1
|
Hall RN, Li H, Chai C, Vermeulen S, Bigasin RR, Song ES, Sarkar SR, Gibson J, Prakash M, Fire AZ, Wang B. A genetic and microscopy toolkit for manipulating and monitoring regeneration in Macrostomum lignano. Cell Rep 2024; 43:114892. [PMID: 39427313 DOI: 10.1016/j.celrep.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Live imaging of regenerative processes can reveal how animals restore their bodies after injury through a cascade of dynamic cellular events. Here, we present a comprehensive toolkit for live imaging of tissue regeneration in the flatworm Macrostomum lignano, including a high-throughput cloning pipeline, targeted cellular ablation, and advanced microscopy solutions. Using tissue-specific reporter expression, we examine how various structures regenerate. Enabled by a custom luminescence/fluorescence microscope, we overcome intense stress-induced autofluorescence to demonstrate genetic cellular ablation and reveal the limited regenerative capacity of neurons and their essential role during wound healing, contrasting muscle cells' rapid regeneration after ablation. Finally, we build an open-source tracking microscope to continuously image freely moving animals throughout the week-long process of regeneration, quantifying kinetics of wound healing, nerve cord repair, body regeneration, growth, and behavioral recovery. Our findings suggest that nerve cord reconnection is highly robust and proceeds independently of regeneration.
Collapse
Affiliation(s)
- R Nelson Hall
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidney Vermeulen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin R Bigasin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Jesse Gibson
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Andrew Z Fire
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Chen J, Geng X, Li B, Xie J, Ma J, Qin Z, Wang M, Yang J. Homosalate and ERK Knockdown in the Modulation of Aurelia coerulea Metamorphosis by Regulating the PI3K Pathway and ERK Pathway. Curr Issues Mol Biol 2024; 46:11630-11645. [PMID: 39451570 PMCID: PMC11505814 DOI: 10.3390/cimb46100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Metamorphosis control is pivotal in preventing the outbreak of jellyfish, and it is often studied using common model organisms. The widespread use of the ultraviolet blocking agent homosalate in cosmetics poses a threat to marine ecosystems. Although the impact of homosalate on marine organisms has been extensively examined, there is a notable absence of research on its effects on jellyfish metamorphosis and the underlying mechanisms, warranting further investigation. In this study, we first established a study model by using 5-methoxy-2-methylindole to induce Aurelia coerulea metamorphosis, and selected homosalate as a PI3K agonist and an ERK agonist, while we used YS-49 as a specific PI3K agonist, as well as ERK knockdown, to observe their effect on the metamorphosis of Aurelia coerulea. The results showed that an Aurelia coerulea metamorphosis model was established successfully, and the PI3K agonist homosalate, YS-49, and the knockdown of ERK molecules could significantly delay the metamorphosis development of Aurelia coerulea. We propose that activating PI3K/Akt and inhibiting the ERK pathway are involved in the delayed development of Aurelia coerulea, which provides a new strategy for the prevention and control of jellyfish blooms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| |
Collapse
|
3
|
Kennedy A, Weissbourd B. Dynamics of neural activity in early nervous system evolution. Curr Opin Behav Sci 2024; 59:101437. [PMID: 39758090 PMCID: PMC11694645 DOI: 10.1016/j.cobeha.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
New techniques for largescale neural recordings from diverse animals are reshaping comparative systems neuroscience. This growth necessitates fresh conceptual paradigms for comparing neural circuits and activity patterns. Here, we take a systems neuroscience approach to early neural evolution, emphasizing the importance of considering nervous systems as multiply modulated, continuous dynamical systems. We argue that endogenous neural activity likely arose early in evolution to organize behaviors and internal states at the organismal level. This connects to a rich literature on the physiology of endogenous activity in small neural circuits: a field that has built links between data and dynamical systems models. Such models offer mechanistic insight and have robust predictive power. Using these tools, we suggest that the emergence of intrinsically active neurons and periodic dynamics played a critical role in the ascendancy of nervous systems, and that dynamical systems presents an appealing framework for comparing across species.
