1
|
Schechter MS, Trigodet F, Veseli IA, Miller SE, Klein ML, Sever M, Maignien L, Delmont TO, Light SH, Eren AM. Ribosomal protein phylogeography offers quantitative insights into the efficacy of genome-resolved surveys of microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633187. [PMID: 39868213 PMCID: PMC11760686 DOI: 10.1101/2025.01.15.633187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The increasing availability of microbial genomes is essential to gain insights into microbial ecology and evolution that can propel biotechnological and biomedical advances. Recent advances in genome recovery have significantly expanded the catalogue of microbial genomes from diverse habitats. However, the ability to explain how well a set of genomes account for the diversity in a given environment remains challenging for individual studies or biome-specific databases. Here we present EcoPhylo, a computational workflow to characterize the phylogeography of any gene family through integrated analyses of genomes and metagenomes, and our application of this approach to ribosomal proteins to quantify phylogeny-aware genome recovery rates across three biomes. Our findings show that genome recovery rates vary widely across taxa and biomes, and that single amplified genomes, metagenome-assembled genomes, and isolate genomes have non-uniform yet quantifiable representation of environmental microbes. EcoPhylo reveals highly resolved, reference-free, multi-domain phylogenies in conjunction with distribution patterns of individual clades across environments, providing a means to assess genome recovery in individual studies and benchmark biome-level genome collections.
Collapse
|
2
|
Ramond P, Galand PE, Logares R. Microbial functional diversity and redundancy: moving forward. FEMS Microbiol Rev 2025; 49:fuae031. [PMID: 39689915 PMCID: PMC11756291 DOI: 10.1093/femsre/fuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Microbial functional ecology is expanding as we can now measure the traits of wild microbes that affect ecosystem functioning. Here, we review techniques and advances that could be the bedrock for a unified framework to study microbial functions. These include our newfound access to environmental microbial genomes, collections of microbial traits, but also our ability to study microbes' distribution and expression. We then explore the technical, ecological, and evolutionary processes that could explain environmental patterns of microbial functional diversity and redundancy. Next, we suggest reconciling microbiology with biodiversity-ecosystem functioning studies by experimentally testing the significance of microbial functional diversity and redundancy for the efficiency, resistance, and resilience of ecosystem processes. Such advances will aid in identifying state shifts and tipping points in microbiomes, enhancing our understanding of how and where will microbes guide Earth's biomes in the context of a changing planet.
Collapse
Affiliation(s)
- Pierre Ramond
- Institute of Marine Sciences (ICM-CSIC), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Pierre E Galand
- Sorbonne Universités, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, 66650, France
| | - Ramiro Logares
- Institute of Marine Sciences (ICM-CSIC), Department of Marine Biology and Oceanography, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
3
|
Luo H. How Big Is Big? The Effective Population Size of Marine Bacteria. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:537-560. [PMID: 39288792 DOI: 10.1146/annurev-marine-050823-104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
Collapse
Affiliation(s)
- Haiwei Luo
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
| |
Collapse
|
4
|
Chen Y. Beyond Meta-Omics: Functional Genomics in Future Marine Microbiome Research. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:577-592. [PMID: 38950441 DOI: 10.1146/annurev-marine-020123-100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
When President Bill Clinton and Francis Collins, then the director of the National Human Genome Research Institute, celebrated the near completion of the human genome sequence at the White House in the summer of 2000, it is unlikely that they or anyone else could have predicted the blossoming of meta-omics in the following two decades and their applications in modern human microbiome and environmental microbiome research. This transformation was enabled by the development of high-throughput sequencing technologies and sophisticated computational biology tools and bioinformatics software packages. Today, environmental meta-omics has undoubtedly revolutionized our understanding of ocean ecosystems, providing the genetic blueprint of oceanic microscopic organisms. In this review, I discuss the importance of functional genomics in future marine microbiome research and advocate a position for a gene-centric, bottom-up approach in modern oceanography. I propose that a synthesis of multidimensional approaches is required for a better understanding of the true functionality of the marine microbiome.
Collapse
Affiliation(s)
- Yin Chen
- School of Life Sciences, University of Warwick, Coventry, United Kingdom;
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Xiao W, Weissman JL, Johnson PLF. Ecological drivers of CRISPR immune systems. mSystems 2024; 9:e0056824. [PMID: 39503509 DOI: 10.1128/msystems.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas is the only known adaptive immune system of prokaryotes. It is a powerful defense system against mobile genetic elements such as bacteriophages. While CRISPR-Cas systems can be found throughout the prokaryotic tree of life, they are distributed unevenly across taxa and environments. Since adaptive immunity is more useful in environments where pathogens persist or reoccur, the density and/or diversity of the host/pathogen community may drive the uneven distribution of CRISPR systems. We directly tested hypotheses connecting CRISPR incidence with prokaryotic density/diversity by analyzing 16S rRNA and metagenomic data from publicly available environmental sequencing projects. In terms of density, we found that CRISPR systems are significantly favored in lower abundance (less dense) taxa and disfavored in higher abundance taxa, at least in marine environments. When we extended this work to compare taxonomic diversity between samples, we found CRISPR system incidence strongly correlated with diversity in human oral environments. Together, these observations confirm that, at least in certain types of environments, the prokaryotic ecological context indeed plays a key role in selecting for CRISPR immunity. IMPORTANCE Microbes must constantly defend themselves against viral pathogens, and a large proportion of prokaryotes do so using the highly effective CRISPR-Cas adaptive immune system. However, many prokaryotes do not. We investigated the ecological factors behind this uneven distribution of CRISPR-Cas immune systems in natural microbial populations. We found strong patterns linking CRISPR-Cas systems to prokaryotic density within ocean environments and to prokaryotic diversity within human oral environments. Our study validates previous within-lab experimental results that suggested these factors might be important and confirms that local environment and ecological context interact to select for CRISPR immunity.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - J L Weissman
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York, USA
- Department of Biology, The City College of New York, New York, New York, USA
| | - Philip L F Johnson
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Jackson VLN, Grevesse T, Kilias ES, Onda DFL, Young KF, Allen MJ, Walsh DA, Lovejoy C, Monier A. Vulnerability of Arctic Ocean microbial eukaryotes to sea ice loss. Sci Rep 2024; 14:28896. [PMID: 39572565 PMCID: PMC11582671 DOI: 10.1038/s41598-024-77821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
The Arctic Ocean (AO) is changing at an unprecedented rate, with ongoing sea ice loss, warming and freshening impacting the extent and duration of primary productivity over summer months. Surface microbial eukaryotes are vulnerable to such changes, but basic knowledge of the spatial variability of surface communities is limited. Here, we sampled microbial eukaryotes in surface waters of the Beaufort Sea from four contrasting environments: the Canada Basin (open ocean), the Mackenzie Trough (river-influenced), the Nuvuk region (coastal) and the under-ice system of the Canada Basin. Microbial community structure and composition varied significantly among the systems, with the most phylogenetically diverse communities being found in the more coastal systems. Further analysis of environmental factors showed potential vulnerability to change in the most specialised community, which was found in the samples taken in water immediately beneath the sea ice, and where the community was distinguished by rare species. In the context of ongoing sea ice loss, specialised ice-associated microbial assemblages may transition towards more generalist assemblages, with implications for the eventual loss of biodiversity and associated ecosystem function in the Arctic Ocean.
