1
|
Wang K, Tobias B, Pany-Kucera D, Berner M, Eggers S, Gnecchi-Ruscone GA, Zlámalová D, Gretzinger J, Ingrová P, Rohrlach AB, Tuke J, Traverso L, Klostermann P, Koger R, Friedrich R, Wiltschke-Schrotta K, Kirchengast S, Liccardo S, Wabnitz S, Vida T, Geary PJ, Daim F, Pohl W, Krause J, Hofmanová Z. Ancient DNA reveals reproductive barrier despite shared Avar-period culture. Nature 2025:10.1038/s41586-024-08418-5. [PMID: 39814885 DOI: 10.1038/s41586-024-08418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry1,2. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter1,2. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry. These two nearby sites show little biological relatedness, despite sharing a distinctive late-Avar culture3,4. We reconstructed six-generation pedigrees at both sites including up to 450 closely related individuals, allowing per-generation demographic profiling of the communities. Despite different ancestry, these pedigrees together with large networks of distant relatedness show absence of consanguinity, patrilineal pattern with female exogamy, multiple reproductive partnerships (for example, levirate) and direct correlation of biological connectivity with archaeological markers of social status. The generation-long genetic barrier was maintained by systematically choosing partners with similar ancestry from other sites in the Avar realm. Leobersdorf had more biological connections with the Avar heartlands than with Mödling, which is instead linked to another site from the Vienna Basin with European-like ancestry. Mobility between sites was mostly due to female exogamy pointing to different marriage networks as the main driver of the maintenance of the genetic barrier.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Bendeguz Tobias
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Doris Pany-Kucera
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Margit Berner
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Sabine Eggers
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Denisa Zlámalová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Joscha Gretzinger
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavlína Ingrová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Jonathan Tuke
- School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paul Klostermann
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Robin Koger
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | | | | | - Sylvia Kirchengast
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- HEAS Human Evolution and Archaeological Science Network, University of Vienna, Vienna, Austria
| | - Salvatore Liccardo
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria
| | - Sandra Wabnitz
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE-Eötvös Loránd University, Budapest, Hungary
- Institute of Archaeology, Research Centre for the Humanities, HUN-REN-Hungarian Research Network, Budapest, Hungary
| | | | - Falko Daim
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Walter Pohl
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria.
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Two eighth-century communities near Vienna shared culture but not ancestries. Nature 2025:10.1038/d41586-024-04150-2. [PMID: 39814921 DOI: 10.1038/d41586-024-04150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
3
|
Speidel L, Silva M, Booth T, Raffield B, Anastasiadou K, Barrington C, Götherström A, Heather P, Skoglund P. High-resolution genomic history of early medieval Europe. Nature 2025; 637:118-126. [PMID: 39743601 PMCID: PMC11693606 DOI: 10.1038/s41586-024-08275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/23/2024] [Indexed: 01/04/2025]
Abstract
Many known and unknown historical events have remained below detection thresholds of genetic studies because subtle ancestry changes are challenging to reconstruct. Methods based on shared haplotypes1,2 and rare variants3,4 improve power but are not explicitly temporal and have not been possible to adopt in unbiased ancestry models. Here we develop Twigstats, an approach of time-stratified ancestry analysis that can improve statistical power by an order of magnitude by focusing on coalescences in recent times, while remaining unbiased by population-specific drift. We apply this framework to 1,556 available ancient whole genomes from Europe in the historical period. We are able to model individual-level ancestry using preceding genomes to provide high resolution. During the first half of the first millennium CE, we observe at least two different streams of Scandinavian-related ancestry expanding across western, central and eastern Europe. By contrast, during the second half of the first millennium CE, ancestry patterns suggest the regional disappearance or substantial admixture of these ancestries. In Scandinavia, we document a major ancestry influx by approximately 800 CE, when a large proportion of Viking Age individuals carried ancestry from groups related to central Europe not seen in individuals from the early Iron Age. Our findings suggest that time-stratified ancestry analysis can provide a higher-resolution lens for genetic history.
Collapse
Affiliation(s)
- Leo Speidel
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
- Genetics Institute, University College London, London, UK.
