulated epigenetic enzymes can insulate tumours from oncogenic vulnerabilities. These studies also reveal how developmental tissue-specific cell death pathways may be co-opted for therapeutic benefit.
Collapse
Affiliation(s)
- Amy E Schade
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Naiara Perurena
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoona Yang
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carrie L Rodriguez
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anjana Krishnan
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alycia Gardner
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrick Loi
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yilin Xu
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Van T M Nguyen
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - G M Mastellone
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Natalie F Pilla
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marina Watanabe
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Keiichi Ota
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rachel A Davis
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefania Morganti
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana C Garrido-Castro
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristian Helin
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Simon R V Knott
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Karen Cichowski
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Qian T, Bai F, Zhang S, Xu Y, Wang Y, Yuan S, Liu X, Du Y, Peng B, Zhu WG, Xu X, Pei XH. USP11 deubiquitinates E-cadherin and maintains the luminal fate of mammary tumor cells to suppress breast cancer. J Biol Chem 2024; 300:107768. [PMID: 39270819 PMCID: PMC11497446 DOI: 10.1016/j.jbc.2024.107768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant forms of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 is bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.
Collapse
Affiliation(s)
- Tao Qian
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Feng Bai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Pathology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Shiwen Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuping Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuchan Wang
- Gansu Dian Medical Laboratory, Lanzhou, China
| | - Shuping Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yaru Du
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Shi X, Ji Y, Wu X, Du Y, Yan X, Wang Y, Xia X. Blocking of SIRT7/FOXO3a axis by miR-152-3p enhances cisplatin sensitivity in breast cancer. Am J Med Sci 2024:S0002-9629(24)01444-7. [PMID: 39241827 DOI: 10.1016/j.amjms.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Cisplatin-based chemoresistance is major obstacle for breast cancer (BC) including Triple-negative breast cancer (TNBC). SIRT7 is reportedly involved in the progression of BC, the underlining mechanism in Cisplatin-based chemoresistance in BC remains unclear. This work is to elucidate effects of SIRT7 on cisplatin resistance in breast cancer regulated by miR-152-3p. METHODS The RNA expression of SIRT7 and miRNAs in breast cancer were available from TCGA database. SIRT7-targeted miRNAs were predicted by TargetScan, miRanda, miRDB databases. The association of SIRT7 expression with predicted miRNA was validated by Luciferase assay. Cell apoptosis was determined by Flow cytometry. Cell viability was detected by CCK8 assay. The mRNA expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Protein expression was determined by Western blotting assay. RESULTS SIRT7 mRNA levels were dramatically enhanced in BC tissues compared to para-carcinoma tissues, also increased in BC patients with Cisplatin-based chemotherapy containing TNBC compared with those without. The increase of SIRT7 expression was obviously relevant to shorter survive time of them. Importantly, SIRT7 inhibition facilitated Cisplatin-induced cell apoptosis of TNBC (MDA-MB-231 and MDA-MB-468) and non- TNBC (MCF-7). Notably, miR-152-3p was predicted as a negative regulator of SIRT7 by overlapping downregulated miRNAs in BC patients treated with Cisplatin-based chemotherapy and miRNAs to target SIRT7. Mechanically, miR-152-3p blocked SIRT7 to stimulate an activation of FOXO3a, cleaved PARP1 and Caspase-3, sensitizing Cisplatin-induced apoptosis of BC cells. CONCLUSIONS Inhibition of SIRT7 by miR-152-3p may be a promising strategy against the resistance to cisplatin-based chemotherapy in BC containing TNBC.
Collapse
Affiliation(s)
- Xiangkui Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yunfei Ji
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xueqing Wu
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Du
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaonan Yan
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China; Clinical Center of Reproductive Medicine, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China.
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Xuzhou Maternity and Child Health Care Hospital of Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Xiaobing Xia
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Paizula X, Wulaying A, Chen D, Ou J. KHSRP has oncogenic functions and regulates the expression and alternative splicing of DNA repair genes in breast cancer MDA-MB-231 cells. Sci Rep 2024; 14:14694. [PMID: 38926398 PMCID: PMC11208542 DOI: 10.1038/s41598-024-64687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer has become the most common type of cancers worldwide. Its high prevalence and malignant features are associated with various environmental factors and molecules. The KH-type splicing regulatory protein (KHSRP) participates in the development of breast cancer, while the underlying mechanisms are largely unknown. In this study, we silenced KHSRP expression in MDA-MB-231 cells by small interfering RNA (siKHSRP), and then assessed its effects on cellular features. Finally, we performed whole transcriptome sequencing (RNA-seq) experiments to explore the downstream targets of KHSRP, and validated their changed pattern using quantitative polymerase chain reaction. We found KHSRP showed higher expression level and was associated with worse prognosis in breast cancer patients. In siKHSRP samples, the proliferation, invasion, and migration abilities were significantly repressed compared with negative control (NC) samples, while the apoptosis level was increased. By investigating the RNA-seq data, we found KHSRP globally regulates the expression and alternative splicing profiles of MDA-MB-231 cells by identifying 1632 differentially expressed genes (DEGs) and 1630 HKSRP-regulated AS events (RASEs). Functional enriched analysis of DEGs demonstrated that cilium assembly and movement and extracellular matrix organization pathways were specifically enriched in up DEGs, consistent with the repressed migration and invasion abilities in siKHSRP cells. Interestingly, the cell cycle and DNA damage and repair associated pathways were enriched in both down DEGs and RASE genes, suggesting that KHSRP may modulate cell proliferation by regulating genes in these pathways. Finally, we validated the changed expression and AS patterns of genes in cell cycle and DNA damage/repair pathways. Expression levels of BIRC5, CCNA2, CDK1, FEN1, FOXM1, PTTG1, and UHRF1 were downregulated in siKHSRP samples. The AS patterns of PARK7, ERCC1, CENPX, and UBE2A were also dysregulated in siKHSRP samples and confirmed PCR experiments. In summary, our study comprehensively explored the downstream targets and their functions of KHSRP in breast cancer cells, highlighting the molecular mechanisms of KHSRP on the oncogenic features of breast cancer. The identified molecular targets could be served as potential therapeutic targets for breast cancer in future.
Collapse
Affiliation(s)
- Xuelaiti Paizula
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China
| | - Aliya Wulaying
- The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Dong Chen
- Innovation and Research Center, Wuhan Nissi Biotechnology Co., Ltd., Wuhan, China
| | - Jianghua Ou
- The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
7
|
Faraldo MM, Romagnoli M, Wallon L, Dubus P, Deugnier MA, Fre S. Alpha-6 integrin deletion delays the formation of Brca1/p53-deficient basal-like breast tumors by restricting luminal progenitor cell expansion. Breast Cancer Res 2024; 26:91. [PMID: 38835038 PMCID: PMC11151721 DOI: 10.1186/s13058-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.
Collapse
Affiliation(s)
- Marisa M Faraldo
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| | - Mathilde Romagnoli
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
- Institut de Recherches Internationales Servier, 91190, Gif Sur Yvette, France
| | - Loane Wallon
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France
- Alacris Theranostics GmbH, 12489, Berlin, Germany
| | - Pierre Dubus
- Department of Histology and Pathology, Centre Hospitalier Universitaire de Bordeaux, 33000, Bordeaux, France
- BRIC U1312, INSERM, Bordeaux Institute of Oncology, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie-Ange Deugnier
- Laboratory of Cell Biology and Cancer, CNRS UMR144, Institut Curie, PSL Research University, 75248, Paris, France
| | - Silvia Fre
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, PSL Research University, 75248, Paris, France.
| |
Collapse
|
8
|
Wang X, Bai F, Liu X, Peng B, Xu X, Zhang H, Fu L, Zhu WG, Wang B, Pei XH. GATA3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in breast cancer. BMC Biol 2024; 22:85. [PMID: 38627785 PMCID: PMC11020915 DOI: 10.1186/s12915-024-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.