Collapse
Affiliation(s)
- Victoria L N Jackson
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Grevesse
- Biology Department, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Estelle S Kilias
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Deo F L Onda
- The Marine Science Institute, University of the Philippines, Manila, Philippines
| | | | | | - David A Walsh
- Biology Department, Concordia University, Montréal, QC, H4B 1R6, Canada
| | - Connie Lovejoy
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
7
|
Guo J, Sun D, Li K, Dai Q, Geng S, Yang Y, Mo M, Zhu Z, Shao C, Wang W, Song J, Yang C, Zhang H. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402177. [PMID: 39077951 DOI: 10.1002/smll.202402177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024]
Abstract
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
Collapse
Affiliation(s)
- Junnan Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kunjie Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Shichen Geng
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanyuan Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Mengwu Mo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Chen Shao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huimin Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Şapcı AOB, Mirarab S. Memory-bound k-mer selection for large and evolutionarily diverse reference libraries. Genome Res 2024; 34:1455-1467. [PMID: 39209553 PMCID: PMC11529837 DOI: 10.1101/gr.279339.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Using k-mers to find sequence matches is increasingly used in many bioinformatic applications, including metagenomic sequence classification. The accuracy of these downstream applications relies on the density of the reference databases, which are rapidly growing. Although the increased density provides hope for improvements in accuracy, scalability is a concern. Reference k-mers are kept in the memory during the query time, and saving all k-mers of these ever-expanding databases is fast becoming impractical. Several strategies for subsampling have been proposed, including minimizers and finding taxon-specific k-mers. However, we contend that these strategies are inadequate, especially when reference sets are taxonomically imbalanced, as are most microbial libraries. In this paper, we explore approaches for selecting a fixed-size subset of k-mers present in an ultra-large data set to include in a library such that the classification of reads suffers the least. Our experiments demonstrate the limitations of existing approaches, especially for novel and poorly sampled groups. We propose a library construction algorithm called k-mer RANKer (KRANK) that combines several components, including a hierarchical selection strategy with adaptive size restrictions and an equitable coverage strategy. We implement KRANK in highly optimized code and combine it with the locality-sensitive hashing classifier CONSULT-II to build a taxonomic classification and profiling method. On several benchmarks, KRANK k-mer selection significantly reduces memory consumption with minimal loss in classification accuracy. We show in extensive analyses based on CAMI benchmarks that KRANK outperforms k-mer-based alternatives in terms of taxonomic profiling and comes close to the best marker-based methods in terms of accuracy.
Collapse
Affiliation(s)
- Ali Osman Berk Şapcı
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, California 92093, USA
| | - Siavash Mirarab
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, California 92093, USA;
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
9
|
Shaw J, Yu YW. Rapid species-level metagenome profiling and containment estimation with sylph. Nat Biotechnol 2024:10.1038/s41587-024-02412-y. [PMID: 39379646 DOI: 10.1038/s41587-024-02412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Profiling metagenomes against databases allows for the detection and quantification of microorganisms, even at low abundances where assembly is not possible. We introduce sylph, a species-level metagenome profiler that estimates genome-to-metagenome containment average nucleotide identity (ANI) through zero-inflated Poisson k-mer statistics, enabling ANI-based taxa detection. On the Critical Assessment of Metagenome Interpretation II (CAMI2) Marine dataset, sylph was the most accurate profiling method of seven tested. For multisample profiling, sylph took >10-fold less central processing unit time compared to Kraken2 and used 30-fold less memory. Sylph's ANI estimates provided an orthogonal signal to abundance, allowing for an ANI-based metagenome-wide association study for Parkinson disease (PD) against 289,232 genomes while confirming known butyrate-PD associations at the strain level. Sylph took <1 min and 16 GB of random-access memory to profile metagenomes against 85,205 prokaryotic and 2,917,516 viral genomes, detecting 30-fold more viral sequences in the human gut compared to RefSeq. Sylph offers precise, efficient profiling with accurate containment ANI estimation even for low-coverage genomes.
Collapse
Affiliation(s)
- Jim Shaw
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Miyada MG, Choi Y, Stepanauskas R, Woyke T, La Clair JJ, Burkart MD. Fluorometric Analysis of Carrier-Protein-Dependent Biosynthesis through a Conformationally Sensitive Solvatochromic Pantetheinamide Probe. ACS Chem Biol 2024; 19:1416-1425. [PMID: 38909314 PMCID: PMC11622929 DOI: 10.1021/acschembio.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Carrier proteins (CPs) play a fundamental role in the biosynthesis of fatty acids, polyketides, and non-ribosomal peptides, encompassing many medicinally and pharmacologically relevant compounds. Current approaches to analyze novel carrier-protein-dependent synthetic pathways are hampered by a lack of activity-based assays for natural product biosynthesis. To fill this gap, we turned to 3-methoxychromones, highly solvatochromic fluorescent molecules whose emission intensity and wavelength are heavily dependent on their immediate molecular environment. We have developed a solvatochromic carrier-protein-targeting probe which is able to selectively fluoresce when bound to a target carrier protein. Additionally, the probe displays distinct responses upon CP binding in carrier-protein-dependent synthases. This discerning approach demonstrates the design of solvatochromic fluorophores with the ability to identify biosynthetically active CP-enzyme interactions.
Collapse
Affiliation(s)
- Matthew G. Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
11
|
Chang T, Gavelis GS, Brown JM, Stepanauskas R. Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton. MICROBIOME 2024; 12:126. [PMID: 39010229 PMCID: PMC11247762 DOI: 10.1186/s40168-024-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment. RESULTS We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages. CONCLUSIONS Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.