- iTHEMS, RIKEN, Wako, Japan.
| | - Marina Silva
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Thomas Booth
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Ben Raffield
- Department of Archaeology and Ancient History, Uppsala University, Uppsala, Sweden
| | | | | | - Anders Götherström
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Peter Heather
- Department of History, King's College London, London, UK
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Gerber D, Csáky V, Szeifert B, Borbély N, Jakab K, Mező G, Petkes Z, Szücsi F, Évinger S, Líbor C, Rácz P, Kiss K, Mende BG, Szőke BM, Szécsényi-Nagy A. Ancient genomes reveal Avar-Hungarian transformations in the 9th-10th centuries CE Carpathian Basin. SCIENCE ADVANCES 2024; 10:eadq5864. [PMID: 39693417 DOI: 10.1126/sciadv.adq5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
During the Early Medieval period, the Carpathian Basin witnessed substantial demographic shifts, notably under the Avar dominance for ~250 years, followed by the settlement of early Hungarians in the region during the late 9th century CE. This study presents the genetic analysis of 296 ancient samples, including 103 shotgun-sequenced genomes, from present-day Western Hungary. By using identity-by-descent segment sharing networks, this research offers detailed insights into the population structure and dynamics of the region from the 5th to 11th centuries CE, with specific focus on certain microregions. Our evaluations reveal spatially different histories in Transdanubia even between communities in close geographical proximity, highlighting the importance of dense sampling and analyses. Our findings highlight extensive homogenization and reorganization processes, as well as discontinuities between Hun, Avar, and Hungarian conquest period immigrant groups, alongside the spread and integration of ancestry related to the Hungarian conquerors.
Collapse
Affiliation(s)
- Dániel Gerber
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Noémi Borbély
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Kristóf Jakab
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - György Mező
- Konkoly Observatory, HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
- Wigner Data Center, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
| | | | | | | | | | - Piroska Rácz
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Krisztián Kiss
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
- Hungarian Natural History Museum, Budapest, Hungary
- Faculty of Health Sciences, University of Miskolc, Miskolc, Hungary
- Department of Biological Anthropology, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Béla Miklós Szőke
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| |
Collapse
|
5
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Flegontova O, Işıldak U, Yüncü E, Williams MP, Huber CD, Kočí J, Vyazov LA, Changmai P, Flegontov P. Performance of qpAdm -based screens for genetic admixture on admixture-graph-shaped histories and stepping-stone landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.25.538339. [PMID: 37904998 PMCID: PMC10614728 DOI: 10.1101/2023.04.25.538339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
qpAdm is a statistical tool that is often used in exploratory archaeogenetic studies for finding optimal admixture models of population history. Despite its popularity, qpAdm remains untested on histories in the form of admixture graphs of random topology or stepping-stone landscapes. We analyzed data from such simulations and found that while for admixture-graph-shaped histories there exist simple solutions (temporal stratification) for minimizing false findings of gene flow, in the case of stepping-stone landscapes the method generates results that do not appear suspect but are misleading: feasible qpAdm models are either accurate but simplistic in the context of landscapes, or highly inaccurate in the case of multi-component models. This is largely is due to two reasons: 1) because of complex migration networks that violate the assumptions of the method, there is poor correlation between qpAdm p -values and model optimality in many sections of the parameter space; 2) admixture fraction estimates between 0 and 1 are largely restricted to symmetric source configurations around targets, hence popular [0, 1] model plausibility criteria confound analyses of landscape-type demographies, unless their interpretations are explicitly spatial. For many species/regions/periods archaeogenetic sampling is very sparse and may be random with respect to population density of ancient individuals. In this situation only a specific combination of landscape properties and feasibility criteria allows to efficiently reject highly asymmetric non-optimal models most abundant in random deme sets. This problem may obscure useful signal (rare optimal models) and might be responsible for some claims about rapid long-distance migrations in the literature.