Collapse
Affiliation(s)
- Xuejie Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen, 518060, China
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA
| | - Xiong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Fu
- Department of Pharmacology, Shenzhen University Medical School, Shenzhen, 518039, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, The First Affiliated Hospital, Shenzhen University Medical School, Shenzhen, 518060, China.
- Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL, 33136, USA.
- Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Ortiz JR, Lewis SM, Ciccone M, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-Cell Transcription Mapping of Murine and Human Mammary Organoids Responses to Female Hormones. J Mammary Gland Biol Neoplasia 2024; 29:3. [PMID: 38289401 PMCID: PMC10827859 DOI: 10.1007/s10911-023-09553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
Affiliation(s)
| | - Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | |
Collapse
|
10
|
Liu Y, John P, Nishitani K, Cui J, Nishimura CD, Christin JR, Couturier N, Ren X, Wei Y, Pulanco MC, Galbo PM, Zhang X, Fu W, Cui W, Bartholdy BA, Zheng D, Lauvau G, Fineberg SA, Oktay MH, Zang X, Guo W. A SOX9-B7x axis safeguards dedifferentiated tumor cells from immune surveillance to drive breast cancer progression. Dev Cell 2023; 58:2700-2717.e12. [PMID: 37963469 PMCID: PMC10842074 DOI: 10.1016/j.devcel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kenta Nishitani
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher D Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicole Couturier
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenyan Fu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan A Fineberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Qiu J, Qian D, Jiang Y, Meng L, Huang L. Circulating tumor biomarkers in early-stage breast cancer: characteristics, detection, and clinical developments. Front Oncol 2023; 13:1288077. [PMID: 37941557 PMCID: PMC10628786 DOI: 10.3389/fonc.2023.1288077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer is the most common form of cancer in women, contributing to high rates of morbidity and mortality owing to the ability of these tumors to metastasize via the vascular system even in the early stages of progression. While ultrasonography and mammography have enabled the more reliable detection of early-stage breast cancer, these approaches entail high rates of false positive and false negative results Mammograms also expose patients to radiation, raising clinical concerns. As such, there is substantial interest in the development of more accurate and efficacious approaches to diagnosing breast cancer in its early stages when patients are more likely to benefit from curative treatment efforts. Blood-based biomarkers derived from the tumor microenvironment (TME) have frequently been studied as candidate targets that can enable tumor detection when used for patient screening. Through these efforts, many promising biomarkers including tumor antigens, circulating tumor cell clusters, microRNAs, extracellular vesicles, circulating tumor DNA, metabolites, and lipids have emerged as targets that may enable the detection of breast tumors at various stages of progression. This review provides a systematic overview of the TME characteristics of early breast cancer, together with details on current approaches to detecting blood-based biomarkers in affected patients. The limitations, challenges, and prospects associated with different experimental and clinical platforms employed in this context are also discussed at length.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, Jiangsu, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Liming Huang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
13
|
Ortiz JR, Lewis SM, Ciccone MF, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-cell transcription mapping of murine and human mammary organoids responses to female hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559971. [PMID: 37808747 PMCID: PMC10557705 DOI: 10.1101/2023.09.28.559971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
|
14
|
Han X, Han B, Luo H, Ling H, Hu X. Integrated Multi-Omics Profiling of Young Breast Cancer Patients Reveals a Correlation between Galactose Metabolism Pathway and Poor Disease-Free Survival. Cancers (Basel) 2023; 15:4637. [PMID: 37760606 PMCID: PMC10526161 DOI: 10.3390/cancers15184637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a notable rise in the incidence of breast cancer among young patients, who exhibit worse survival outcomes and distinct characteristics compared to intermediate and elderly patients. Therefore, it is imperative to identify the specific features unique to young patients, which could offer insights into potential therapeutic strategies and improving survival outcomes. In our study, we performed an integrative analysis of bulk transcriptional and genomic data from extensive clinical cohorts to identify the prognostic factotrs. Additionally, we analyzed the single-cell transcriptional data and conducted in vitro experiments. Our work confirmed that young patients exhibited higher grading, worse disease-free survival (DFS), a higher frequency of mutations in TP53 and BRCA1, a lower frequency of mutations in PIK3CA, and upregulation of eight metabolic pathways. Notably, the galactose metabolism pathway showed upregulation in young patients and was associated with worse DFS. Further analysis and experiments indicated that the galactose metabolism pathway may regulate the stemness of cancer cells and ultimately contribute to worse survival outcomes. In summary, our finding identified distinct clinicopathological, transcriptional, and genomics features and revealed a correlation between the galactose metabolism pathway, stemness, and poor disease-free survival of breast cancer in young patients.
Collapse
Affiliation(s)
- Xiangchen Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Boyue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Hong Luo
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| |
Collapse
|
15
|
Hong CT, Yan YH, Su LY, Chen DB. Effect, sensitivity, specificity and accuracy of ultrasonic assessment of axillary lymph node-negative breast cancer. Pak J Med Sci 2023; 39:1366-1371. [PMID: 37680794 PMCID: PMC10480736 DOI: 10.12669/pjms.39.5.7260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Objective To investigate the diagnostic value of ultrasound for patients with axillary lymph node-negative breast cancer (ALNNBC). Methods A retrospective analysis was performed on the clinical data of 204 breast cancer patients who were admitted by Quanzhou First Hospital Affiliated to Fujian Medical University between October 2020 and May 2022. According to the results of axillary lymph node (ALN) examination, the patients were assigned to a positive group(n=102) and a negative group(n=102). All patients underwent diagnosis with color Doppler ultrasound, with pathological diagnosis as the "gold standard" to determine the sensitivity and specificity of ultrasonic diagnosis. A receiver operating characteristic(ROC) curve was established to analyze the efficiency of ultrasonic diagnosis and compare the ultrasonographic features and flow grades between the two groups. Results Differences were statistically significant between the two groups in ultrasonographic features of lesions(negative vs positive, all p<0.05), including morphological irregularity(59.8% vs 85.3%), spiky margins(19.6% vs 63.7%), posterior echo attenuation(19.6% vs 44.1%) and microcalcification(40.2% vs 55.89%). The negative group had a lower proportion of patients with grade 2-3 ultrasound blood flow when compared with the positive group(32.4% vs 56.86%), and the difference was statistically significant(p<0.05). Ultrasonic diagnosis of ALNNBC had a sensitivity of 88.24%(90/102), a specificity of 92.16%(94/102), a coincidence rate of 90.20% (184/204), a 95% CI of 0.845-0.928, and an AUC of 0.879. Conclusions Ultrasonic diagnosis of ALNNBC is relatively efficient as ultrasonographic features and ultrasound blood flow signals can provide a scientific basis for the diagnosis of ALNNBC.