Collapse
Affiliation(s)
- Tianyi Chang
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | - Gregory S Gavelis
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | | |
Collapse
|
12
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
13
|
Ren K, Zhou F, Zhang F, Yin M, Zhu Y, Wang S, Chen Y, Huang T, Wu Z, He J, Zhang A, Guo C, Huang Z. Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs. Cell Res 2024; 34:370-385. [PMID: 38575718 PMCID: PMC11061315 DOI: 10.1038/s41422-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
CRISPR-Cas systems and IS200/IS605 transposon-associated TnpBs have been utilized for the development of genome editing technologies. Using bioinformatics analysis and biochemical experiments, here we present a new family of RNA-guided DNA endonucleases. Our bioinformatics analysis initially identifies the stable co-occurrence of conserved RAGATH-18-derived RNAs (reRNAs) and their upstream IS607 TnpBs with an average length of 390 amino acids. IS607 TnpBs form programmable DNases through interaction with reRNAs. We discover the robust dsDNA interference activity of IS607 TnpB systems in bacteria and human cells. Further characterization of the Firmicutes bacteria IS607 TnpB system (ISFba1 TnpB) reveals that its dsDNA cleavage activity is remarkably sensitive to single mismatches between the guide and target sequences in human cells. Our findings demonstrate that a length of 20 nt in the guide sequence of reRNA achieves the highest DNA cleavage activity for ISFba1 TnpB. A cryo-EM structure of the ISFba1 TnpB effector protein bound by its cognate RAGATH-18 motif-containing reRNA and a dsDNA target reveals the mechanisms underlying reRNA recognition by ISFba1 TnpB, reRNA-guided dsDNA targeting, and the sensitivity of the ISFba1 TnpB system to base mismatches between the guide and target DNA. Collectively, this study identifies the IS607 TnpB family of compact and specific RNA-guided DNases with great potential for application in gene editing.
Collapse
Affiliation(s)
- Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Mingyu Yin
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Shouyu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zixuan Wu
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jiale He
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- New Cornerstone Science Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Du S, Wu Y, Ying H, Wu Z, Yang M, Chen F, Shao J, Liu H, Zhang Z, Zhao Y. Genome sequences of the first Autographiviridae phages infecting marine Roseobacter. Microb Genom 2024; 10. [PMID: 38630615 DOI: 10.1099/mgen.0.001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The ubiquitous and abundant marine phages play critical roles in shaping the composition and function of bacterial communities, impacting biogeochemical cycling in marine ecosystems. Autographiviridae is among the most abundant and ubiquitous phage families in the ocean. However, studies on the diversity and ecology of Autographiviridae phages in marine environments are restricted to isolates that infect SAR11 bacteria and cyanobacteria. In this study, ten new roseophages that infect marine Roseobacter strains were isolated from coastal waters. These new roseophages have a genome size ranging from 38 917 to 42 634 bp and G+C content of 44.6-50 %. Comparative genomics showed that they are similar to known Autographiviridae phages regarding gene content and architecture, thus representing the first Autographiviridae roseophages. Phylogenomic analysis based on concatenated conserved genes showed that the ten roseophages form three distinct subgroups within the Autographiviridae, and sequence analysis revealed that they belong to eight new genera. Finally, viromic read-mapping showed that these new Autographiviridae phages are widely distributed in global oceans, mostly inhabiting polar and estuarine locations. This study has expanded the current understanding of the genomic diversity, evolution and ecology of Autographiviridae phages and roseophages. We suggest that Autographiviridae phages play important roles in the mortality and community structure of roseobacters, and have broad ecological applications.
Collapse
Affiliation(s)
- Sen Du
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ying Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Hanqi Ying
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zuqing Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Jiabing Shao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - He Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
15
|
Hollender M, Sałek M, Karlicki M, Karnkowska A. Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 2024; 175:126018. [PMID: 38325049 DOI: 10.1016/j.protis.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.
Collapse
Affiliation(s)
- Metody Hollender
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Marta Sałek
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
16
|
Şapcı AOB, Rachtman E, Mirarab S. CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing. Bioinformatics 2024; 40:btae150. [PMID: 38492564 PMCID: PMC10985673 DOI: 10.1093/bioinformatics/btae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
MOTIVATION Taxonomic classification of short reads and taxonomic profiling of metagenomic samples are well-studied yet challenging problems. The presence of species belonging to groups without close representation in a reference dataset is particularly challenging. While k-mer-based methods have performed well in terms of running time and accuracy, they tend to have reduced accuracy for such novel species. Thus, there is a growing need for methods that combine the scalability of k-mers with increased sensitivity. RESULTS Here, we show that using locality-sensitive hashing (LSH) can increase the sensitivity of the k-mer-based search. Our method, which combines LSH with several heuristics techniques including soft lowest common ancestor labeling and voting, is more accurate than alternatives in both taxonomic classification of individual reads and abundance profiling. AVAILABILITY AND IMPLEMENTATION CONSULT-II is implemented in C++, and the software, together with reference libraries, is publicly available on GitHub https://github.com/bo1929/CONSULT-II.
Collapse
Affiliation(s)
- Ali Osman Berk Şapcı
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
| | - Eleonora Rachtman
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
| | - Siavash Mirarab
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, CA 92093, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States
| |
Collapse
|
17
|
Giordano N, Gaudin M, Trottier C, Delage E, Nef C, Bowler C, Chaffron S. Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities. Nat Commun 2024; 15:2721. [PMID: 38548725 PMCID: PMC10978986 DOI: 10.1038/s41467-024-46374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity network revealed a significant number of inter-lineage associations across diverse phylogenetic distances. Identified co-active communities include species displaying smaller genomes but encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. Community metabolic modelling reveals a higher potential for interaction within co-active communities and points towards conserved metabolic cross-feedings, in particular of specific amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach suggests that genome streamlining and metabolic auxotrophies may act as joint mechanisms shaping bacterioplankton community assembly in the global ocean surface.
Collapse
Affiliation(s)
- Nils Giordano
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Camille Trottier
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France.
| |
Collapse
|
18
|
Hosokawa M, Nishikawa Y. Tools for microbial single-cell genomics for obtaining uncultured microbial genomes. Biophys Rev 2024; 16:69-77. [PMID: 38495448 PMCID: PMC10937852 DOI: 10.1007/s12551-023-01124-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 03/19/2024] Open
Abstract
The advent of next-generation sequencing technologies has facilitated the acquisition of large amounts of DNA sequence data at a relatively low cost, leading to numerous breakthroughs in decoding microbial genomes. Among the various genome sequencing activities, metagenomic analysis, which entails the direct analysis of uncultured microbial DNA, has had a profound impact on microbiome research and has emerged as an indispensable technology in this field. Despite its valuable contributions, metagenomic analysis is a "bulk analysis" technique that analyzes samples containing a wide diversity of microbes, such as bacteria, yielding information that is averaged across the entire microbial population. In order to gain a deeper understanding of the heterogeneous nature of the microbial world, there is a growing need for single-cell analysis, similar to its use in human cell biology. With this paradigm shift in mind, comprehensive single-cell genomics technology has become a much-anticipated innovation that is now poised to revolutionize microbiome research. It has the potential to enable the discovery of differences at the strain level and to facilitate a more comprehensive examination of microbial ecosystems. In this review, we summarize the current state-of-the-art in microbial single-cell genomics, highlighting the potential impact of this technology on our understanding of the microbial world. The successful implementation of this technology is expected to have a profound impact in the field, leading to new discoveries and insights into the diversity and evolution of microbes.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480 Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- bitBiome, Inc., 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo, 169-8555 Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo, 162-0041 Japan
| |
Collapse
|
19
|
Rodríguez Del Río Á, Giner-Lamia J, Cantalapiedra CP, Botas J, Deng Z, Hernández-Plaza A, Munar-Palmer M, Santamaría-Hernando S, Rodríguez-Herva JJ, Ruscheweyh HJ, Paoli L, Schmidt TSB, Sunagawa S, Bork P, López-Solanilla E, Coelho LP, Huerta-Cepas J. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 2024; 626:377-384. [PMID: 38109938 PMCID: PMC10849945 DOI: 10.1038/s41586-023-06955-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Joaquín Giner-Lamia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-CSIC, Seville, Spain
| | - Carlos P Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Botas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ziqi Deng
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Bowers RM, Gonzalez-Pena V, Wardhani K, Goudeau D, Blow MJ, Udwary D, Klein D, Vill AC, Brito IL, Woyke T, Malmstrom R, Gawad C. scMicrobe PTA: Near Complete Genomes from Single Bacterial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577819. [PMID: 38352480 PMCID: PMC10862798 DOI: 10.1101/2024.01.30.577819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.