Collapse
Affiliation(s)
- Ann Kennedy
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL
- Current address: Department of Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Brandon Weissbourd
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA
| |
Collapse
|
4
|
Liu M, Nair A, Coria N, Linderman SW, Anderson DJ. Encoding of female mating dynamics by a hypothalamic line attractor. Nature 2024; 634:901-909. [PMID: 39142338 PMCID: PMC11499253 DOI: 10.1038/s41586-024-07916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Females exhibit complex, dynamic behaviours during mating with variable sexual receptivity depending on hormonal status1-4. However, how their brains encode the dynamics of mating and receptivity remains largely unknown. The ventromedial hypothalamus, ventrolateral subdivision contains oestrogen receptor type 1-positive neurons that control mating receptivity in female mice5,6. Here, unsupervised dynamical system analysis of calcium imaging data from these neurons during mating uncovered a dimension with slow ramping activity, generating a line attractor in neural state space. Neural perturbations in behaving females demonstrated relaxation of population activity back into the attractor. During mating, population activity integrated male cues to ramp up along this attractor, peaking just before ejaculation. Activity in the attractor dimension was positively correlated with the degree of receptivity. Longitudinal imaging revealed that attractor dynamics appear and disappear across the oestrus cycle and are hormone dependent. These observations suggest that a hypothalamic line attractor encodes a persistent, escalating state of female sexual arousal or drive during mating. They also demonstrate that attractors can be reversibly modulated by hormonal status, on a timescale of days.
Collapse
Affiliation(s)
- Mengyu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nestor Coria
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Cunningham K, Anderson DJ, Weissbourd B. Jellyfish for the study of nervous system evolution and function. Curr Opin Neurobiol 2024; 88:102903. [PMID: 39167996 PMCID: PMC11681554 DOI: 10.1016/j.conb.2024.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Jellyfish comprise a diverse clade of free-swimming predators that arose prior to the Cambrian explosion. They play major roles in ocean ecosystems via a suite of complex foraging, reproductive, and defensive behaviors. These behaviors arise from decentralized, regenerative nervous systems composed of body parts that generate the appropriate part-specific behaviors autonomously following excision. Here, we discuss the organization of jellyfish nervous systems and opportunities afforded by the recent development of a genetically tractable jellyfish model for systems and evolutionary neuroscience.
Collapse
Affiliation(s)
- Karen Cunningham
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA.
| | - Brandon Weissbourd
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Bray SR, Wyss LS, Chai C, Lozada ME, Wang B. Adaptive robustness through incoherent signaling mechanisms in a regenerative brain. Cell Rep 2024; 43:114580. [PMID: 39133614 DOI: 10.1016/j.celrep.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Animal behavior emerges from collective dynamics of neurons, making it vulnerable to damage. Paradoxically, many organisms exhibit a remarkable ability to maintain significant behavior even after large-scale neural injury. Molecular underpinnings of this extreme robustness remain largely unknown. Here, we develop a quantitative pipeline to measure long-lasting latent states in planarian flatworm behaviors during whole-brain regeneration. By combining >20,000 animal trials with neural network modeling, we show that long-range volumetric peptidergic signals allow the planarian to rapidly restore coarse behavior output after large perturbations to the nervous system, while slow restoration of small-molecule neuromodulator functions refines precision. This relies on the different time and length scales of neuropeptide and small-molecule transmission to generate incoherent patterns of neural activity that competitively regulate behavior. Controlling behavior through opposing communication mechanisms creates a more robust system than either alone and may serve as a generalizable approach for constructing robust neural networks.