Collapse
Affiliation(s)
- Chun-Tian Hong
- Chun-Tian Hong Department of Ultrasound, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian 362000, Quanzhou, P.R. China
| | - Yong-Hao Yan
- Yong-Hao Yan Department of Ultrasound, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian 362000, Quanzhou, P.R. China
| | - Li-Yang Su
- Li-Yang Su Department of Ultrasound, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian 362000, Quanzhou, P.R. China
| | - De-Bo Chen
- De-Bo Chen Department of Breast Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian 362000, Quanzhou, P.R. China
| |
Collapse
|
16
|
Nie C, Zhou XA, Zhou J, Liu Z, Gu Y, Liu W, Zhan J, Li S, Xiong Y, Zhou M, Shen Q, Wang W, Yang E, Wang J. A transcription-independent mechanism determines rapid periodic fluctuations of BRCA1 expression. EMBO J 2023; 42:e111951. [PMID: 37334492 PMCID: PMC10390875 DOI: 10.15252/embj.2022111951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
BRCA1 expression is highly regulated to prevent genomic instability and tumorigenesis. Dysregulation of BRCA1 expression correlates closely with sporadic basal-like breast cancer and ovarian cancer. The most significant characteristic of BRCA1 regulation is periodic expression fluctuation throughout the cell cycle, which is important for the orderly progression of different DNA repair pathways throughout the various cell cycle phases and for further genomic stability. However, the underlying mechanism driving this phenomenon is poorly understood. Here, we demonstrate that RBM10-mediated RNA alternative splicing coupled to nonsense-mediated mRNA decay (AS-NMD), rather than transcription, determines the periodic fluctuations in G1/S-phase BRCA1 expression. Furthermore, AS-NMD broadly regulates the expression of period genes, such as DNA replication-related genes, in an uneconomical but more rapid manner. In summary, we identified an unexpected posttranscriptional mechanism distinct from canonical processes that mediates the rapid regulation of BRCA1 as well as other period gene expression during the G1/S-phase transition and provided insights into potential targets for cancer therapy.
Collapse
Affiliation(s)
- Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jiadong Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Zelin Liu
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yangyang Gu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Wanchang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Mei Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Qinjian Shen
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Ence Yang
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| |
Collapse
|
17
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Su Y, Dang NM, Depypere H, Santucci-Pereira J, Gutiérrez-Díez PJ, Kanefsky J, Janssens JP, Russo J. Recombinant human chorionic gonadotropin induces signaling pathways towards cancer prevention in the breast of BRCA1/2 mutation carriers. Eur J Cancer Prev 2023; 32:126-138. [PMID: 35881946 PMCID: PMC9800649 DOI: 10.1097/cej.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Strategies for breast cancer prevention in women with germline BRCA1/2 mutations are limited. We previously showed that recombinant human chorionic gonadotropin (r-hCG) induces mammary gland differentiation and inhibits mammary tumorigenesis in rats. The present study investigated hCG-induced signaling pathways in the breast of young nulliparous women carrying germline BRCA1/2 mutations. METHODS We performed RNA-sequencing on breast tissues from 25 BRCA1/2 mutation carriers who received r-hCG treatment for 3 months in a phase II clinical trial, we analyzed the biological processes, reactome pathways, canonical pathways, and upstream regulators associated with genes differentially expressed after r-hCG treatment, and validated genes of interest. RESULTS We observed that r-hCG induces remarkable transcriptomic changes in the breast of BRCA1/2 carriers, especially in genes related to cell development, cell differentiation, cell cycle, apoptosis, DNA repair, chromatin remodeling, and G protein-coupled receptor signaling. We revealed that r-hCG inhibits Wnt/β-catenin signaling, MYC, HMGA1 , and HOTAIR , whereas activates TGFB/TGFBR-SMAD2/3/4, BRCA1, TP53, and upregulates BRCA1 protein. CONCLUSION Our data suggest that the use of r-hCG at young age may reduce the risk of breast cancer in BRCA1/2 carriers by inhibiting pathways associated with stem/progenitor cell maintenance and neoplastic transformation, whereas activating genes crucial for breast epithelial differentiation and lineage commitment, and DNA repair.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Nhi M. Dang
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Herman Depypere
- Department of Gynecology, Breast and Menopause clinic, University Hospital of Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- These authors contributed equally: Yanrong Su, Nhi M. Dang, and Herman Depypere
| | - Julia Santucci-Pereira
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | - Joice Kanefsky
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Jaak Ph. Janssens
- European Cancer Prevention Organization, University of Hasselt, Klein Hilststraat 5, 3500 Hasselt, Belgium
| | - Jose Russo
- The Irma H Russo, MD, Breast Cancer Research Laboratory at the Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA
- Dr. Russo conceived the study and supervised the work. Dr. Russo passed away on September 24, 2021
| |
Collapse
|
19
|
Li S, Xu S, Chen Y, Zhou J, Ben S, Guo M, Chu H, Gu D, Zhang Z, Wang M. Metal Exposure Promotes Colorectal Tumorigenesis via the Aberrant N6-Methyladenosine Modification of ATP13A3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2864-2876. [PMID: 36745568 DOI: 10.1021/acs.est.2c07389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Element contamination, including that from heavy metals, is associated with gastrointestinal tumorigenesis, but the effects and mechanisms of crucial element exposure associated with colorectal cancer remain unclear. We profiled 56 elements by ICP-MS and used logistic regression, LASSO, BKMR, and GAM to identify colorectal cancer-relevant elements. A series of biochemical experiments were performed to demonstrate the cytotoxicity and the mechanisms of malignant transformation after metal exposure. Using an elementomics approach, we first found that the metal thallium (Tl) was positively correlated with many toxic metals and was associated with a significantly increased risk of colorectal cancer. Acute exposure to Tl induced cytotoxicity and cell death by accelerating the generation of reactive oxygen species and DNA damage. Chronic exposure to Tl led to the inhibition of cell death and thereby induced the malignant transformation of normal colon cells and xenograft tumor formation in nude mice. Furthermore, we describe the first identification of a significant metal quantitative trait locus for the novel colorectal cancer susceptibility locus rs1511625 near ATP13A3. Mechanistically, Tl increased the level of aberrant N6-methyladenosine (m6A) modification of ATP13A3 via the METLL3/METTL14/ALKBH5-ATP13A3 axis to promote colorectal tumorigenesis. This study provides a basis for the development of public health strategies for reducing metal exposure among populations at high risk for colorectal cancer.