Collapse
Affiliation(s)
- Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Kartika Wardhani
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew James Blow
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
21
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
22
|
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, Fuchs BM. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre. THE ISME JOURNAL 2024; 18:wrae155. [PMID: 39096506 PMCID: PMC11366302 DOI: 10.1093/ismejo/wrae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024]
Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
Collapse
Affiliation(s)
- Monike Oggerin
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Jan Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Daniela Voß
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
| | - Marina García-Llorca
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Oliver Zielinski
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| |
Collapse
|
23
|
Bowers RM, Gonzalez-Pena V, Wardhani K, Goudeau D, Blow MJ, Udwary D, Klein D, Vill AC, Brito IL, Woyke T, Malmstrom RR, Gawad C. scMicrobe PTA: near complete genomes from single bacterial cells. ISME COMMUNICATIONS 2024; 4:ycae085. [PMID: 39021442 PMCID: PMC11253033 DOI: 10.1093/ismeco/ycae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Microbial genomes produced by standard single-cell amplification methods are largely incomplete. Here, we show that primary template-directed amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard multiple displacement amplification-based approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.
Collapse
Affiliation(s)
- Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | - Kartika Wardhani
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Danielle Goudeau
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Matthew James Blow
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Klein
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Albert C Vill
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Ilana L Brito
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Rex R Malmstrom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Charles Gawad
- Department of Pediatrics, Stanford University, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
24
|
Molina-Pardines C, Haro-Moreno JM, López-Pérez M. Phosphate-related genomic islands as drivers of environmental adaptation in the streamlined marine alphaproteobacterial HIMB59. mSystems 2023; 8:e0089823. [PMID: 38054740 PMCID: PMC10734472 DOI: 10.1128/msystems.00898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE These results shed light on the evolutionary strategies of microbes with streamlined genomes to adapt and survive in the oligotrophic conditions that dominate the surface waters of the global ocean. At the individual level, these microbes have been subjected to evolutionary constraints that have led to a more efficient use of nutrients, removing non-essential genes named as "streamlining theory." However, at the population level, they conserve a highly diverse gene pool in flexible genomic islands resulting in polyclonal populations on the same genomic background as an evolutionary response to environmental pressures. Localization of these islands at equivalent positions in the genome facilitates horizontal transfer between clonal lineages. This high level of environmental genomic heterogeneity could explain their cosmopolitan distribution. In the case of the order HIMB59 within the class Alphaproteobacteria, two factors exert evolutionary pressure and determine this intraspecific diversity: phages and the concentration of P in the environment.
Collapse
Affiliation(s)
- Carmen Molina-Pardines
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, San Juan, Alicante, Spain
| |
Collapse
|
25
|
Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, Neely CJ, Reiter T. Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton. mBio 2023; 14:e0167623. [PMID: 37947402 PMCID: PMC10746220 DOI: 10.1128/mbio.01676-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Single-celled eukaryotes play ecologically significant roles in the marine environment, yet fundamental questions about their biodiversity, ecological function, and interactions remain. Environmental sequencing enables researchers to document naturally occurring protistan communities, without culturing bias, yet metagenomic and metatranscriptomic sequencing approaches cannot separate individual species from communities. To more completely capture the genomic content of mixed protistan populations, we can create bins of sequences that represent the same organism (metagenome-assembled genomes [MAGs]). We developed the EukHeist pipeline, which automates the binning of population-level eukaryotic and prokaryotic genomes from metagenomic reads. We show exciting insight into what protistan communities are present and their trophic roles in the ocean. Scalable computational tools, like EukHeist, may accelerate the identification of meaningful genetic signatures from large data sets and complement researchers' efforts to leverage MAG databases for addressing ecological questions, resolving evolutionary relationships, and discovering potentially novel biodiversity.
Collapse
Affiliation(s)
- Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sarah K. Hu
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Arianna I. Krinos
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts, USA
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Benjamin J. Tully
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christopher J. Neely
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Taylor Reiter
- Population Health and Reproduction, University of California, Davis, Davis, California, USA
| |
Collapse
|
26
|
Martinez-Gutierrez CA, Uyeda JC, Aylward FO. A timeline of bacterial and archaeal diversification in the ocean. eLife 2023; 12:RP88268. [PMID: 38059790 DOI: 10.7554/elife.88268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades - SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II - diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8-0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45-0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.
Collapse
Affiliation(s)
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, United States
| |
Collapse
|
27
|
Dougan KE, Deng ZL, Wöhlbrand L, Reuse C, Bunk B, Chen Y, Hartlich J, Hiller K, John U, Kalvelage J, Mansky J, Neumann-Schaal M, Overmann J, Petersen J, Sanchez-Garcia S, Schmidt-Hohagen K, Shah S, Spröer C, Sztajer H, Wang H, Bhattacharya D, Rabus R, Jahn D, Chan CX, Wagner-Döbler I. Multi-omics analysis reveals the molecular response to heat stress in a "red tide" dinoflagellate. Genome Biol 2023; 24:265. [PMID: 37996937 PMCID: PMC10666404 DOI: 10.1186/s13059-023-03107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes. RESULTS We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate. CONCLUSIONS Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.