Collapse
|
7
|
Gyuris B, Vyazov L, Türk A, Flegontov P, Szeifert B, Langó P, Mende BG, Csáky V, Chizhevskiy AA, Gazimzyanov IR, Khokhlov AA, Kolonskikh AG, Matveeva NP, Ruslanova RR, Rykun MP, Sitdikov A, Volkova EV, Botalov SG, Bugrov DG, Grudochko IV, Komar O, Krasnoperov AA, Poshekhonova OE, Chikunova I, Sungatov F, Stashenkov DA, Zubov S, Zelenkov AS, Ringbauer H, Cheronet O, Pinhasi R, Akbari A, Rohland N, Mallick S, Reich D, Szécsényi-Nagy A. Long shared haplotypes identify the Southern Urals as a primary source for the 10th century Hungarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.599526. [PMID: 39091721 PMCID: PMC11291037 DOI: 10.1101/2024.07.21.599526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During the Hungarian Conquest in the 10th century CE, the early medieval Magyars, a group of mounted warriors from Eastern Europe, settled in the Carpathian Basin. They likely introduced the Hungarian language to this new settlement area, during an event documented by both written sources and archaeological evidence. Previous archaeogenetic research identified the newcomers as migrants from the Eurasian steppe. However, genome-wide ancient DNA from putative source populations has not been available to test alternative theories of their precise source. We generated genome-wide ancient DNA data for 131 individuals from candidate archaeological contexts in the Circum-Uralic region in present-day Russia. Our results tightly link the Magyars to people of the Early Medieval Karayakupovo archaeological horizon on both the European and Asian sides of the southern Urals. Our analyes show that ancestors of the people of the Karayakupovo archaeological horizon were established in the Southern Urals by the Iron Age and that their descendants persisted locally in the Volga-Kama region until at least the 14th century.
Collapse
Affiliation(s)
- Balázs Gyuris
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University; Budapest, Hungary
| | - Leonid Vyazov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Attila Türk
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
- Hungarian Prehistory Research group, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava; Ostrava, Czechia
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
| | - Bea Szeifert
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Péter Langó
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Hungarian Research Network (HUN-REN); Budapest, Hungary
- Department of Archaeology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University; Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Veronika Csáky
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| | - Andrey A Chizhevskiy
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | | | | | - Aleksandr G Kolonskikh
- R.G. Kuzeev Institute of Ethnological Studies, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | | | - Rida R Ruslanova
- National Museum of the Republic of Bashkortostan; Ufa, Republic of Bashkortostan, Russia
| | | | - Ayrat Sitdikov
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
- Department of Archaeology, Kazan Federal University, Kazan, Republic of Tatarstan, Russia
| | - Elizaveta V Volkova
- Institute of Archaeology of the Academy of Sciences of the Republic of Tatarstan; Kazan, Republic of Tatarstan, Russia
| | - Sergei G Botalov
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Dmitriy G Bugrov
- National Museum of Tatarstan Republic; Kazan, Republic of Tatarstan, Russia
| | - Ivan V Grudochko
- South Ural Branch of the Institute of History and Archeology, Ural Branch of the Russian Academy of Sciences; Chelyabinsk, Russia
| | - Oleksii Komar
- Institute of Archaeology, National Academy of Sciences of Ukraine; Kyiv, Ukraine
| | - Alexander A Krasnoperov
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences; Izhevsk, Udmurt Republic, Russia
| | - Olga E Poshekhonova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Irina Chikunova
- Institute of the Problems of Northern Development, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Tyumen, Russia
| | - Flarit Sungatov
- Institute of History, Language and Literature, Ufa Federal Research Scientific Center of Russian Academy of Sciences; Ufa, Republic of Bashkortostan, Russia
| | - Dmitrii A Stashenkov
- Samara Regional Museum of History and Local Lore named after P. V. Alabin; Samara, Russia
| | - Sergei Zubov
- Research Laboratory of Archeology, Samara National Research University; Samara, Russia
| | | | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology; Leipzig, Germany
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; Vienna, Austria
| | - Ali Akbari
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02138, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02138, USA
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities; Budapest, Hungary
| |
Collapse
|
8
|
Bergström A. Improving data archiving practices in ancient genomics. Sci Data 2024; 11:754. [PMID: 38987254 PMCID: PMC11236975 DOI: 10.1038/s41597-024-03563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Ancient DNA is producing a rich record of past genetic diversity in humans and other species. However, unless the primary data is appropriately archived, its long-term value will not be fully realised. I surveyed publicly archived data from 42 recent ancient genomics studies. Half of the studies archived incomplete datasets, preventing accurate replication and representing a loss of data of potential future use. No studies met all criteria that could be considered best practice. Based on these results, I make six recommendations for data producers: (1) archive all sequencing reads, not just those that aligned to a reference genome, (2) archive read alignments too, but as secondary analysis files, (3) provide correct experiment metadata on samples, libraries and sequencing runs, (4) provide informative sample metadata, (5) archive data from low-coverage and negative experiments, and (6) document archiving choices in papers, and peer review these. Given the reliance on destructive sampling of finite material, ancient genomics studies have a particularly strong responsibility to ensure the longevity and reusability of generated data.