Collapse
Affiliation(s)
- Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shenya Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yehua Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mengfan Guo
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, Jiangsu, China
| |
Collapse
|
20
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Li C, Yu S, Chen J, Hou Q, Wang S, Qian C, Yin S. Risk stratification based on DNA damage-repair-related signature reflects the microenvironmental feature, metabolic status and therapeutic response of breast cancer. Front Immunol 2023; 14:1127982. [PMID: 37033959 PMCID: PMC10080010 DOI: 10.3389/fimmu.2023.1127982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
DNA damage-repair machinery participates in maintaining genomic integrity and affects tumorigenesis. Molecular signatures based on DNA damage-repair-related genes (DRGs) capable of comprehensively indicating the prognosis, tumor immunometabolic profile and therapeutic responsiveness of breast cancer (BRCA) patients are still lacking. Integrating public datasets and bioinformatics algorithms, we developed a robust prognostic signature based on 27 DRGs. Multiple patient cohorts identified significant differences in various types of survival between high- and low-risk patients stratified by the signature. The signature correlated well with clinicopathological factors and could serve as an independent prognostic indicator for BRCA patients. Furthermore, low-risk tumors were characterized by more infiltrated CD8+ T cells, follicular helper T cells, M1 macrophages, activated NK cells and resting dendritic cells, and fewer M0 and M2 macrophages. The favorable immune infiltration patterns of low-risk tumors were also accompanied by specific metabolic profiles, decreased DNA replication, and enhanced antitumor immunity. Low-risk patients may respond better to immunotherapy, and experience improved outcomes with conventional chemotherapy or targeted medicine. Real-world immunotherapy and chemotherapy cohorts verified the predictive results. Additionally, four small molecule compounds promising to target high-risk tumors were predicted. In vitro experiments confirmed the high expression of GNPNAT1 and MORF4L2 in BRCA tissues and their association with immune cells, and the knockdown of these two DRGs suppressed the proliferation of human BRCA cells. In summary, this DNA damage-repair-related signature performed well in predicting patient prognosis, immunometabolic profiles and therapeutic sensitivity, hopefully contributing to precision medicine and new target discovery of BRCA.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Qian
- *Correspondence: Cheng Qian, ; Shulei Yin,
| | - Shulei Yin
- *Correspondence: Cheng Qian, ; Shulei Yin,
| |
Collapse
|
22
|
Breast cancer: recent advances in molecular approaches. Sci Bull (Beijing) 2022; 67:1093-1096. [PMID: 36545969 DOI: 10.1016/j.scib.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
He Z, Ghorayeb R, Tan S, Chen K, Lorentzian AC, Bottyan J, Aalam SMM, Pujana MA, Lange PF, Kannan N, Eaves CJ, Maxwell CA. Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nat Commun 2022; 13:2200. [PMID: 35459234 PMCID: PMC9033786 DOI: 10.1038/s41467-022-29885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanna Tan
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ke Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Bottyan
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Syed Mohammed Musheer Aalam
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Miguel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Qin X, Cao Y. Prognostic Biomarker NUMB Is Inhibited by Breast Cancer Cell Exosomes to Promote Breast Cancer Progression. J Immunol Res 2022; 2022:6032076. [PMID: 35478938 PMCID: PMC9038436 DOI: 10.1155/2022/6032076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To clarify the regulation of breast cancer cell-derived exosomes on breast cancer and the expression of the NUMB endocytic adaptor protein (NUMB) protein. Methods The exosomes of breast cancer cell line MDA-MB-231 were isolated. The exosomes were subsequently labeled with PKH67 and added to breast cancer MDA-MB-231 cells cultured in vitro. Transwell and clone formation assays were performed to detect cell migration, invasion, and clone formation. Meanwhile, Western blot and qPCR were conducted to determine the regulation of NUMB expression by exosomes in breast cancer cells. Furthermore, NUMB overexpressed lentivirus was supplemented to validate the recovery. Results The number of migrating and invasive breast cancer cells in the exosome-treated group was significantly increased compared with the control group. Moreover, the number of breast cancer cell clones in the exosome-treated group was increased than in the control group. However, the NUMB expression in breast cancer cells treated with exosomes revealed a substantial decrease, indicating that the exosomes of breast cancer cells could inhibit NUMB expression. NUMB overexpressed lentivirus supplementation markedly suppressed cell migration, invasion, and proliferation of breast cancer cells compared with exosome group. Conclusion Taken together, the exosomes of breast cancer cells could inhibit the expression of NUMB and promote the migration, invasion, and cell clone formation of breast cancer cells.
Collapse
Affiliation(s)
- Xue Qin
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Youde Cao
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Zhan Z, Yuan N, You X, Meng K, Sha R, Wang Z, Peng Q, Xie Z, Chen R, Feng Y. Exclusion of NUMB Exon12 Controls Cancer Cell Migration through Regulation of Notch1-SMAD3 Crosstalk. Int J Mol Sci 2022; 23:ijms23084363. [PMID: 35457181 PMCID: PMC9027642 DOI: 10.3390/ijms23084363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
NUMB is an endocytic adaptor protein that contains four isoforms (p65, p66, p71 and p72) due to alternative splicing regulation. Here, we show that NUMB exon12 (E12)-skipping isoforms p65/p66 promote epithelial to mesenchymal transition (EMT) and cancer cell migration in vitro, and facilitate cancer metastasis in mice, whereas E12-included p71/p72 isoforms attenuate these effects. Mechanistically, p65/p66 isoforms significantly increase the sorting of Notch1 through early endosomes (EEs) for enhanced Notch1 activity. In contrast, p71/p72 isoforms act as negative regulators of Notch1 by ubiquitylating the Notch1 intracellular domain (N1ICD) and promoting its degradation. Moreover, we observed that the interaction between N1ICD and SMAD3 is important for their own stabilization, and for NUMB-mediated EMT response and cell migration. Either N1ICD or SMAD3 overexpression could significantly recuse the migration reduction seen in the p65/p66 knockdown, and Notch1 or SMAD3 knockdown rescued the migration advantage seen in the overexpression of p66. Taken all together, our study provides mechanistic insights into the opposite regulation of Notch1-SMAD3 crosstalk by NUMB isoforms and identifies them as critical regulators of EMT and cancer cell migration.
Collapse
Affiliation(s)
- Zheng Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Xue You
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
| | - Ruijiao Chen
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
- Correspondence: (R.C.); (Y.F.); Tel.: +86-21-5492-0965 (Y.F.)
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Z.Z.); (N.Y.); (R.S.); (Z.W.); (Q.P.); (Z.X.)
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining 272067, China; (X.Y.); (K.M.)
- Correspondence: (R.C.); (Y.F.); Tel.: +86-21-5492-0965 (Y.F.)
| |
Collapse
|
26
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
27
|
Abstract
DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.
Collapse
Affiliation(s)
- Jessica L Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
28
|
Luo L, Santos A, Konganti K, Hillhouse A, Lambertz IU, Zheng Y, Gunaratna RT, Threadgill DW, Fuchs-Young RS. Overexpression of IGF-1 During Early Development Expands the Number of Mammary Stem Cells and Primes them for Transformation. Stem Cells 2022; 40:273-289. [DOI: 10.1093/stmcls/sxab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Insulin-like growth factor I (IGF-1) has been implicated in breast cancer due to its mitogenic and anti-apoptotic effects. Despite substantial research on the role of IGF-1 in tumor progression, the relationship of IGF-1 to tissue stem cells, particularly in mammary tissue, and the resulting tumor susceptibility has not been elucidated. Previous studies with the BK5.IGF-1 transgenic (Tg) mouse model reveals that IGF-1 does not act as a classical, post-carcinogen tumor promoter in the mammary gland. Pre-pubertal Tg mammary glands display increased numbers and enlarged sizes of terminal end buds, a niche for mammary stem cells (MaSCs). Here we show that MaSCs from both wild type (WT) and Tg mice expressed IGF-1R and that overexpression of Tg IGF-1 increased numbers of MaSCs by undergoing symmetric division, resulting in an expansion of the MaSC and luminal progenitor (LP) compartments in pre-pubertal female mice. This expansion was maintained post-pubertally and validated by mammosphere assays in vitro and transplantation assays in vivo. The addition of recombinant IGF-1 promoted, and IGF-1R downstream inhibitors decreased mammosphere formation. Single-cell transcriptomic profiles generated from two related platforms reveal that IGF-1 stimulated quiescent MaSCs to enter the cell cycle and increased their expression of genes involved in proliferation, plasticity, tumorigenesis, invasion, and metastasis. This study identifies a novel, pro-tumorigenic mechanism, where IGF-1 increases the number of transformation-susceptible carcinogen targets during the early stages of mammary tissue development, and “primes” their gene expression profiles for transformation.