Collapse
Affiliation(s)
- Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi-Luo Deng
- Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Carsten Reuse
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Boyke Bunk
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Juliane Hartlich
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Karsten Hiller
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, 26129, Oldenburg, Germany
| | - Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Johannes Mansky
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Meina Neumann-Schaal
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörg Overmann
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörn Petersen
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Selene Sanchez-Garcia
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Kerstin Schmidt-Hohagen
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cathrin Spröer
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Helena Sztajer
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Hui Wang
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Irene Wagner-Döbler
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.
| |
Collapse
|
28
|
Arikawa K, Hosokawa M. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics. Comput Struct Biotechnol J 2023; 21:4508-4518. [PMID: 37771751 PMCID: PMC10523443 DOI: 10.1016/j.csbj.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Owing to the ineffectiveness of traditional culture techniques for the vast majority of microbial species, culture-independent analyses utilizing next-generation sequencing and bioinformatics have become essential for gaining insight into microbial ecology and function. This mini-review focuses on two essential methods for obtaining genetic information from uncultured prokaryotes, metagenomics and single-cell genomics. We analyzed the registration status of uncultured prokaryotic genome data from major public databases and assessed the advantages and limitations of both the methods. Metagenomics generates a significant quantity of sequence data and multiple prokaryotic genomes using straightforward experimental procedures. However, in ecosystems with high microbial diversity, such as soil, most genes are presented as brief, disconnected contigs, and lack association of highly conserved genes and mobile genetic elements with individual species genomes. Although technically more challenging, single-cell genomics offers valuable insights into complex ecosystems by providing strain-resolved genomes, addressing issues in metagenomics. Recent technological advancements, such as long-read sequencing, machine learning algorithms, and in silico protein structure prediction, in combination with vast genomic data, have the potential to overcome the current technical challenges and facilitate a deeper understanding of uncultured microbial ecosystems and microbial dark matter genes and proteins. In light of this, it is imperative that continued innovation in both methods and technologies take place to create high-quality reference genome databases that will support future microbial research and industrial applications.
Collapse
Affiliation(s)
- Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
29
|
Booker AE, D'Angelo T, Adams-Beyea A, Brown JM, Nigro O, Rappé MS, Stepanauskas R, Orcutt BN. Life strategies for Aminicenantia in subseafloor oceanic crust. THE ISME JOURNAL 2023; 17:1406-1415. [PMID: 37328571 PMCID: PMC10432499 DOI: 10.1038/s41396-023-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
After decades studying the microbial "deep biosphere" in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use "primordial" siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.
Collapse
Affiliation(s)
- Anne E Booker
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Annabelle Adams-Beyea
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- Eugene Lang College of Liberal Arts at The New School, New York City, NY, USA
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Olivia Nigro
- Department of Natural Science, Hawai'i Pacific University, Honolulu, HI, USA
| | - Michael S Rappé
- Hawai'i Institute of Marine Biology, SOEST, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | | | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA.
| |
Collapse
|
30
|
Wei B, Hu GA, Zhou ZY, Yu WC, Du AQ, Yang CL, Yu YL, Chen JW, Zhang HW, Wu Q, Xuan Q, Xu XW, Wang H. Global analysis of the biosynthetic chemical space of marine prokaryotes. MICROBIOME 2023; 11:144. [PMID: 37370187 DOI: 10.1186/s40168-023-01573-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Marine prokaryotes are a rich source of novel bioactive secondary metabolites for drug discovery. Recent genome mining studies have revealed their great potential to bio-synthesize novel secondary metabolites. However, the exact biosynthetic chemical space encoded by the marine prokaryotes has yet to be systematically evaluated. RESULTS We first investigated the secondary metabolic potential of marine prokaryotes by analyzing the diversity and novelty of the biosynthetic gene clusters (BGCs) in 7541 prokaryotic genomes from cultivated and single cells, along with 26,363 newly assembled medium-to-high-quality genomes from marine environmental samples. To quantitatively evaluate the unexplored biosynthetic chemical space of marine prokaryotes, the clustering thresholds for constructing the biosynthetic gene cluster and molecular networks were optimized to reach a similar level of the chemical similarity between the gene cluster family (GCF)-encoded metabolites and molecular family (MF) scaffolds using the MIBiG database. The global genome mining analysis demonstrated that the predicted 70,011 BGCs were organized into 24,536 mostly new (99.5%) GCFs, while the reported marine prokaryotic natural products were only classified into 778 MFs at the optimized clustering thresholds. The number of MF scaffolds is only 3.2% of the number of GCF-encoded scaffolds, suggesting that at least 96.8% of the secondary metabolic potential in marine prokaryotes is untapped. The unexplored biosynthetic chemical space of marine prokaryotes was illustrated by the 88 potential novel antimicrobial peptides encoded by ribosomally synthesized and post-translationally modified peptide BGCs. Furthermore, a sea-water-derived Aquimarina strain was selected to illustrate the diverse biosynthetic chemical space through untargeted metabolomics and genomics approaches, which identified the potential biosynthetic pathways of a group of novel polyketides and two known compounds (didemnilactone B and macrolactin A 15-ketone). CONCLUSIONS The present bioinformatics and cheminformatics analyses highlight the promising potential to explore the biosynthetic chemical diversity of marine prokaryotes and provide valuable knowledge for the targeted discovery and biosynthesis of novel marine prokaryotic natural products. Video Abstract.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cai-Ling Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qihao Wu
- Department of Chemistry, Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, 06516, USA
| | - Qi Xuan
- Institute of Cyberspace Security, College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
31
|
Džunková M, La Clair JJ, Tyml T, Doud D, Schulz F, Piquer-Esteban S, Porcel Sanchis D, Osborn A, Robinson D, Louie KB, Bowen BP, Bowers RM, Lee J, Arnau V, Díaz-Villanueva W, Stepanauskas R, Gosliner T, Date SV, Northen TR, Cheng JF, Burkart MD, Woyke T. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. MICROBIOME 2023; 11:130. [PMID: 37312139 DOI: 10.1186/s40168-023-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nudibranchs comprise a group of > 6000 marine soft-bodied mollusk species known to use secondary metabolites (natural products) for chemical defense. The full diversity of these metabolites and whether symbiotic microbes are responsible for their synthesis remains unexplored. Another issue in searching for undiscovered natural products is that computational analysis of genomes of uncultured microbes can result in detection of novel biosynthetic gene clusters; however, their in vivo functionality is not guaranteed which limits further exploration of their pharmaceutical or industrial potential. To overcome these challenges, we used a fluorescent pantetheine probe, which produces a fluorescent CoA-analog employed in biosynthesis of secondary metabolites, to label and capture bacterial symbionts actively producing these compounds in the mantle of the nudibranch Doriopsilla fulva. RESULTS We recovered the genome of Candidatus Doriopsillibacter californiensis from the Ca. Tethybacterales order, an uncultured lineage of sponge symbionts not found in nudibranchs previously. It forms part of the core skin microbiome of D. fulva and is nearly absent in its internal organs. We showed that crude extracts of D. fulva contained secondary metabolites that were consistent with the presence of a beta-lactone encoded in Ca. D. californiensis genome. Beta-lactones represent an underexplored group of secondary metabolites with pharmaceutical potential that have not been reported in nudibranchs previously. CONCLUSIONS Altogether, this study shows how probe-based, targeted sorting approaches can capture bacterial symbionts producing secondary metabolites in vivo. Video Abstract.