Collapse
Affiliation(s)
- Anders Bergström
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
9
|
Cassidy LM. Ancient DNA traces family lines and political shifts in the Avar empire. Nature 2024; 629:287-288. [PMID: 38658715 DOI: 10.1038/d41586-024-01020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
|
10
|
Gnecchi-Ruscone GA, Rácz Z, Samu L, Szeniczey T, Faragó N, Knipper C, Friedrich R, Zlámalová D, Traverso L, Liccardo S, Wabnitz S, Popli D, Wang K, Radzeviciute R, Gulyás B, Koncz I, Balogh C, Lezsák GM, Mácsai V, Bunbury MME, Spekker O, le Roux P, Szécsényi-Nagy A, Mende BG, Colleran H, Hajdu T, Geary P, Pohl W, Vida T, Krause J, Hofmanová Z. Network of large pedigrees reveals social practices of Avar communities. Nature 2024; 629:376-383. [PMID: 38658749 PMCID: PMC11078744 DOI: 10.1038/s41586-024-07312-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.
Collapse
Affiliation(s)
| | - Zsófia Rácz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Levente Samu
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Norbert Faragó
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Corina Knipper
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Ronny Friedrich
- Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
| | - Denisa Zlámalová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Salvatore Liccardo
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Wabnitz
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Divyaratan Popli
- Department of Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ke Wang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, Istanbul, Turkey
| | - Gabriella M Lezsák
- Institute of History, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Viktor Mácsai
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
| | - Magdalena M E Bunbury
- ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, Queensland, Australia
| | - Olga Spekker
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary
- Department of Biological Anthropology, University of Szeged, Szeged, Hungary
| | - Petrus le Roux
- Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, HUN-REN Research Centre for the Humanities, Budapest, Hungary
| | - Heidi Colleran
- BirthRites Lise Meitner Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Budapest, Hungary
| | | | - Walter Pohl
- Department of History, University of Vienna, Vienna, Austria
- Institute for Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Budapest, Hungary.
- Institute of Archaeology, HUN-REN Research Centre for the Humanities, Budapest, Hungary.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czechia.
| |
Collapse
|
11
|
Eisenstein M. DNA from ancient graves reveals the culture of a mysterious nomadic people. Nature 2024:10.1038/d41586-024-01165-7. [PMID: 38658728 DOI: 10.1038/d41586-024-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
|
12
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
13
|
Silva M, Booth T, Moore J, Anastasiadou K, Walker D, Gilardet A, Barrington C, Kelly M, Williams M, Henderson M, Smith A, Bowsher D, Montgomery J, Skoglund P. An individual with Sarmatian-related ancestry in Roman Britain. Curr Biol 2024; 34:204-212.e6. [PMID: 38118448 DOI: 10.1016/j.cub.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
In the second century CE the Roman Empire had increasing contact with Sarmatians, nomadic Iranian speakers occupying an area stretching from the Pontic-Caspian steppe to the Carpathian mountains, both in the Caucasus and in the Danubian borders of the empire.1,2,3 In 175 CE, following their defeat in the Marcomannic Wars, emperor Marcus Aurelius drafted Sarmatian cavalry into Roman legions and deployed 5,500 Sarmatian soldiers to Britain, as recorded by contemporary historian Cassius Dio.4,5 Little is known about where the Sarmatian cavalry were stationed, and no individuals connected with this historically attested event have been identified to date, leaving its impact on Britain largely unknown. Here we document Caucasus- and Sarmatian-related ancestry in the whole genome of a Roman-period individual (126-228 calibrated [cal.] CE)-an outlier without traceable ancestry related to local populations in Britain-recovered from a farmstead site in present-day Cambridgeshire, UK. Stable isotopes support a life history of mobility during childhood. Although several scenarios are possible, the historical deployment of Sarmatians to Britain provides a parsimonious explanation for this individual's extraordinary life history. Regardless of the factors behind his migrations, these results highlight how long-range mobility facilitated by the Roman Empire impacted provincial locations outside of urban centers.
