1
|
Yan X, Bu A, Yuan Y, Zhang X, Lin Z, Yang X. Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH. Microb Cell Fact 2024; 23:256. [PMID: 39342182 PMCID: PMC11438209 DOI: 10.1186/s12934-024-02524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner. RESULTS In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter PesaS and stepwise evaluation, we developed an optimal Esa-PBD(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8. CONCLUSIONS This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.
Collapse
Affiliation(s)
- Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Anqi Bu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- School of Biomedicine, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Moss BL. AuxSynBio: synthetic biology tools to understand and engineer auxin. Curr Opin Biotechnol 2024; 90:103194. [PMID: 39255527 DOI: 10.1016/j.copbio.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The plant hormone auxin is a crucial coordinator of nearly all plant growth and development processes. Because of its centrality to plant physiology and the modular nature of the signaling pathway, auxin has played a critical role at the forefront of plant synthetic biology. This review will highlight how auxin is both a subject and an object of synthetic biology. Engineering biology approaches are deepening our understanding of how auxin pathways are wired and tuned, particularly through the creative use of signaling pathway recapitulation in yeast and engineered orthogonal auxin-receptor pairs. Auxin biology has also been mined for parts by synthetic biologists, with components being used for inducible protein degradation systems (auxin-inducible degron), auxin biosensors, synthetic cell-cell communication, and plant engineering.
Collapse
Affiliation(s)
- Britney L Moss
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA.
| |
Collapse
|
3
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024:10.1038/s41551-024-01237-z. [PMID: 39237709 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Design and Characterization of a Generalist Biosensor for Indole Derivatives. ACS Synth Biol 2024; 13:2246-2252. [PMID: 38875315 DOI: 10.1021/acssynbio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| |
Collapse
|
5
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Zhang X, Mille-Fragoso LS, Kaseniit KE, Call CC, Zhang M, Hu Y, Xie Y, Gao XJ. Post-Transcriptional Modular Synthetic Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592453. [PMID: 38746461 PMCID: PMC11092781 DOI: 10.1101/2024.05.03.592453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by ADAR. LIDAR is compatible with various receptor architectures in different cellular contexts, and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Finally, LIDAR is compatible with compact encoding and can be delivered by synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.
Collapse
|
7
|
Chao G, Zukin S, Fortuna PRJ, Boettner B, Church GM. Progress and limitations in engineering cellular adhesion for research and therapeutics. Trends Cell Biol 2024; 34:277-287. [PMID: 37580241 DOI: 10.1016/j.tcb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Intercellular interactions form the cornerstone of multicellular biology. Despite advances in protein engineering, researchers artificially directing physical cell interactions still rely on endogenous cell adhesion molecules (CAMs) alongside off-target interactions and unintended signaling. Recently, methods for directing cellular interactions have been developed utilizing programmable domains such as coiled coils (CCs), nanobody-antigen, and single-stranded DNA (ssDNA). We first discuss desirable molecular- and systems-level properties in engineered CAMs, using the helixCAM platform as a benchmark. Next, we propose applications for engineered CAMs in immunology, developmental biology, tissue engineering, and neuroscience. Biologists in various fields can readily adapt current engineered CAMs to establish control over cell interactions, and their utilization in basic and translational research will incentivize further expansion in engineered CAM capabilities.
Collapse
Affiliation(s)
- George Chao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Stefan Zukin
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
9
|
Zama N, Toda S. Designer cell therapy for tissue regeneration. Inflamm Regen 2024; 44:15. [PMID: 38491394 PMCID: PMC10941617 DOI: 10.1186/s41232-024-00327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer cell therapy, particularly chimeric antigen receptor (CAR) T-cell therapy for blood cancers, has emerged as a powerful new modality for cancer treatment. Therapeutic cells differ significantly from conventional drugs, such as small molecules and biologics, as they possess cellular information processing abilities to recognize and respond to abnormalities in the body. This capability enables the targeted delivery of therapeutic factors to specific locations and times. Various types of designer cells have been developed and tested to overcome the shortcomings of CAR T cells and expand their functions in the treatment of solid tumors. In particular, synthetic receptor technologies are a key to designing therapeutic cells that specifically improve tumor microenvironment. Such technologies demonstrate great potential for medical applications to regenerate damaged tissues as well that are difficult to cure with conventional drugs. In this review, we introduce recent developments in next-generation therapeutic cells for cancer treatment and discuss the application of designer therapeutic cells for tissue regeneration.
Collapse
Affiliation(s)
- Noyuri Zama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan
| | - Satoshi Toda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan.
| |
Collapse
|
10
|
Mock M, Langmead CJ, Grandsard P, Edavettal S, Russell A. Recent advances in generative biology for biotherapeutic discovery. Trends Pharmacol Sci 2024; 45:255-267. [PMID: 38378385 DOI: 10.1016/j.tips.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024]
Abstract
Generative biology combines artificial intelligence (AI), advanced life sciences technologies, and automation to revolutionize the process of designing novel biomolecules with prescribed properties, giving drug discoverers the ability to escape the limitations of biology during the design of next-generation protein therapeutics. Significant hurdles remain, namely: (i) the inherently complex nature of drug discovery, (ii) the bewildering number of promising computational and experimental techniques that have emerged in the past several years, and (iii) the limited availability of relevant protein sequence-function data for drug-like molecules. There is a need to focus on computational methods that will be most practically effective for protein drug discovery and on building experimental platforms to generate the data most appropriate for these methods. Here, we discuss recent advances in computational and experimental life sciences that are most crucial for impacting the pace and success of protein drug discovery.