Collapse
Affiliation(s)
- Mária Džunková
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Devin Doud
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Piquer-Esteban
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Andrew Osborn
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Robinson
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine B Louie
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ben P Bowen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert M Bowers
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Janey Lee
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vicente Arnau
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | - Wladimiro Díaz-Villanueva
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community (FISABIO), Valencia, Spain
| | | | | | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA
- University of California San Francisco, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA, USA
| | - Trent R Northen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA.
| |
Collapse
|
32
|
Anstett J, Plominsky AM, DeLong EF, Kiesser A, Jürgens K, Morgan-Lang C, Stepanauskas R, Stewart FJ, Ulloa O, Woyke T, Malmstrom R, Hallam SJ. A compendium of bacterial and archaeal single-cell amplified genomes from oxygen deficient marine waters. Sci Data 2023; 10:332. [PMID: 37244914 DOI: 10.1038/s41597-023-02222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. Therefore, studies focused on microbial communities inhabiting oxygen-deficient regions are necessary to both monitor and model the impacts of climate change on marine ecosystem functions and services. Here we present a compendium of 5,129 single-cell amplified genomes (SAGs) from marine environments encompassing representative OMZ and AMZ geochemical profiles. Of these, 3,570 SAGs have been sequenced to different levels of completion, providing a strain-resolved perspective on the genomic content and potential metabolic interactions within OMZ and AMZ microbiomes. Hierarchical clustering confirmed that samples from similar oxygen concentrations and geographic regions also had analogous taxonomic compositions, providing a coherent framework for comparative community analysis.
Collapse
Affiliation(s)
- Julia Anstett
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Alvaro M Plominsky
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| | - Alyse Kiesser
- School of Engineering, The University of British Columbia, Kelowna, BC, Canada
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Osvaldo Ulloa
- Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
- Instituto Milenio de Oceanografía, Casilla 1313, 4070386, Concepción, Chile
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Hallam
- Graduate Program in Genome Sciences and Technology, Genome Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
33
|
Liu L, Chen X, Ye J, Ma X, Han Y, He Y, Tang K. Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean. THE ISME JOURNAL 2023; 17:393-405. [PMID: 36593260 PMCID: PMC9938184 DOI: 10.1038/s41396-022-01353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Sulfoquinovose (SQ) is one of the most abundant organosulfur compounds in the biosphere, and its biosynthesis and degradation can represent an important contribution to the sulfur cycle. To data, in marine environments, the microorganisms capable of metabolising SQ have remained unidentified and the sources of SQ are still uncertain. Herein, the marine Roseobacter clade bacteria (RCB) Dinoroseobacter shibae DFL 12 and Roseobacter denitrificans OCh 114 were found to grow using SQ as the sole source of carbon and energy. In the presence of SQ, we identified a set of highly up-regulated proteins encoded by gene clusters in these two organisms, of which four homologues to proteins in the SQ monooxygenase pathway of Agrobacterium fabrum C58 may confer the ability to metabolise SQ to these marine bacteria. The sulfite released from SQ desulfonation by FMN-dependent SQ monooxygenase (SmoC) may provide bacteria with reduced sulfur for assimilation, while proteins associated with sulfite production via assimilatory sulfate reduction were significantly down-regulated. Such SQ catabolic genes are restricted to a limited number of phylogenetically diverse bacterial taxa with the predominate genera belonging to the Roseobacter clade (Roseobacteraceae). Moreover, transcript analysis of Tara Oceans project and coastal Bohai Sea samples provided additional evidence for SQ metabolism by RCB. SQ was found to be widely distributed in marine phytoplankton and cyanobacteria with variable intracellular concentrations ranging from micromolar to millimolar levels, and the amounts of SQ on particulate organic matter in field samples were, on average, lower than that of dimethylsulfoniopropionate (DMSP) by one order of magnitude. Together, the phototroph-derived SQ actively metabolised by RCB represents a previously unidentified link in the marine sulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajie He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
34
|
Noell SE, Brennan E, Washburn Q, Davis EW, Hellweger FL, Giovannoni SJ. Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol 2023. [PMID: 36826469 DOI: 10.1111/1462-2920.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.
Collapse
Affiliation(s)
- Stephen E Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Brennan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Quinn Washburn
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Oregon, USA
| | | | | |
Collapse
|
35
|
Tominaga K, Ogawa-Haruki N, Nishimura Y, Watai H, Yamamoto K, Ogata H, Yoshida T. Prevalence of Viral Frequency-Dependent Infection in Coastal Marine Prokaryotes Revealed Using Monthly Time Series Virome Analysis. mSystems 2023; 8:e0093122. [PMID: 36722950 PMCID: PMC9948707 DOI: 10.1128/msystems.00931-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
Viruses infecting marine prokaryotes have a large impact on the diversity and dynamics of their hosts. Model systems suggest that viral infection is frequency dependent and constrained by the virus-host encounter rate. However, it is unclear whether frequency-dependent infection is pervasive among the abundant prokaryotic populations with different temporal dynamics. To address this question, we performed a comparison of prokaryotic and viral communities using 16S rRNA amplicon and virome sequencing based on samples collected monthly for 2 years at a Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and viral community dynamics indicated that the abundance of viruses correlated with that of their predicted host phyla (or classes). Cooccurrence network analysis between abundant prokaryotes and viruses revealed 6,423 cooccurring pairs, suggesting a tight coupling of host and viral abundances and their "one-to-many" correspondence. Although stable dominant species, such as SAR11, showed few cooccurring viruses, a fast succession of their viruses suggests that viruses infecting these populations changed continuously. Our results suggest that frequency-dependent viral infection prevails in coastal marine prokaryotes regardless of host taxa and temporal dynamics. IMPORTANCE There is little room for doubt that viral infection is prevalent among abundant marine prokaryotes regardless of their taxa or growth strategy. However, comprehensive evaluations of viral infections in natural prokaryotic communities are still technically difficult. In this study, we examined viral infection in abundant prokaryotes by monitoring the monthly dynamics of prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay. We compared the community dynamics of viruses with those of their putative hosts based on genome-based in silico host prediction. We observed frequent cooccurrence among the predicted virus-host pairs, suggesting that viral infection is prevalent in abundant prokaryotes regardless of their taxa or temporal dynamics. This likely indicates that frequent lysis of the abundant prokaryotes via viral infection has a considerable contribution to the biogeochemical cycling and maintenance of prokaryotic community diversity.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yosuke Nishimura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Hiroyasu Watai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Osaka, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Kiefl E, Esen OC, Miller SE, Kroll KL, Willis AD, Rappé MS, Pan T, Eren AM. Structure-informed microbial population genetics elucidate selective pressures that shape protein evolution. SCIENCE ADVANCES 2023; 9:eabq4632. [PMID: 36812328 DOI: 10.1126/sciadv.abq4632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation and protein structure. In a central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing principles of evolution and enables structure-aware investigations of microbial population genetics.