Collapse
Affiliation(s)
- Samuel R Bray
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Livia S Wyss
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Maria E Lozada
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Giez C, Noack C, Sakib E, Hofacker LM, Repnik U, Bramkamp M, Bosch TCG. Satiety controls behavior in Hydra through an interplay of pre-enteric and central nervous system-like neuron populations. Cell Rep 2024; 43:114210. [PMID: 38787723 DOI: 10.1016/j.celrep.2024.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Hunger and satiety can have an influence on decision-making, sensory processing, and motor behavior by altering the internal state of the brain. This process necessitates the integration of peripheral sensory stimuli into the central nervous system. Here, we show how animals without a central nervous system such as the cnidarian Hydra measure and integrate satiety into neuronal circuits and which specific neuronal populations are involved. We demonstrate that this simple nervous system, previously referred to as diffuse, has an endodermal subpopulation (N4) similar to the enteric nervous system (feeding-associated behavior) and an ectodermal population (N3) that performs central nervous system-like functions (physiology/motor). This view of a supposedly simple nervous system could open an important window into the origin of more complex nervous systems.
Collapse
Affiliation(s)
- Christoph Giez
- Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Neural Circuits and Evolution Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Christopher Noack
- Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ehsan Sakib
- Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Lisa-Marie Hofacker
- Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Urska Repnik
- Centrale Microscopy, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Centrale Microscopy, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Institute for General Microbiology, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
8
|
Omond SET, Lesku JA. Why study sleep in flatworms? J Comp Physiol B 2024; 194:233-239. [PMID: 36899149 PMCID: PMC11233290 DOI: 10.1007/s00360-023-01480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| | - John A Lesku
- School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, Australia.
| |
Collapse
|
9
|
Yuste R. Breaking the neural code of a cnidarian: Learning principles of neuroscience from the "vulgar" Hydra. Curr Opin Neurobiol 2024; 86:102869. [PMID: 38552547 DOI: 10.1016/j.conb.2024.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The cnidarian Hydra vulgaris is a small polyp with a nervous system of few hundred neurons belonging to a dozen cell types, organized in two nerve nets without cephalization or ganglia. Using this simple neural "chassis", Hydra can maintain a stable repertoire of behaviors, even performing complex fixed-action patterns, such as somersaulting and feeding. The ability to image the activity of Hydra's entire neural and muscle tissue has revealed that Hydra's nerve nets are divided into coactive ensembles of neurons, associated with specific movements. These ensembles can be activated by neuropeptides and interact using cross-inhibition circuits and implement integrate-to-threshold algorithms. In addition, Hydra's nervous system can self-assemble from dissociated cells in a stepwise modular architecture. Studies of Hydra and other cnidarians could enable the systematic deciphering of the neural basis of its behavior and help provide perspective on basic principles of neuroscience.
Collapse
Affiliation(s)
- Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
10
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
11
|
Li Y, Xu P, Sun T, Peng S, Wang F, Wang L, Xing Y, Wang W, Zhao J, Dong Z. Environmental and molecular regulation of diapause formation in a scyphozoan jellyfish. Mol Ecol 2024; 33:e17249. [PMID: 38133544 DOI: 10.1111/mec.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.
Collapse
Affiliation(s)
- Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengzhen Xu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yixuan Xing
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Wenhui Wang
- Yantai University, School of Life Sciences, Yantai, Shandong, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Giez C, Pinkle D, Giencke Y, Wittlieb J, Herbst E, Spratte T, Lachnit T, Klimovich A, Selhuber-Unkel C, Bosch TCG. Multiple neuronal populations control the eating behavior in Hydra and are responsive to microbial signals. Curr Biol 2023; 33:5288-5303.e6. [PMID: 37995697 DOI: 10.1016/j.cub.2023.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Although recent studies indicate the impact of microbes on the central nervous systems and behavior, it remains unclear how the relationship between the functionality of the nervous system, behavior, and the microbiota evolved. In this work, we analyzed the eating behavior of Hydra, a host that has a simple nervous system and a low-complexity microbiota. To identify the neuronal subpopulations involved, we used a subpopulation-specific cell ablation system and calcium imaging. The role of the microbiota was uncovered by manipulating the diversity of the natural microbiota. We show that different neuronal subpopulations are functioning together to control eating behavior. Animals with a drastically reduced microbiome had severe difficulties in mouth opening due to a significantly increased level of glutamate. This could be reversed by adding a full complement of the microbiota. In summary, we provide a mechanistic explanation of how Hydra's nervous system controls eating behavior and what role microbes play in this.