Collapse
Affiliation(s)
- Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Booth
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joanna Moore
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom
| | - Kyriaki Anastasiadou
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Don Walker
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Henderson
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alex Smith
- Headland Archaeology, 13 Jane Street, Edinburgh EH6 5HE, UK
| | - David Bowsher
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Janet Montgomery
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
14
|
Kiss K, Bálint M, Gémes A, Marcsik A, Dávid Á, Évinger S, Gróf P, Gróh D, Gyenesei KÉ, János I, Kolozsi B, Kovács LO, Mateovics-László O, Líbor C, Merczi M, Molnár E, Németh CE, Pálfi G, Perémi Á, Rácz Z, Spekker O, Szőke BM, Tóth IZ, Tóth Z, Hajdu T, Szeniczey T. More than one millennium (2nd-16th century CE) of the White Plague in the Carpathian Basin - New cases, expanding knowledge. Tuberculosis (Edinb) 2023; 143S:102387. [PMID: 38012922 DOI: 10.1016/j.tube.2023.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 11/29/2023]
Abstract
The causative agent of tuberculosis is still a widespread pathogen, which caused the death of ca. 1.6 million people globally in 2021. The paleopathological study of human remains revealed the antiquity of the disease and its continuous presence throughout the history of humankind. The Carpathian Basin has always been a biocultural melting pot, since it has seen several migrations over the centuries, and served as a location of admixture and interaction for numerous populations of different cultures. Thus, this geographical territory is ideal for the examination of the coevolutionary processes of hosts and their pathogens. We aimed to reveal the spatial and temporal distribution of tuberculosis cases excavated inside the borders of Hungary between the 2nd and 16th centuries CE. We established a comprehensive database by collecting 114 already published cases and introducing 39 new cases. The involved cases include those that have been confirmed by different molecular methods, as well as possible infections that were identified based on the presence of macromorphological and radiological alterations. The progress of future molecular and paleopathological studies can be facilitated by our dataset, as it presents spatial and temporal information concerning the spread of the disease in the Carpathian Basin, as well as the biological profile and detailed paleopathological description of lesions illustrated by photo- and radiographs.
Collapse
Affiliation(s)
- Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary; Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083, Budapest, Hungary; Faculty of Health Sciences, University of Miskolc, 3515 Miskolc-Egyetemváros B3-B4 épület, Hungary.
| | - Marianna Bálint
- Hajdúsági Museum, Kossuth Lajos u. 1, 4220, Hajdúböszörmény, Hungary.
| | - Anett Gémes
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
| | - Antónia Marcsik
- Department of Biological Anthropology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Áron Dávid
- Salisbury Kft., Sánc utca 7., 1016, Budapest, Hungary.
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083, Budapest, Hungary.
| | - Péter Gróf
- Mátyás Király Museum, Hungarian National Museum, Fő utca 29., 2025, Visegrád, Hungary.
| | - Dániel Gróh
- Mátyás Király Museum, Hungarian National Museum, Fő utca 29., 2025, Visegrád, Hungary.
| | - Katalin Éva Gyenesei
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
| | - István János
- Institute of Environmental Science, University of Nyíregyháza, Sóstói út 31/B, 4400, Nyíregyháza, Hungary.
| | | | | | - Orsolya Mateovics-László
- National Institute of Archaeology, Hungarian National Museum, Múzeum krt. 14-16, 1088, Budapest, Hungary.
| | - Csilla Líbor
- Hungarian National Museum, Múzeum krt. 14-16, 1088, Budapest, Hungary.
| | - Mónika Merczi
- Bálint Balassa Museum, Hungarian National Museum, Mindszenty hercegprímás tere 5, 2500, Esztergom, Hungary.
| | - Erika Molnár
- Department of Biological Anthropology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Csilla Emese Németh
- Department of Molecular Biology, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Ágota Perémi
- Laczkó Dezső Múzeum, Török Ignác u. 7., 8200, Veszprém, Hungary.
| | - Zsófia Rácz
- Institute of Archaeological Sciences, Eötvös Loránd University, Múzeum krt. 4/b, 1088, Budapest, Hungary.
| | - Olga Spekker
- Department of Biological Anthropology, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Institute of Archaeological Sciences, Eötvös Loránd University, Múzeum krt. 4/b, 1088, Budapest, Hungary; Ancient and Modern Human Genomics Competence Centre, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary.