Collapse
Affiliation(s)
- Linjie Luo
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Anatomic Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Isabel U Lambertz
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Yuanning Zheng
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ramesh T Gunaratna
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Genome Sciences & Society, Texas A&M University, College Station, TX, USA
| | - Robin S Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
29
|
Circulating Tumor Cells in Breast Cancer Patients: A Balancing Act between Stemness, EMT Features and DNA Damage Responses. Cancers (Basel) 2022; 14:cancers14040997. [PMID: 35205744 PMCID: PMC8869884 DOI: 10.3390/cancers14040997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) traverse vessels to travel from the primary tumor to distant organs where they adhere, transmigrate, and seed metastases. To cope with these challenges, CTCs have reached maximal flexibility to change their differentiation status, morphology, migratory capacity, and their responses to genotoxic stress caused by metabolic changes, hormones, the inflammatory environment, or cytostatic treatment. A significant percentage of breast cancer cells are defective in homologous recombination repair and other mechanisms that protect the integrity of the replication fork. To prevent cell death caused by broken forks, alternative, mutagenic repair, and bypass pathways are engaged but these increase genomic instability. CTCs, arising from such breast tumors, are endowed with an even larger toolbox of escape mechanisms that can be switched on and off at different stages during their journey according to the stress stimulus. Accumulating evidence suggests that DNA damage responses, DNA repair, and replication are integral parts of a regulatory network orchestrating the plasticity of stemness features and transitions between epithelial and mesenchymal states in CTCs. This review summarizes the published information on these regulatory circuits of relevance for the design of biomarkers reflecting CTC functions in real-time to monitor therapeutic responses and detect evolving chemoresistance mechanisms.
Collapse
|
30
|
Oncogenic Events Dictate the Types and Locations of Gynecological Malignancies Originating from Krt8+ Mesothelial and Müllerian-Derived Epithelial Cells. Cancers (Basel) 2022; 14:cancers14030841. [PMID: 35159108 PMCID: PMC8834519 DOI: 10.3390/cancers14030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian and uterine cancers are the most common gynecological malignancies in women. The early detection, prevention, and treatment of these gynecological cancers can benefit from a better understanding of how tumor-initiating cells in them are formed from their corresponding target cell populations in the female reproductive system. To study this, we utilized a genetic approach in mice to introduce driver mutations commonly found in these cancers to Keratin 8 positive (K8+) mesothelial and epithelial cells in the ovary, fallopian tube, and uterus. We found that p53-loss appears to preferentially affect K8+ epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies or adenoma on the fallopian tube surface. Collectively, our data suggest that oncogenic driver mutations may dominantly determine the locations and types of gynecological malignancies developed from K8+ mesothelial and epithelial cells in the female reproductive system. Abstract Ovarian and uterine cancers are the most prevalent types of gynecological malignancies originating from mesothelial and/or Müllerian-derived epithelial cells. Recent genomic studies have identified common mutations in them that affect signaling pathways such as p53, PTEN/PI3K, RAS, and WNT pathways. However, how these mutations and their corresponding deregulated pathways affect gynecological cancer development from their cells-of-origin remains largely elusive. To address this, we performed the intrabursal injection of Cre-expressing adenovirus under the control of Krt8 promoter (Ad-K8-Cre) to mice carrying combinations of various conditional alleles for cancer genes. We found that Ad-K8-Cre specifically targeted mesothelial cells, including ovarian surface epithelial (OSE) cells (mainly the LGR5+ subset of OSE cells) and mesothelial cells lining the fallopian tube (FT) serosa; the injected Ad-K8-Cre also targeted Müllerian-derived epithelial cells, including FT epithelial cells and uterine endometrial epithelial cells. The loss of p53 may preferentially affect Müllerian-derived epithelial cells, leading to the development of uterine and ovarian malignancies, whereas PTEN-loss may preferentially affect mesothelial cells, leading to the development of ovarian endometrioid malignancies (upon KRAS-activation or APC-loss) or adenoma on the FT surface (upon DICER-loss). Overall, our data suggest that different Krt8+ mesothelial and epithelial cell types in the female reproductive system may have different sensitivities toward oncogenic mutations and, as a result, oncogenic events may dominantly determine the locations and types of the gynecological malignancies developed from them.
Collapse
|
31
|
Kusi M, Zand M, Lin LL, Chen M, Lopez A, Lin CL, Wang CM, Lucio ND, Kirma NB, Ruan J, Huang THM, Mitsuya K. 2-Hydroxyglutarate destabilizes chromatin regulatory landscape and lineage fidelity to promote cellular heterogeneity. Cell Rep 2022; 38:110220. [PMID: 35021081 PMCID: PMC8811753 DOI: 10.1016/j.celrep.2021.110220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of cancer plasticity and provide a rational strategy to counteract tumor cell evolution. Kusi et al. show that the oncometabolite 2-hydroxyglutarate (2HG) initiates cell-level epigenome fluctuations in the chromatin regulatory landscape, accompanied by loss of lineage fidelity. Breast tumors with high 2HG accumulation exhibit enhanced cellular heterogeneity with undifferentiated stem-like epigenomic signatures. The findings suggest metabolic derangement as a molecular origin of breast cancer heterogeneity.
Collapse
Affiliation(s)
- Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Maryam Zand
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Anthony Lopez
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nicholas D Lucio
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
32
|
Tanno B, Babini G, Leonardi S, De Stefano I, Merla C, Novelli F, Antonelli F, Casciati A, Tanori M, Pasquali E, Giardullo P, Pazzaglia S, Mancuso M. miRNA-Signature of Irradiated Ptch1+/- Mouse Lens is Dependent on Genetic Background. Radiat Res 2022; 197:22-35. [PMID: 33857324 DOI: 10.1667/rade-20-00245.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
One harmful long-term effect of ionizing radiation is cataract development. Recent studies have been focused on elucidating the mechanistic pathways involved in this pathogenesis. Since accumulating evidence has established a role of microRNAs in ocular diseases, including cataract, the goal of this work was to determine the microRNA signature of the mouse lens, at short time periods postirradiation, to understand the mechanisms related to radio-induced cataractogenesis. To evaluate the differences in the microRNA profiles, 10-week-old Patched1 heterozygous (Ptch1+/-) mice, bred onto two different genetic backgrounds (CD1 and C57Bl/6J), received whole-body 2 Gy γ-ray irradiation, and 24 h later lenses were collected. Next-generation sequencing and bioinformatics analysis revealed that genetic background markedly influenced the list of the deregulated microRNAs and the mainly predicted perturbed biological functions of 2 Gy irradiated Ptch1+/- mouse lenses. We identified a subset of microRNAs with a contra-regulated expression between strains, with a key role in regulating Toll-like receptor (TLR)-signaling pathways. Furthermore, a detailed analysis of miRNome data showed a completely different DNA damage response in mouse lenses 24 h postirradiation, mainly mediated by a marked upregulation of p53 signaling in Ptch1+/-/C57Bl/6J lenses that was not detected on a CD1 background. We propose a strict interplay between p53 and TLR signaling in Ptch1+/-/C57Bl/6J lenses shortly after irradiation that could explain both the resistance of this strain to developing lens opacities and the susceptibility of CD1 background to radiation-induced cataractogenesis through activation of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - C Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
33
|
Sun H, Zeng J, Miao Z, Lei KC, Huang C, Hu L, Su SM, Chan UI, Miao K, Zhang X, Zhang A, Guo S, Chen S, Meng Y, Deng M, Hao W, Lei H, Lin Y, Yang Z, Tang D, Wong KH, Zhang XD, Xu X, Deng CX. Dissecting the heterogeneity and tumorigenesis of BRCA1 deficient mammary tumors via single cell RNA sequencing. Am J Cancer Res 2021; 11:9967-9987. [PMID: 34815798 PMCID: PMC8581428 DOI: 10.7150/thno.63995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background: BRCA1 plays critical roles in mammary gland development and mammary tumorigenesis. And loss of BRCA1 induces mammary tumors in a stochastic manner. These tumors present great heterogeneity at both intertumor and intratumor levels. Methods: To comprehensively elucidate the heterogeneity of BRCA1 deficient mammary tumors and the underlying mechanisms for tumor initiation and progression, we conducted bulk and single cell RNA sequencing (scRNA-seq) on both mammary gland cells and mammary tumor cells isolated from Brca1 knockout mice. Results: We found the BRCA1 deficient tumors could be classified into four subtypes with distinct molecular features and different sensitivities to anti-cancer drugs at the intertumor level. Whereas within the tumors, heterogeneous subgroups were classified mainly due to the different activities of cell proliferation, DNA damage response/repair and epithelial-to-mesenchymal transition (EMT). Besides, we reconstructed the BRCA1 related mammary tumorigenesis to uncover the transcriptomes alterations during this process via pseudo-temporal analysis of the scRNA-seq data. Furthermore, from candidate markers for BRCA1 mutant tumors, we discovered and validated one oncogene Mrc2, whose loss could reduce mammary tumor growth in vitro and in vivo. Conclusion: Our study provides a useful resource for better understanding of mammary tumorigenesis induced by BRCA1 deficiency.