Collapse
Affiliation(s)
- Christoph Giez
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
| | - Denis Pinkle
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Yan Giencke
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Jörg Wittlieb
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Eva Herbst
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Tobias Spratte
- Institute for Molecular Systems Engineering and Advanced Materials (INSEAM), University Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Tim Lachnit
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Alexander Klimovich
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (INSEAM), University Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Thomas C G Bosch
- Zoological Institute, University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany.
| |
Collapse
|
13
|
Abstract
The goal of comparative developmental biology is identifying mechanistic differences in embryonic development between different taxa and how these evolutionary changes have led to morphological and organizational differences in adult body plans. Much of this work has focused on direct-developing species in which the adult forms straight from the embryo and embryonic modifications have direct effects on the adult. However, most animal lineages are defined by indirect development, in which the embryo gives rise to a larval body plan and the adult forms by transformation of the larva. Historically, much of our understanding of complex life cycles is viewed through the lenses of ecology and zoology. In this review, we discuss the importance of establishing developmental rather than morphological or ecological criteria for defining developmental mode and explicitly considering the evolutionary implications of incorporating complex life cycles into broad developmental comparisons of embryos across metazoans.
Collapse
Affiliation(s)
- Laurent Formery
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Department of Cell and Molecular Biology, University of California, Berkeley, California, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA;
- Chan Zuckerberg BioHub, San Francisco, California, USA
| |
Collapse
|
14
|
Lee EEL, O'Malley-Krohn I, Edsinger E, Wu S, Malamy J. Epithelial wound healing in Clytia hemisphaerica provides insights into extracellular ATP signaling mechanisms and P2XR evolution. Sci Rep 2023; 13:18819. [PMID: 37914720 PMCID: PMC10620158 DOI: 10.1038/s41598-023-45424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Epithelial wound healing involves the collective responses of many cells, including those at the wound margin (marginal cells) and those that lack direct contact with the wound (submarginal cells). How these responses are induced and coordinated to produce rapid, efficient wound healing remains poorly understood. Extracellular ATP (eATP) is implicated as a signal in epithelial wound healing in vertebrates. However, the role of eATP in wound healing in vivo and the cellular responses to eATP are unclear. Almost nothing is known about eATP signaling in non-bilaterian metazoans (Cnidaria, Ctenophora, Placozoa, and Porifera). Here, we show that eATP promotes closure of epithelial wounds in vivo in the cnidarian Clytia hemisphaerica (Clytia) indicating that eATP signaling is an evolutionarily ancient strategy in wound healing. Furthermore, eATP increases F-actin accumulation at the edges of submarginal cells. In Clytia, this indicates eATP is involved in coordinating cellular responses during wound healing, acting in part by promoting actin remodeling in cells at a distance from the wound. We also present evidence that eATP activates a cation channel in Clytia epithelial cells. This implies that the eATP signal is transduced through a P2X receptor (P2XR). Phylogenetic analyses identified four Clytia P2XR homologs and revealed two deeply divergent major branches in P2XR evolution, necessitating revision of current models. Interestingly, simple organisms such as cellular slime mold appear exclusively on one branch, bilaterians are found exclusively on the other, and many non-bilaterian metazoans, including Clytia, have P2XR sequences from both branches. Together, these results re-draw the P2XR evolutionary tree, provide new insights into the origin of eATP signaling in wound healing, and demonstrate that the cytoskeleton of submarginal cells is a target of eATP signaling.