| | - Béla Miklós Szőke
- Institute of Archaeology, Research Centre for Humanities, Hungarian Research Network, Tóth Kálmán u. 4, 1097, Budapest, Hungary.
| | | | - Zoltán Tóth
- Archaeological Collection, István Dobó Castle Museum, Vár 1, 3300, Eger, Hungary.
| | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
| |
Collapse
|
15
|
Frachetti M, Di Cosmo N, Esper J, Khalidi L, Mauelshagen F, Oppenheimer C, Rohland E, Büntgen U. The dahliagram: An interdisciplinary tool for investigation, visualization, and communication of past human-environmental interaction. SCIENCE ADVANCES 2023; 9:eadj3142. [PMID: 37992177 PMCID: PMC10664986 DOI: 10.1126/sciadv.adj3142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Investigation into the nexus of human-environmental behavior has seen increasing collaboration of archaeologists, historians, and paleo-scientists. However, many studies still lack interdisciplinarity and overlook incompatibilities in spatiotemporal scaling of environmental and societal data and their uncertainties. Here, we argue for a strengthened commitment to collaborative work and introduce the "dahliagram" as a tool to analyze and visualize quantitative and qualitative knowledge from diverse disciplinary sources and epistemological backgrounds. On the basis of regional cases of past human mobility in eastern Africa, Inner Eurasia, and the North Atlantic, we develop three dahliagrams that illustrate pull and push factors underlying key phases of population movement across different geographical scales and over contrasting periods of time since the end of the last Ice Age. Agnostic to analytical units, dahliagrams offer an effective tool for interdisciplinary investigation, visualization, and communication of complex human-environmental interactions at a diversity of spatiotemporal scales.
Collapse
Affiliation(s)
- Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, CB 1114, St. Louis, MO 63130, USA
- School of Cultural Heritage, Northwest University, Xi’an, China
| | - Nicola Di Cosmo
- Institute for Advanced Study, Princeton University, Princeton, NJ 08544, USA
| | - Jan Esper
- Department of Geography, Johannes Gutenberg University, Becherweg 21, 55099 Mainz, Germany
- Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Lamya Khalidi
- Université Côte d’Azur, CNRS, CEPAM, 24 avenue des Diables Bleus, 06300 Nice, France
| | - Franz Mauelshagen
- Department of Social Anthropology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Clive Oppenheimer
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
| | - Eleonora Rohland
- Department of History, University of Bielefeld, 33615 Bielefeld, Germany
| | - Ulf Büntgen
- Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00 Brno, Czech Republic
- Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK
- Swiss Federal Research Institute (WSL), 8903 Birmensdorf, Switzerland
- Department of Geography, Faculty of Science, Masaryk University, 613 00 Brno, Czech Republic
| |
Collapse
|
16
|
Yan Y, Du P, Zhang J, Li R, Bao H, Fang Q, Gao Y, Meng H, Xu Y, Shi H, Yan H, Chang X, Ren X, Wang L, Ru K, Allen E, Li J, Wen S, Zhang N. Mitogenome analysis reveals predominantly ancient Yellow River origin of population inhabiting Datong agro-pastoral ecotone along Great Wall. Mol Genet Genomics 2023; 298:1321-1330. [PMID: 37498358 DOI: 10.1007/s00438-023-02056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
The Datong Basin was an important arena for population movement and admixture between the Yellow River Valley and Eastern Steppe. In historical materials, the region was often the setting for a tug-of-war between Han farmers and non-Han nomads. The genetic makeup and population history of this Datong population has, however, remained uncertain. In this study, we analysed 289 mitogenomes from Datong individuals. Our primary findings were: (1) population summary statistics analysis revealed a high level of genetic diversity and strong signals of population expansion in the Datong population; (2) inter-population comparisons (PCA and Fst heatmap) exhibited a close clustering between the Datong population and Northern Han, especially northern frontier groups, such as the Inner Mongolia Han, Heilongjiang Han, Liaoning Han and Tianjin Han; (3) phylogeographic analysis of complete mitogenomes revealed the presence of different components in the maternal gene pools of Datong population-the northern East Asian component was dominant (66.44%), whereas the southern East Asians were the second largest component with 31.49%. We also observed a much reduced west Eurasian (2.07%) component; (4) direct comparisons with ancient groups showed closer relationship between Datong and Yellow River farmers than Eastern Steppe nomads. Despite, therefore, centuries of Eastern Steppe nomadic control over the Datong area, Yellow River farmers had a much more significant impact on the Datong population.