Collapse
Affiliation(s)
- Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ozcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samuel E Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kourtney L Kroll
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Michael S Rappé
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96822, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| |
Collapse
|
37
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
38
|
Roda-Garcia JJ, Haro-Moreno JM, Rodriguez-Valera F, Almagro-Moreno S, López-Pérez M. Single-amplified genomes reveal most streamlined free-living marine bacteria. Environ Microbiol 2023. [PMID: 36755376 DOI: 10.1111/1462-2920.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free-living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome-assembled genomes. We co-assembled multiple previously available single-amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 and Prochlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair-related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co-occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free-living marine bacteria.
Collapse
Affiliation(s)
- Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, USA
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
39
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
40
|
Johannesson K, Leder EH, André C, Dupont S, Eriksson SP, Harding K, Havenhand JN, Jahnke M, Jonsson PR, Kvarnemo C, Pavia H, Rafajlović M, Rödström EM, Thorndyke M, Blomberg A. Ten years of marine evolutionary biology-Challenges and achievements of a multidisciplinary research initiative. Evol Appl 2023; 16:530-541. [PMID: 36793681 PMCID: PMC9923476 DOI: 10.1111/eva.13389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Erica H. Leder
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Carl André
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Sam Dupont
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- International Atomic Energy AgencyPrincipality of MonacoMonaco
| | - Susanne P. Eriksson
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
| | - Karin Harding
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Jonathan N. Havenhand
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marlene Jahnke
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Per R. Jonsson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Charlotta Kvarnemo
- Department of Biology and Environmental ScienceUniversity of GothenburgGothenburgSweden
| | - Henrik Pavia
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Eva Marie Rödström
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Michael Thorndyke
- Department of Biology and Environmental ScienceUniversity of Gothenburg, Kristineberg Marine Research StationFiskebäckskilSweden
- Department of Genomics Research in Ecology & Evolution in Nature (GREEN)Groningen Institute for Evolutionary Life Sciences (GELIFES)De Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
41
|
Morgan-Lang C, Hallam SJ. A Guide to Gene-Centric Analysis Using TreeSAPP. Curr Protoc 2023; 3:e671. [PMID: 36801973 DOI: 10.1002/cpz1.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Gene-centric analysis is commonly used to chart the structure, function, and activity of microbial communities in natural and engineered environments. A common approach is to create custom ad hoc reference marker gene sets, but these come with the typical disadvantages of inaccuracy and limited utility beyond assigning query sequences taxonomic labels. The Tree-based Sensitive and Accurate Phylogenetic Profiler (TreeSAPP) software package standardizes analysis of phylogenetic and functional marker genes and improves predictive performance using a classification algorithm that leverages information-rich reference packages consisting of a multiple sequence alignment, a profile hidden Markov model, taxonomic lineage information, and a phylogenetic tree. Here, we provide a set of protocols that link the various analysis modules in TreeSAPP into a coherent process that both informs and directs the user experience. This workflow, initiated from a collection of candidate reference sequences, progresses through construction and refinement of a reference package to marker identification and normalized relative abundance calculations for homologous sequences in metagenomic and metatranscriptomic datasets. The alpha subunit of methyl-coenzyme M reductase (McrA) involved in biological methane cycling is presented as a use case given its dual role as a phylogenetic and functional marker gene driving an ecologically relevant process. These protocols fill several gaps in prior TreeSAPP documentation and provide best practices for reference package construction and refinement, including manual curation steps from trusted sources in support of reproducible gene-centric analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating reference packages Support Protocol 1: Installing TreeSAPP Support Protocol 2: Annotating traits within a phylogenetic context Basic Protocol 2: Updating reference packages Basic Protocol 3: Calculating relative abundance of genes in metagenomic and metatranscriptomic datasets.
Collapse
Affiliation(s)
- Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023; 186:47-62.e16. [PMID: 36608657 DOI: 10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.
Collapse
Affiliation(s)
- Thomas Hackl
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700CC Groningen, the Netherlands.
| | - Raphaël Laurenceau
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Markus J Ankenbrand
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; University of Würzburg, Center for Computational and Theoretical Biology, 97070 Würzburg, Germany
| | - Christina Bliem
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Zev Cariani
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaina Thomas
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Keven D Dooley
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Aldo A Arellano
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Shane L Hogle
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Paul Berube
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Gabriel E Leventhal
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Ahmed A Zayed
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Matthew B Sullivan
- Department of Microbiology & Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i Manoa, Honolulu, HI 96822, USA
| | - Steven J Biller
- Wellesley College, Department of Biological Sciences, Wellesley, MA 02481, USA
| | - Sallie W Chisholm
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA 02139, USA; Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA.
| |
Collapse
|
43
|
Hackl T, Laurenceau R, Ankenbrand MJ, Bliem C, Cariani Z, Thomas E, Dooley KD, Arellano AA, Hogle SL, Berube P, Leventhal GE, Luo E, Eppley JM, Zayed AA, Beaulaurier J, Stepanauskas R, Sullivan MB, DeLong EF, Biller SJ, Chisholm SW. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 2023. [DOI: doi.org/10.1016/j.cell.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Gong X, Del Río ÁR, Xu L, Chen Z, Langwig MV, Su L, Sun M, Huerta-Cepas J, De Anda V, Baker BJ. New globally distributed bacterial phyla within the FCB superphylum. Nat Commun 2022; 13:7516. [PMID: 36473838 PMCID: PMC9727166 DOI: 10.1038/s41467-022-34388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Microbes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Marguerite V Langwig
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Mingxue Sun
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, Port Aransas, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78701, USA.
| |
Collapse
|
45
|
Munson-McGee JH, Lindsay MR, Sintes E, Brown JM, D'Angelo T, Brown J, Lubelczyk LC, Tomko P, Emerson D, Orcutt BN, Poulton NJ, Herndl GJ, Stepanauskas R. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 2022; 612:764-770. [PMID: 36477536 PMCID: PMC9771814 DOI: 10.1038/s41586-022-05505-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.
Collapse
Affiliation(s)
| | | | - Eva Sintes
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía-CSIC, Centro Oceanográfico de Baleares, Palma, Spain
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Joe Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | | | - David Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, The Netherlands
| | | |
Collapse
|
46
|
Mise K, Iwasaki W. Unexpected absence of ribosomal protein genes from metagenome-assembled genomes. ISME COMMUNICATIONS 2022; 2:118. [PMID: 37938339 PMCID: PMC9723686 DOI: 10.1038/s43705-022-00204-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 05/30/2023]
Abstract
Metagenome-assembled genomes (MAGs) have revealed the hidden diversity and functions of uncultivated microbes, but their reconstruction from metagenomes remains a computationally difficult task. Repetitive or exogenous sequences, such as ribosomal RNA and horizontally transferred genes, are frequently absent from MAGs because of misassembly and binning errors. Here, we report that ribosomal protein genes are also often absent from MAGs, although they are neither repetitive nor exogenous. Comprehensive analyses of more than 190,000 MAGs revealed that these genes could be missing in more than 20-40% of near-complete (i.e., with completeness of 90% or higher) MAGs. While some uncultivated environmental microbes intrinsically lack some ribosomal protein genes, we found that this unexpected absence is largely due to special evolutionary patterns of codon usage bias in ribosomal protein genes and algorithmic characteristics of metagenomic binning, which is dependent on tetranucleotide frequencies of contigs. This problem reflects the microbial life-history strategy. Fast-growing microbes tend to have this difficulty, likely because of strong evolutionary pressures on ribosomal protein genes toward the efficient assembly of ribosomes. Our observations caution those who study genomics and phylogeny of uncultivated microbes, the diversity and evolution of microbial genes in the central dogma, and bioinformatics in metagenomics.