Collapse
Affiliation(s)
- Elizabeth E L Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Isabel O'Malley-Krohn
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Eric Edsinger
- Whitney Laboratory for Marine Biosciences, University of Florida, 9505 N Ocean Shore Blvd, St. Augustine, FL, 32080, USA
| | - Stephanie Wu
- Biological Sciences Collegiate Division, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Jocelyn Malamy
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
15
|
Laursen WJ, Busby R, Sarkissian T, Chang EC, Garrity PA. DMKPs provide a generalizable strategy for studying genes required for reproduction or viability in nontraditional model organisms. Genetics 2023; 224:iyad057. [PMID: 37036394 PMCID: PMC10213491 DOI: 10.1093/genetics/iyad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
The advent of CRISPR/Cas9-mediated genome editing has expanded the range of animals amenable to targeted genetic analysis. This has accelerated research in animals not traditionally studied using molecular genetics. However, studying genes essential for reproduction or survival in such animals remains challenging, as they lack the tools that aid genetic analysis in traditional genetic model organisms. We recently introduced the use of distinguishably marked knock-in pairs (DMKPs) as a strategy for rapid and reliable genotyping in such species. Here we show that DMKPs also facilitate the maintenance and study of mutations that cannot be maintained in a homozygous state, a group which includes recessive lethal and sterile mutations. Using DMKPs, we disrupt the zero population growth locus in Drosophila melanogaster and in the dengue vector mosquito Aedes aegypti. In both species, DMKPs enable the maintenance of zero population growth mutant strains and the reliable recovery of zero population growth mutant animals. Male and female gonad development is disrupted in fly and mosquito zero population growth mutants, rendering both sexes sterile. In Ae. aegypti, zero population growth mutant males remain capable of inducing a mating refractory period in wild-type females and of competing with wild-type males for mates, properties compatible with zero population growth serving as a target in mosquito population suppression strategies. DMKP is readily generalizable to other species amenable to CRISPR/Cas9-mediated gene targeting, and should facilitate the study of sterile and lethal mutations in multiple organisms not traditionally studied using molecular genetics.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachel Busby
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Tatevik Sarkissian
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Elaine C Chang
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
16
|
Thoma V, Sakai S, Nagata K, Ishii Y, Maruyama S, Abe A, Kondo S, Kawata M, Hamada S, Deguchi R, Tanimoto H. On the origin of appetite: GLWamide in jellyfish represents an ancestral satiety neuropeptide. Proc Natl Acad Sci U S A 2023; 120:e2221493120. [PMID: 37011192 PMCID: PMC10104569 DOI: 10.1073/pnas.2221493120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 04/05/2023] Open
Abstract
Food intake is regulated by internal state. This function is mediated by hormones and neuropeptides, which are best characterized in popular model species. However, the evolutionary origins of such feeding-regulating neuropeptides are poorly understood. We used the jellyfish Cladonema to address this question. Our combined transcriptomic, behavioral, and anatomical approaches identified GLWamide as a feeding-suppressing peptide that selectively inhibits tentacle contraction in this jellyfish. In the fruit fly Drosophila, myoinhibitory peptide (MIP) is a related satiety peptide. Surprisingly, we found that GLWamide and MIP were fully interchangeable in these evolutionarily distant species for feeding suppression. Our results suggest that the satiety signaling systems of diverse animals share an ancient origin.
Collapse
Affiliation(s)
- Vladimiros Thoma
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
| | - Shuhei Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Koki Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo112-8610, Japan
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo125-8585, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Masakado Kawata
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobaku, Sendai980-8578, Japan
| | - Shun Hamada
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka813-8529, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai980-0845, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
17
|
Yamamoto W, Yuste R. Peptide-driven control of somersaulting in Hydra vulgaris. Curr Biol 2023; 33:1893-1905.e4. [PMID: 37040768 DOI: 10.1016/j.cub.2023.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
The cnidarian Hydra vulgaris has a simple nervous system with a few hundred neurons in distributed networks. Yet Hydra can perform somersaults, a complex acrobatic locomotion. To understand the neural mechanisms of somersaulting we used calcium imaging and found that rhythmical potential 1 (RP1) neurons activate before somersaulting. Decreasing RP1 activity or ablating RP1 neurons reduced somersaulting, while two-photon activation of RP1 neurons induced somersaulting. Hym-248, a peptide synthesized by RP1 cells, selectively generated somersaulting. We conclude that RP1 activity, via release of Hym-248, is necessary and sufficient for somersaulting. We propose a circuit model to explain the sequential unfolding of this locomotion, using integrate-to-threshold decision making and cross-inhibition. Our work demonstrates that peptide-based signaling is used by simple nervous systems to generate behavioral fixed action patterns.