Collapse
|
34
|
Gao R, He B, Huang Q, Wang Z, Yan M, Lam EWF, Lin S, Wang B, Liu Q. Cancer cell immune mimicry delineates onco-immunologic modulation. iScience 2021; 24:103133. [PMID: 34632332 PMCID: PMC8487027 DOI: 10.1016/j.isci.2021.103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Immune transcripts are essential for depicting onco-immunologic interactions. However, whether cancer cells mimic immune transcripts to reprogram onco-immunologic interaction remains unclear. Here, single-cell transcriptomic analyses of 7,737 normal and 37,476 cancer cells reveal increased immune transcripts in cancer cells. Cells gradually acquire immune transcripts in malignant transformation. Notably, cancer cell-derived immune transcripts contribute to distinct prognoses of immune gene signatures. Optimized immune response signature (oIRS), obtained by excluding cancer-related immune genes from immune gene signatures, and offers a more reliable prognostic value. oIRS reveals that antigen presentation, NK cell killing and T cell signaling are associated with favorable prognosis. Patients with higher oIRS expression are associated with favorable responses to immunotherapy. Indeed, CD83+ cell infiltration, which indicates antigen presentation activity, predicts favorable prognosis in breast cancer. These findings unveil that immune mimicry is a distinct cancer hallmark, providing an example of cancer cell plasticity and a refined view of tumor microenvironment. Single-cell transcriptome reveals immune mimicry as a distinct cancer hallmark Mimicry transcripts contribute to distinct prognoses of immune gene signatures oIRS refines prognostic evaluation and points to core favorable immune processes oIRS signifies the role of antigen presentation and indicates immunotherapy response
Collapse
Affiliation(s)
- Rui Gao
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510275, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qitao Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Eric Wing-Fai Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN, UK
| | - Suxia Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Corresponding author
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510275, P.R. China
- Corresponding author
| | - Quentin Liu
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510275, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, P.R. China
- Corresponding author
| |
Collapse
|
35
|
Wang N, Wang Y, Wang H, Luo N, Yang W, Zhao Z. Knockout of Calcyclin Binding Protein Impedes the Growth of Breast Cancer Cells by Regulating Cell Apoptosis and β-Catenin Signaling. DNA Cell Biol 2021; 40:1317-1324. [PMID: 34591648 DOI: 10.1089/dna.2021.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast invasive carcinoma (BRCA) is becoming the most common malignant disease worldwide, and there is intense interest in identifying diagnostic biomarkers that can be targeted for treatment of BRCA. Recent evidence has shown that calcyclin binding protein (CacyBP) can function as either a tumor promoter or suppressor during carcinogenesis. Data in The Cancer Genome Atlas (TCGA) database show that CacyBP is overexpressed in human BRCA tissues, and high levels of CacyBP are associated with shorter overall survival. Immunohistochemical staining has shown that CacyBP levels are high in cancer tissue samples and associated with a higher likelihood of disease progression. We, therefore, conducted a knockout assay to determine the role of CacyBP in the development of BRCA. Knockout of CacyBP significantly inhibited MCF7 cell proliferation and colony formation. Apoptosis was higher in CacyBP knockout cells compared with control cells. Microarray analysis showed that the CacyBP knockout caused dysregulation of numerous genes closely related to β-catenin signaling, whereas quantitative reverse-transcription PCR and immunoblotting showed that it to be inactivated. In summary, we conclude that when overexpressed, CacyBP acts as a potential oncogene for BRCA by regulating β-catenin signaling.
Collapse
Affiliation(s)
- Ningju Wang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yan Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Huifeng Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Luo
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjing Yang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhijun Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40:e108647. [PMID: 34459003 PMCID: PMC8441439 DOI: 10.15252/embj.2021108647] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.
Collapse
Affiliation(s)
- Simone Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Thomas Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Marc P. Stemmler
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
37
|
Mowat C, Mosley SR, Namdar A, Schiller D, Baker K. Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med 2021; 218:e20210108. [PMID: 34297038 PMCID: PMC8313406 DOI: 10.1084/jem.20210108] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancers (CRCs) deficient in DNA mismatch repair (dMMR) contain abundant CD8+ tumor-infiltrating lymphocytes (TILs) responding to the abundant neoantigens from their unstable genomes. Priming of such tumor-targeted TILs first requires recruitment of CD8+ T cells into the tumors, implying that this is an essential prerequisite of successful dMMR anti-tumor immunity. We have discovered that selective recruitment and activation of systemic CD8+ T cells into dMMR CRCs strictly depend on overexpression of CCL5 and CXCL10 due to endogenous activation of cGAS/STING and type I IFN signaling by damaged DNA. TIL infiltration into orthotopic dMMR CRCs is neoantigen-independent and followed by induction of a resident memory-like phenotype key to the anti-tumor response. CCL5 and CXCL10 could be up-regulated by common chemotherapies in all CRCs, indicating that facilitating CD8+ T cell recruitment underlies their efficacy. Induction of CCL5 and CXCL10 thus represents a tractable therapeutic strategy to induce TIL recruitment into CRCs, where local priming can be maximized even in neoantigen-poor CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, Canada
| | | | - Afshin Namdar
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Daniel Schiller
- Department of Surgery, Royal Alexandra Hospital, Edmonton, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
38
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
39
|
Rauner G, Kuperwasser C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev Cell 2021; 56:1875-1883. [PMID: 34256927 DOI: 10.1016/j.devcel.2021.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.