Collapse
Affiliation(s)
- Marissa Mock
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | - Peter Grandsard
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Suzanne Edavettal
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Alan Russell
- Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
11
|
Glass DS, Bren A, Vaisbourd E, Mayo A, Alon U. A synthetic differentiation circuit in Escherichia coli for suppressing mutant takeover. Cell 2024; 187:931-944.e12. [PMID: 38320549 PMCID: PMC10882425 DOI: 10.1016/j.cell.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.
Collapse
Affiliation(s)
- David S Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elizabeth Vaisbourd
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
13
|
Makri Pistikou AM, Cremers GAO, Nathalia BL, Meuleman TJ, Bögels BWA, Eijkens BV, de Dreu A, Bezembinder MTH, Stassen OMJA, Bouten CCV, Merkx M, Jerala R, de Greef TFA. Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells. Nat Commun 2023; 14:7001. [PMID: 37919273 PMCID: PMC10622552 DOI: 10.1038/s41467-023-42810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The rational design and implementation of synthetic mammalian communication systems can unravel fundamental design principles of cell communication circuits and offer a framework for engineering of designer cell consortia with potential applications in cell therapeutics. Here, we develop the foundations of an orthogonal, and scalable mammalian synthetic communication platform that exploits the programmability of synthetic receptors and selective affinity and tunability of diffusing coiled-coil peptides. Leveraging the ability of coiled-coils to exclusively bind to a cognate receptor, we demonstrate orthogonal receptor activation and Boolean logic operations at the receptor level. We show intercellular communication based on synthetic receptors and secreted multidomain coiled-coils and demonstrate a three-cell population system that can perform AND gate logic. Finally, we show CC-GEMS receptor-dependent therapeutic protein expression. Our work provides a modular and scalable framework for the engineering of complex cell consortia, with the potential to expand the aptitude of cell therapeutics and diagnostics.
Collapse
Affiliation(s)
- Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Glenn A O Cremers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bryan L Nathalia
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus J Meuleman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bruno V Eijkens
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten T H Bezembinder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M J A Stassen
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn C V Bouten
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Alexis E, Schulte CCM, Cardelli L, Papachristodoulou A. Regulation strategies for two-output biomolecular networks. J R Soc Interface 2023; 20:20230174. [PMID: 37528680 PMCID: PMC10394417 DOI: 10.1098/rsif.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Feedback control theory facilitates the development of self-regulating systems with desired performance which are predictable and insensitive to disturbances. Feedback regulatory topologies are found in many natural systems and have been of key importance in the design of reliable synthetic bio-devices operating in complex biological environments. Here, we study control schemes for biomolecular processes with two outputs of interest, expanding previously described concepts based on single-output systems. Regulation of such processes may unlock new design possibilities but can be challenging due to coupling interactions; also potential disturbances applied on one of the outputs may affect both. We therefore propose architectures for robustly manipulating the ratio/product and linear combinations of the outputs as well as each of the outputs independently. To demonstrate their characteristics, we apply these architectures to a simple process of two mutually activated biomolecular species. We also highlight the potential for experimental implementation by exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward in building bio-devices capable of sophisticated functions.
Collapse
Affiliation(s)
- Emmanouil Alexis
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Carolin C. M. Schulte
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
| | | |
Collapse
|
15
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Biomolecular feedback controllers: from theory to applications. Curr Opin Biotechnol 2023; 79:102882. [PMID: 36638743 DOI: 10.1016/j.copbio.2022.102882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Billions of years of evolution have led to the creation of sophisticated genetic regulatory mechanisms that control various biological processes in a timely and precise fashion, despite their uncertain and noisy environments. Understanding such naturally existing mechanisms and even designing novel ones will have direct implications in various fields such as biotechnology, medicine, and synthetic biology. In particular, many studies have revealed that feedback-based control mechanisms inside the living cells endow the overall system with multiple attractive features, including homeostasis, noise reduction, and high dynamic performance. The remarkable interdisciplinary nature of these studies has brought together disparate disciplines such as systems/synthetic biology and control theory in an effort to design and build more powerful and reliable biomolecular control systems. Here, we review various biomolecular feedback controllers, highlight their characteristics, and point out their promising impact.