Collapse
Affiliation(s)
- Kazumori Mise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo. Bunkyo-ku, Tokyo, 113-0032, Japan.
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan.
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo. Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
47
|
Benchmarking Community-Wide Estimates of Growth Potential from Metagenomes Using Codon Usage Statistics. mSystems 2022; 7:e0074522. [PMID: 36190138 PMCID: PMC9600850 DOI: 10.1128/msystems.00745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trait inference from mixed-species assemblages is a central problem in microbial ecology. Frequently, sequencing information from an environment is available, but phenotypic measurements from individual community members are not. With the increasing availability of molecular data for microbial communities, bioinformatic approaches that map metagenome to (meta)phenotype are needed. Recently, we developed a tool, gRodon, that enables the prediction of the maximum growth rate of an organism from genomic data on the basis of codon usage patterns. Our work and that of other groups suggest that such predictors can be applied to mixed-species communities in order to derive estimates of the average community-wide maximum growth rate. Here, we present an improved maximum growth rate predictor designed for metagenomes that corrects a persistent GC bias in the original gRodon model for metagenomic prediction. We benchmark this predictor with simulated metagenomic data sets to show that it has superior performance on mixed-species communities relative to earlier models. We go on to provide guidance on data preprocessing and show that calling genes from assembled contigs rather than directly from reads dramatically improves performance. Finally, we apply our predictor to large-scale metagenomic data sets from marine and human microbiomes to illustrate how community-wide growth prediction can be a powerful approach for hypothesis generation. Altogether, we provide an updated tool with clear guidelines for users about the uses and pitfalls of metagenomic prediction of the average community-wide maximal growth rate. IMPORTANCE Microbes dominate nearly every known habitat, and therefore tools to survey the structure and function of natural microbial communities are much needed. Metagenomics, in which the DNA content of an entire community of organisms is sequenced all at once, allows us to probe the genetic diversity contained in a habitat. Yet, mapping metagenomic information to the actual traits of community members is a difficult and largely unsolved problem. Here, we present and validate a tool that allows users to predict the average maximum growth rate of a microbial community directly from metagenomic data. Maximum growth rate is a fundamental characteristic of microbial species that can give us a great deal of insight into their ecological role, and by applying our community-level predictor to large-scale metagenomic data sets from marine and human-associated microbiomes, we show how community-wide growth prediction can be a powerful approach for hypothesis generation.
Collapse
|
48
|
Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting Extensive Auxiliary Metabolic Genes and Cross-Family Multigene Transfers. mSystems 2022; 7:e0152221. [PMID: 35972150 PMCID: PMC9599517 DOI: 10.1128/msystems.01522-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.
Collapse
|
49
|
Eppley JM, Biller SJ, Luo E, Burger A, DeLong EF. Marine viral particles reveal an expansive repertoire of phage-parasitizing mobile elements. Proc Natl Acad Sci U S A 2022; 119:e2212722119. [PMID: 36256808 PMCID: PMC9618062 DOI: 10.1073/pnas.2212722119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Phage satellites are mobile genetic elements that propagate by parasitizing bacteriophage replication. We report here the discovery of abundant and diverse phage satellites that were packaged as concatemeric repeats within naturally occurring bacteriophage particles in seawater. These same phage-parasitizing mobile elements were found integrated in the genomes of dominant co-occurring bacterioplankton species. Like known phage satellites, many marine phage satellites encoded genes for integration, DNA replication, phage interference, and capsid assembly. Many also contained distinctive gene suites indicative of unique virus hijacking, phage immunity, and mobilization mechanisms. Marine phage satellite sequences were widespread in local and global oceanic virioplankton populations, reflecting their ubiquity, abundance, and temporal persistence in marine planktonic communities worldwide. Their gene content and putative life cycles suggest they may impact host-cell phage immunity and defense, lateral gene transfer, bacteriophage-induced cell mortality and cellular host and virus productivity. Given that marine phage satellites cannot be distinguished from bona fide viral particles via commonly used microscopic techniques, their predicted numbers (∼3.2 × 1026 in the ocean) may influence current estimates of virus densities, production, and virus-induced mortality. In total, the data suggest that marine phage satellites have potential to significantly impact the ecology and evolution of bacteria and their viruses throughout the oceans. We predict that any habitat that harbors bacteriophage will also harbor similar phage satellites, making them a ubiquitous feature of most microbiomes on Earth.
Collapse
Affiliation(s)
- John M. Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Steven J. Biller
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Andrew Burger
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| | - Edward F. DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
50
|
Seong HJ, Roux S, Hwang CY, Sul WJ. Marine DNA methylation patterns are associated with microbial community composition and inform virus-host dynamics. MICROBIOME 2022; 10:157. [PMID: 36167684 PMCID: PMC9516812 DOI: 10.1186/s40168-022-01340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND DNA methylation in prokaryotes is involved in many different cellular processes including cell cycle regulation and defense against viruses. To date, most prokaryotic methylation systems have been studied in culturable microorganisms, resulting in a limited understanding of DNA methylation from a microbial ecology perspective. Here, we analyze the distribution patterns of several microbial epigenetics marks in the ocean microbiome through genome-centric metagenomics across all domains of life. RESULTS We reconstructed 15,056 viral, 252 prokaryotic, 56 giant viral, and 6 eukaryotic metagenome-assembled genomes from northwest Pacific Ocean seawater samples using short- and long-read sequencing approaches. These metagenome-derived genomes mostly represented novel taxa, and recruited a majority of reads. Thanks to single-molecule real-time (SMRT) sequencing technology, base modification could also be detected for these genomes. This showed that DNA methylation can readily be detected across dominant oceanic bacterial, archaeal, and viral populations, and microbial epigenetic changes correlate with population differentiation. Furthermore, our genome-wide epigenetic analysis of Pelagibacter suggests that GANTC, a DNA methyltransferase target motif, is related to the cell cycle and is affected by environmental conditions. Yet, the presence of this motif also partitions the phylogeny of the Pelagibacter phages, possibly hinting at a competitive co-evolutionary history and multiple effects of a single methylation mark. CONCLUSIONS Overall, this study elucidates that DNA methylation patterns are associated with ecological changes and virus-host dynamics in the ocean microbiome. Video Abstract.
Collapse
Affiliation(s)
- Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Chung Yeon Hwang
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|