Collapse
Affiliation(s)
- Gat Rauner
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory for the Convergence of Biomedical, Physical, and Engineering Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
40
|
Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, Jiang Y, Shao Z, Wang Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:122. [PMID: 33832512 PMCID: PMC8028839 DOI: 10.1186/s13046-021-01930-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022]
Abstract
Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01930-w.
Collapse
Affiliation(s)
- Xiuzhi Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Binhao Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xiaoguang Li
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Liu Yang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Shanghai, 200032, China
| | - Yizhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Zhimin Shao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Zhonghua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
41
|
Hu L, Su L, Cheng H, Mo C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Zhang J, Xie Y. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Res 2021; 81:2600-2611. [PMID: 33727227 DOI: 10.1158/0008-5472.can-20-2123] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
The cell of origin and the development of breast cancer are not fully elucidated in BRCA1 mutation carriers, especially for estrogen receptor (ER)-positive breast cancers. Here, we performed single-cell RNA sequencing (RNA-seq) on 82,122 cells isolated from the breast cancer tissues and adjacent or prophylactic normal breast tissues from four BRCA1 mutation carriers and three noncarriers. Whole-exome sequencing was performed on breast tumors from the four BRCA1 mutation carriers; for validation, bulk RNA-seq was performed on adjacent normal breast tissues from eight additional BRCA1 mutation carriers and 14 noncarriers. Correlation analyses suggested that breast cancers in BRCA1 mutation carriers might originate from luminal cells. The aberrant luminal progenitor cells with impaired differentiation were significantly increased in normal breast tissues in BRCA1 mutation carriers compared with noncarriers. These observations were further validated by the bulk RNA-seq data from additional BRCA1 mutation carriers. These data suggest that the cell of origin of basal-like breast tumors (ERneg) in BRCA1 mutation carriers might be luminal progenitor cells. The expression of TP53 and BRCA1 was decreased in luminal progenitor cells from normal breast tissue in BRCA1 mutation carriers, which might trigger the basal/mesenchymal transition of luminal progenitors and might result in basal-like tumor development. Furthermore, ERhigh luminal tumors might originate from mature luminal cells. Our study provides in-depth evidence regarding the cells of origin of different breast cancer subtypes in BRCA1 mutation carriers. SIGNIFICANCE: Single-cell RNA-seq data indicate that basal-like breast cancer (ERneg) might originate from luminal progenitors, and ERhigh luminal breast cancer might originate from mature luminal cells in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Li Hu
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Liming Su
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Hainan Cheng
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Chunling Mo
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Tao Ouyang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jinfeng Li
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tianfeng Wang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhaoqing Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tie Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Benyao Lin
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jianguang Zhang
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China.
| | - Yuntao Xie
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
42
|
BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2-RAD52. Nature 2021; 591:665-670. [PMID: 33536619 PMCID: PMC8245199 DOI: 10.1038/s41586-020-03150-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Strong connections exist between R-loops (three-stranded structures harbouring an RNA:DNA hybrid and a displaced single-strand DNA), genome instability and human disease1-5. Indeed, R-loops are favoured in relevant genomic regions as regulators of certain physiological processes through which homeostasis is typically maintained. For example, transcription termination pause sites regulated by R-loops can induce the synthesis of antisense transcripts that enable the formation of local, RNA interference (RNAi)-driven heterochromation6. Pause sites are also protected against endogenous single-stranded DNA breaks by BRCA17. Hypotheses about how DNA repair is enacted at pause sites include a role for RNA, which is emerging as a normal, albeit unexplained, regulator of genome integrity8. Here we report that a species of single-stranded, DNA-damage-associated small RNA (sdRNA) is generated by a BRCA1-RNAi protein complex. sdRNAs promote DNA repair driven by the PALB2-RAD52 complex at transcriptional termination pause sites that form R-loops and are rich in single-stranded DNA breaks. sdRNA repair operates in both quiescent (G0) and proliferating cells. Thus, sdRNA repair can occur in intact tissue and/or stem cells, and may contribute to tumour suppression mediated by BRCA1.
Collapse
|
43
|
Yang H, Zhang F, Long H, Lin Y, Liao J, Xia H, Huang K. IFT20 Mediates the Transport of Cell Migration Regulators From the Trans-Golgi Network to the Plasma Membrane in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:632198. [PMID: 33748116 PMCID: PMC7968458 DOI: 10.3389/fcell.2021.632198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
IFT20 is a subunit of the intraflagellar transport (IFT) system essential for the formation and function of cilia. Besides predominant research in the cilia field, some IFT subunits perform extraciliary roles in non-ciliated cancer cells. However, the specific roles of IFT subunits in tumorigenesis remain unknown. Here, we found that knockout of IFT20 in mouse breast cancer cells lacking primary cilia promoted epithelial mesenchymal transitions (EMTs), active lamellipodia formation, and cell migration. IFT20 localized at the trans-Golgi and trans-Golgi network (TGN), and displayed vesicular co-distributions with Rab8a, the marker of TGN-to-plasma membrane vesicular trafficking. Proximity-dependent biotin identification (BioID) and colocalization analyzes showed that Numb and Ctnnal1, whose depletion promoted cell migration, co-localized with IFT20 at the trans-Golgi/TGN or intracellular transport vesicles. Furthermore, Strep-Tactin pulldown assays revealed an interaction between IFT20 and Ctnnal1 or Numb. Loss of IFT20 lowered the expression of actin-associated Tagln2, whose knockdown promoted cell migration. Thus, the extraciliary function of ITF20 in breast cancer cell was associated with the negative regulation of migration.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwen Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Hubei-MOST & KLOBM), Wuhan University, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
44
|
Liu Y, Guo W. SOX factors as cell-state regulators in the mammary gland and breast cancer. Semin Cell Dev Biol 2021; 114:126-133. [PMID: 33583737 DOI: 10.1016/j.semcdb.2021.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/27/2022]
Abstract
Emerging evidence has shown that several SOX family transcription factors are key regulators of stem/progenitor cell fates in the mammary gland. These cell-fate regulators are often upregulated in breast cancer and contribute to tumor initiation and progression. They induce lineage plasticity and the epithelial-mesenchymal transition, which promotes tumor invasion, metastasis, and therapeutic resistance. SOX factors act through modulating multiple oncogenic signaling pathways in breast cancer. In addition to the cell-autonomous functions, new evidence suggests they can shape the tumor immune microenvironment. Here, we will review the molecular and functional evidence linking SOX factors with mammary gland development and discuss how these cell-fate regulators are co-opted in breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
45
|
Liu JW, Yang YG, Wang K, Wang G, Shen CC, Chen YH, Liu YF, James TD, Jiang K, Zhang H. Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered" Decomposition of an Ultrathin Nanosheet. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3669-3678. [PMID: 33435678 DOI: 10.1021/acsami.0c20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns)-a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects.
Collapse
Affiliation(s)
- Jun W Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yong G Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cong C Shen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue H Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu F Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Kai Jiang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
46
|
Setton J, Reis-Filho JS, Powell SN. Homologous recombination deficiency: how genomic signatures are generated. Curr Opin Genet Dev 2021; 66:93-100. [PMID: 33477018 DOI: 10.1016/j.gde.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cancer genomes harbor mutational and structural rearrangements that are jointly shaped by DNA damage and repair mechanisms. Accumulating evidence suggests that genetic alterations in DNA repair-defective tumors reflect the scars caused by the use of backup DNA repair mechanisms needed to maintain cellular viability. Detailed analysis of the patterns of mutations and structural rearrangements present in BRCA1/2-deficient tumors has allowed for the delineation of genomic signatures that reflect alternative repair with inactive homologous recombination (HR). Here we aim to summarize recent advances in the analysis of genomic signatures associated with HR-deficiency and examine recent studies that have shed light on the backup repair mechanisms responsible for genomic scarring in HR-deficient tumors.