Collapse
Affiliation(s)
- Wataru Yamamoto
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol 2023; 41:282-292. [PMID: 36163547 PMCID: PMC9931589 DOI: 10.1038/s41587-022-01450-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learning method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional interrogation of biological dynamics with a minimal photon budget.
Collapse
|
19
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|
20
|
Bray SR, Wyss LS, Chai C, Lozada ME, Wang B. Adaptive robustness through incoherent signaling mechanisms in a regenerative brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523817. [PMID: 36711454 PMCID: PMC9882340 DOI: 10.1101/2023.01.20.523817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Animal behavior emerges from collective dynamics of interconnected neurons, making it vulnerable to connectome damage. Paradoxically, many organisms maintain significant behavioral output after large-scale neural injury. Molecular underpinnings of this extreme robustness remain largely unknown. Here, we develop a quantitative behavioral analysis pipeline to measure previously uncharacterized long-lasting latent memory states in planarian flatworms during whole-brain regeneration. By combining >20,000 animal trials with neural population dynamic modeling, we show that long-range volumetric peptidergic signals allow the planarian to rapidly reestablish latent states and restore coarse behavior after large structural perturbations to the nervous system, while small-molecule neuromodulators gradually refine the precision. The different time and length scales of neuropeptide and small-molecule transmission generate incoherent patterns of neural activity which competitively regulate behavior and memory. Controlling behavior through opposing communication mechanisms creates a more robust system than either alone and may serve as a generic approach to construct robust neural networks.
Collapse
Affiliation(s)
- Samuel R. Bray
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Livia S. Wyss
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Maria E. Lozada
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
22
|
siRNA-mediated gene knockdown via electroporation in hydrozoan jellyfish embryos. Sci Rep 2022; 12:16049. [PMID: 36180523 PMCID: PMC9525680 DOI: 10.1038/s41598-022-20476-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
As the sister group to bilaterians, cnidarians stand in a unique phylogenetic position that provides insight into evolutionary aspects of animal development, physiology, and behavior. While cnidarians are classified into two types, sessile polyps and free-swimming medusae, most studies at the cellular and molecular levels have been conducted on representative polyp-type cnidarians and have focused on establishing techniques of genetic manipulation. Recently, gene knockdown by delivery of short hairpin RNAs into eggs via electroporation has been introduced in two polyp-type cnidarians, Nematostella vectensis and Hydractinia symbiolongicarpus, enabling systematic loss-of-function experiments. By contrast, current methods of genetic manipulation for most medusa-type cnidarians, or jellyfish, are quite limited, except for Clytia hemisphaerica, and reliable techniques are required to interrogate function of specific genes in different jellyfish species. Here, we present a method to knock down target genes by delivering small interfering RNA (siRNA) into fertilized eggs via electroporation, using the hydrozoan jellyfish, Clytia hemisphaerica and Cladonema paciificum. We show that siRNAs targeting endogenous GFP1 and Wnt3 in Clytia efficiently knock down gene expression and result in known planula phenotypes: loss of green fluorescence and defects in axial patterning, respectively. We also successfully knock down endogenous Wnt3 in Cladonema by siRNA electroporation, which circumvents the technical difficulty of microinjecting small eggs. Wnt3 knockdown in Cladonema causes gene expression changes in axial markers, suggesting a conserved Wnt/β-catenin-mediated pathway that controls axial polarity during embryogenesis. Our gene-targeting siRNA electroporation method is applicable to other animals, including and beyond jellyfish species, and will facilitate the investigation and understanding of myriad aspects of animal development.