Collapse
|
17
|
Trentesaux C, Yamada T, Klein OD, Lim WA. Harnessing synthetic biology to engineer organoids and tissues. Cell Stem Cell 2023; 30:10-19. [PMID: 36608674 DOI: 10.1016/j.stem.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
The development of an organism depends on intrinsic genetic programs of progenitor cells and their spatiotemporally complex extrinsic environment. Ex vivo generation of organoids from progenitor cells provides a platform for recapitulating and exploring development. Current approaches rely largely on soluble morphogens or engineered biomaterials to manipulate the physical environment, but the emerging field of synthetic biology provides a powerful toolbox to genetically manipulate cell communication, adhesion, and even cell fate. Applying these modular tools to organoids should lead to a deeper understanding of developmental principles, improved organoid models, and an enhanced capability to design tissues for regenerative purposes.
Collapse
Affiliation(s)
- Coralie Trentesaux
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Toshimichi Yamada
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Wendell A Lim
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Wang S, Garcia-Ojalvo J, Elowitz MB. Periodic spatial patterning with a single morphogen. Cell Syst 2022; 13:1033-1047.e7. [PMID: 36435178 DOI: 10.1016/j.cels.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
Donaldson J, Kleinjan DJ, Rosser S. Synthetic biology approaches for dynamic CHO cell engineering. Curr Opin Biotechnol 2022; 78:102806. [PMID: 36194920 DOI: 10.1016/j.copbio.2022.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Fed-batch culture of Chinese hamster ovary (CHO) cells remains the most commonly used method for producing biopharmaceuticals. Static CHO cell-line engineering approaches have incrementally improved productivity, growth and product quality through permanent knockout of genes with a negative impact on production, or constitutive overexpression of genes with a positive impact. However, during fed-batch culture, conditions (such as nutrient availability) are continually changing. Therefore, traits that are most beneficial during early-phase culture (such as high growth rate) may be less desirable in late phase. Unlike with static approaches, dynamic cell line engineering strategies can optimise such traits by implementing synthetic sense-and-respond programmes. Here, we review emerging synthetic biology tools that can be used to build dynamic, self-regulating CHO cells, capable of detecting intra-/extracellular cues and generating user-defined responses tailored to the stage-specific needs of the production process.
Collapse
Affiliation(s)
- James Donaldson
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dirk-Jan Kleinjan
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
20
|
Wang Y, Chen P, Zhao M, Cao H, Zhao Y, Ji M, Hou P, Chen M. EGFL7 drives the evolution of resistance to EGFR inhibitors in lung cancer by activating NOTCH signaling. Cell Death Dis 2022; 13:910. [PMID: 36309484 PMCID: PMC9617940 DOI: 10.1038/s41419-022-05354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Accumulating evidence supports evolutionary trait of drug resistance. Like resilience in other systems, most tumor cells experience drug-tolerant state before full resistance acquired. However, the underlying mechanism is still poorly understood. Here, we identify that EGF like domain multiple 7 (EGFL7) is a responsive gene to epidermal growth factor receptor (EGFR) kinase inhibition during a period when tumors are decimated. Moreover, our data reveal that the adaptive increase of EGFL7 during this process is controlled by the depression of nonsense-mediated mRNA decay (NMD) pathway. Upregulation of EGFL7 activates NOTCH signaling in lung cancer cells, which slows down the decrease of c-Myc caused by EGFR inhibition, thereby helping the survival of cancer cells. Our data, taken together, demonstrate that EGFL7 is a driver gene for resistance to EGFR kinase inhibition, and suggest that targeting EGFL7/NOTCH signaling may improve the clinical benefits of EGFR inhibitors in patients with EGFR mutant tumors.
Collapse
Affiliation(s)
- Yubo Wang
- grid.452438.c0000 0004 1760 8119Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China
| | - Pu Chen
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Man Zhao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Hongxin Cao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Yuelei Zhao
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Meiju Ji
- grid.452438.c0000 0004 1760 8119Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 PR China ,grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| | - Mingwei Chen
- grid.452438.c0000 0004 1760 8119Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi PR China
| |
Collapse
|
21
|
Johnstone CP, Galloway KE. Supercoiling-mediated feedback rapidly couples and tunes transcription. Cell Rep 2022; 41:111492. [PMID: 36261020 PMCID: PMC9624111 DOI: 10.1016/j.celrep.2022.111492] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Transcription induces a wave of DNA supercoiling, altering the binding affinity of RNA polymerases and reshaping the biochemical landscape of gene regulation. As supercoiling rapidly diffuses, transcription dynamically reshapes the regulation of proximal genes, forming a complex feedback loop. However, a theoretical framework is needed to integrate biophysical regulation with biochemical transcriptional regulation. To investigate the role of supercoiling-mediated feedback within multi-gene systems, we model transcriptional regulation under the influence of supercoiling-mediated polymerase dynamics, allowing us to identify patterns of expression that result from physical inter-gene coupling. We find that gene syntax-the relative ordering and orientation of genes-defines the expression profiles, variance, burst dynamics, and inter-gene correlation of two-gene systems. Furthermore, supercoiling can enhance or weaken biochemical regulation. Our results suggest that supercoiling couples behavior between neighboring genes, providing a regulatory mechanism that tunes transcriptional variance in engineered gene networks and explains the behavior of co-localized native circuits.
Collapse
Affiliation(s)
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|