Collapse
Affiliation(s)
- Jeremy Setton
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jorge S Reis-Filho
- Dept. of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon N Powell
- Dept. of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Molecular Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
47
|
Gu Y, Wang C, Zhu R, Yang J, Yuan W, Zhu Y, Zhou Y, Qin N, Shen H, Ma H, Wang H, Liu X, Hu Z. The cancer-testis gene, MEIOB, sensitizes triple-negative breast cancer to PARP1 inhibitors by inducing homologous recombination deficiency. Cancer Biol Med 2021; 18:74-87. [PMID: 33628586 PMCID: PMC7877187 DOI: 10.20892/j.issn.2095-3941.2020.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The newly defined cancer-testis (CT) gene, MEIOB, was previously found to play key roles in DNA double-strand break (DSB) repair. In this study, we aimed to investigate the effects and mechanisms of MEIOB in the carcinogenesis of triple-negative breast cancers (TNBCs). Methods The Cancer Genome Atlas database was used to quantify the expression of MEIOB. Cox regression analysis was used to evaluate the association between MEIOB expression and the prognosis of human TNBC. The effects of MEIOB on cell proliferation and migration in TNBCs were also assessed in vitro. Patient-derived xenograft (PDX) models were used to assess the sensitivity of breast cancers with active MEIOB to PARP1 inhibitors. Results We confirmed MEIOB as a CT gene whose expression was restricted to the testes and breast tumors, especially TNBCs. Its activation was significantly associated with poor survival in breast cancer patients [overall, hazard ratio (HR) = 1.90 (1.16-2.06); TNBCs: HR = 7.05 (1.16-41.80)]. In addition, we found that MEIOB was oncogenic and significantly promoted the proliferation of TNBC cells. Further analysis showed that MEIOB participated in DSB repair in TNBCs. However, in contrast to its function in meiosis, it mediated homologous recombination deficiency (HRD) through the activation of polyADP-ribose polymerase (PARP)1 by interacting with YBX1. Furthermore, activated MEIOB was shown to confer sensitivity to PARP inhibitors, which was confirmed in PDX models. Conclusions MEIOB played an oncogenic role in TNBC through its involvement in HRD. In addition, dysregulation of MEIOB sensitized TNBC cells to PARP inhibitors, so MEIOB may be a therapeutic target of PARP1 inhibitors in TNBC.
Collapse
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianshui Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Yuan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Na Qin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| |
Collapse
|
48
|
Zhou J, Zhou XA, Zhang N, Wang J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol Med 2020; 17:805-827. [PMID: 33299637 PMCID: PMC7721097 DOI: 10.20892/j.issn.2095-3941.2020.0177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Viewing cancer as a large, evolving population of heterogeneous cells is a common perspective. Because genomic instability is one of the fundamental features of cancer, this intrinsic tendency of genomic variation leads to striking intratumor heterogeneity and functions during the process of cancer formation, development, metastasis, and relapse. With the increased mutation rate and abundant diversity of the gene pool, this heterogeneity leads to cancer evolution, which is the major obstacle in the clinical treatment of cancer. Cells rely on the integrity of DNA repair machineries to maintain genomic stability, but these machineries often do not function properly in cancer cells. The deficiency of DNA repair could contribute to the generation of cancer genomic instability, and ultimately promote cancer evolution. With the rapid advance of new technologies, such as single-cell sequencing in recent years, we have the opportunity to better understand the specific processes and mechanisms of cancer evolution, and its relationship with DNA repair. Here, we review recent findings on how DNA repair affects cancer evolution, and discuss how these mechanisms provide the basis for critical clinical challenges and therapeutic applications.
Collapse
Affiliation(s)
- Jiadong Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ning Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.,Biomedical Pioneering Innovation Center (BIOPIC) and Translational Cancer Research Center, School of Life Sciences, First Hospital, Peking University, Beijing 100871, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
49
|
Seldin L, Macara IG. DNA Damage Promotes Epithelial Hyperplasia and Fate Mis-specification via Fibroblast Inflammasome Activation. Dev Cell 2020; 55:558-573.e6. [PMID: 33058780 PMCID: PMC7725994 DOI: 10.1016/j.devcel.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
DNA crosslinking agents are commonly used in cancer chemotherapy; however, responses of normal tissues to these agents have not been widely investigated. We reveal in mouse interfollicular epidermal, mammary and hair follicle epithelia that genotoxicity does not promote apoptosis but paradoxically induces hyperplasia and fate specification defects in quiescent stem cells. DNA damage to skin causes epithelial and dermal hyperplasia, tissue expansion, and proliferation-independent formation of abnormal K14/K10 dual-positive suprabasal cells. Unexpectedly, this behavior is epithelial cell non-autonomous and independent of an intact immune system. Instead, dermal fibroblasts are both necessary and sufficient to induce the epithelial response, which is mediated by activation of a fibroblast-specific NLRP3 inflammasome and subsequent IL-1β production. Thus, genotoxic agents that are used chemotherapeutically to promote cancer cell death can have the opposite effect on wild-type epithelia by inducing, via a non-autonomous IL-1β-driven mechanism, both hyperplasia and stem cell lineage defects.
Collapse
Affiliation(s)
- Lindsey Seldin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
50
|
He A, Huang Y, Cheng W, Zhang D, He W, Bai Y, Gu C, Ma Z, He Z, Si G, Chen B, Breault DT, Dong M, Xiang D. Organoid culture system for patient-derived lung metastatic osteosarcoma. Med Oncol 2020; 37:105. [PMID: 33079257 DOI: 10.1007/s12032-020-01429-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy with high rates of recurrence and metastasis. OS often spreads to lungs, an optimized model for studying lung metastatic OS cells may help develop potential therapies for patients with lung metastasis. Here we firstly report an organoid culture system for lung metastatic OS tissues. We provided a fully described formula that was required for establishing lung metastatic OS organoids (OSOs). Using this protocol, the lung OSOs were able to be maintained and serially propagated for at least six months; the OSOs can also be generated from cryopreserved patient samples without damaging the morphology. The patient-derived lung OSOs retained the cellular morphology and expression of OS markers (Vimentin and Sox9) that recapitulate the histological features of the human OS. The microenvironment of primary lung metastatic OSOs preserved a similar T cell distribution with the human lung OS lesions; this provided a possible condition to explore how OS cells may react to immunotherapy. OSOs established from this protocol can be further utilized for studying various aspects of OS biology (e.g., tumorigenesis and drug screen/discovery) for precision medicine.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China. .,Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Wanying Cheng
- Shanghai Bioheb Biomed Technology Company, Shanghai, People's Republic of China
| | - Deng Zhang
- Shanghai Bioheb Biomed Technology Company, Shanghai, People's Republic of China
| | - Weiwei He
- Department of Thoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yueqing Bai
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chao Gu
- Department of Pathology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhongping Ma
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Zhenfang He
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Guifan Si
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - Bing Chen
- Shanghai OneTar Biomedicine, Shanghai, People's Republic of China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Research Center of Biliary Tract Disease, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|