Collapse
|
23
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Abstract
Neurons are the fundamental building blocks of nervous systems. It appears intuitive that the human brain is made up of hundreds, if not thousands different types of neurons. Conversely, the seemingly diffuse nerve net of Cnidaria is often assumed to be simple. However, evidence that the Cnidaria nervous system is indeed simple is sparse. Recent technical advances make it possible to assess the diversity and function of neurons with unprecedented resolution. Transgenic animals expressing genetically encoded Calcium sensors allow direct physiological assessments of neural responses within the nerve net and provide insight into the spatial organization of the nervous system. Moreover, response and activity patterns allow the characterization of cell types on a functional level. Molecular and genetic identities on the other hand can be assessed combining single-cell transcriptomic analysis with correlations of gene expression in defined neurons. Here I review recent advances on these two experimental strategies focusing on Hydra, Nematostella, and Clytia.
Collapse
Affiliation(s)
- Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
25
|
Houliston E, Leclère L, Munro C, Copley RR, Momose T. Past, present and future of Clytia hemisphaerica as a laboratory jellyfish. Curr Top Dev Biol 2022; 147:121-151. [PMID: 35337447 DOI: 10.1016/bs.ctdb.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hydrozoan species Clytia hemisphaerica was selected in the mid-2000s to address the cellular and molecular basis of body axis specification in a cnidarian, providing a reliable daily source of gametes and building on a rich foundation of experimental embryology. The many practical advantages of this species include genetic uniformity of laboratory jellyfish, derived clonally from easily-propagated polyp colonies. Phylogenetic distance from other laboratory models adds value in providing an evolutionary perspective on many biological questions. Here we outline the current state of the art regarding available experimental approaches and in silico resources, and illustrate the contributions of Clytia to understanding embryo patterning mechanisms, oogenesis and regeneration. Looking forward, the recent establishment of transgenesis methods is now allowing gene function and imaging studies at adult stages, making Clytia particularly attractive for whole organism biology studies across fields and extending its scientific impact far beyond the original question of interest.
Collapse
Affiliation(s)
- Evelyn Houliston
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Catriona Munro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France; Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, Paris, France
| | - Richard R Copley
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), France
| |
Collapse
|
26
|
Meech RW. Phylogenetics of swimming behaviour in Medusozoa: the role of giant axons and their possible evolutionary origin. J Exp Biol 2022; 225:jeb243382. [PMID: 35258622 PMCID: PMC8987731 DOI: 10.1242/jeb.243382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although neural tissues in cnidarian hydroids have a nerve net structure, some cnidarian medusae contain well-defined nerve tracts. As an example, the hydrozoan medusa Aglantha digitale has neural feeding circuits that show an alignment and condensation, which is absent in its relatives Aequorea victoria and Clytia hemisphaerica. In some cases, neural condensations take the form of fast propagating giant axons concerned with escape or evasion. Such giant axons appear to have developed from the fusion of many, much finer units. Ribosomal DNA analysis has identified the lineage leading to giant axon-based escape swimming in Aglantha and other members of the Aglaura clade of trachymedusan jellyfish. The Aglaura, along with sister subclades that include species such as Colobonema sericeum, have the distinctive ability to perform dual swimming, i.e. to swim at either high or low speeds. However, the form of dual swimming exhibited by Colobonema differs both biomechanically and physiologically from that in Aglantha and is not giant axon based. Comparisons between the genomes of such closely related species might provide a means to determine the molecular basis of giant axon formation and other neural condensations. The molecular mechanism responsible may involve 'fusogens', small molecules possibly derived from viruses, which draw membranes together prior to fusion. Identifying these fusogen-based mechanisms using genome analysis may be hindered by the many changes in anatomy and physiology that followed giant axon evolution, but the genomic signal-to-noise ratio may be improved by examining the convergent evolution of giant axons in other hydrozoa, such as the subclass Siphonophora.
Collapse
Affiliation(s)
- Robert W. Meech
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
27
|
Jellyfish enter neuroscience research. Nat Methods 2022; 19:140. [PMID: 35145317 DOI: 10.1038/s41592-022-01404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Lewis S. New model jellyfish? Nat Rev Neurosci 2021; 23:69. [PMID: 34907354 DOI: 10.1038/s41583-021-00551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
How jellyfish control their lives. Nature 2021. [DOI: 10.1038/d41586-021-03510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|