Collapse
Affiliation(s)
- Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jihong Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Ruilan Li
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Haoquan Bao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Haochen Shi
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Hailong Yan
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Xin Chang
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Li Wang
- Datong Xin Jian Kang Hospital Group Company, Datong, 037006, China
| | - Kai Ru
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China
| | - Jiehui Li
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China
| | - Shaoqing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Institute of Archaeological Science, Fudan University, Shanghai, 200433, China.
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, 200433, China.
- Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai, 200433, China.
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Infammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
17
|
Schurr TG, Shengelia R, Shamoon-Pour M, Chitanava D, Laliashvili S, Laliashvili I, Kibret R, Kume-Kangkolo Y, Akhvlediani I, Bitadze L, Mathieson I, Yardumian A. Genetic Analysis of Mingrelians Reveals Long-Term Continuity of Populations in Western Georgia (Caucasus). Genome Biol Evol 2023; 15:evad198. [PMID: 37935112 PMCID: PMC10665041 DOI: 10.1093/gbe/evad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
To elucidate the population history of the Caucasus, we conducted a survey of genetic diversity in Samegrelo (Mingrelia), western Georgia. We collected DNA samples and genealogical information from 485 individuals residing in 30 different locations, the vast majority of whom being Mingrelian speaking. From these DNA samples, we generated mitochondrial DNA (mtDNA) control region sequences for all 485 participants (female and male), Y-short tandem repeat haplotypes for the 372 male participants, and analyzed all samples at nearly 590,000 autosomal single nucleotide polymorphisms (SNPs) plus around 33,000 on the sex chromosomes, with 27,000 SNP removed for missingness, using the GenoChip 2.0+ microarray. The resulting data were compared with those from populations from Anatolia, the Caucasus, the Near East, and Europe. Overall, Mingrelians exhibited considerable mtDNA haplogroup diversity, having high frequencies of common West Eurasian haplogroups (H, HV, I, J, K, N1, R1, R2, T, U, and W. X2) and low frequencies of East Eurasian haplogroups (A, C, D, F, and G). From a Y-chromosome standpoint, Mingrelians possessed a variety of haplogroups, including E1b1b, G2a, I2, J1, J2, L, Q, R1a, and R1b. Analysis of autosomal SNP data further revealed that Mingrelians are genetically homogeneous and cluster with other modern-day South Caucasus populations. When compared with ancient DNA samples from Bronze Age archaeological contexts in the broader region, these data indicate that the Mingrelian gene pool began taking its current form at least by this period, probably in conjunction with the formation of a distinct linguistic community.
Collapse
Affiliation(s)
- Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramaz Shengelia
- Department of the History of Medicine, Tbilisi State Medical University, Tbilisi, Georgia
| | - Michel Shamoon-Pour
- First-year Research Immersion, Binghamton University, Binghamton, New York, USA
| | - David Chitanava
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Shorena Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Irma Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Redate Kibret
- Department of History and Social Science, Bryn Athyn College, Bryn Athyn, Pennsylvania, USA
| | - Yanu Kume-Kangkolo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Lia Bitadze
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi, Georgia
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aram Yardumian
- Department of History and Social Science, Bryn Athyn College, Bryn Athyn, Pennsylvania, USA
| |
Collapse
|
18
|
Tretmanis JM, Jay F, Avila-Árcos MC, Huerta-Sanchez E. Simulation-based Benchmarking of Ancient Haplotype Inference for Detecting Population Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560049. [PMID: 37808674 PMCID: PMC10557694 DOI: 10.1101/2023.09.28.560049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Paleogenomic data has informed us about the movements, growth, and relationships of ancient populations. It has also given us context for medically relevant adaptations that appear in present-day humans due to introgression from other hominids, and it continues to help us characterize the evolutionary history of humans. However, ancient DNA (aDNA) presents several practical challenges as various factors such as deamination, high fragmentation, environmental contamination of aDNA, and low amounts of recoverable endogenous DNA, make aDNA recovery and analysis more difficult than modern DNA. Most studies with aDNA leverage only SNP data, and only a few studies have made inferences on human demographic history based on haplotype data, possibly because haplotype estimation (or phasing) has not yet been systematically evaluated in the context of aDNA. Here, we evaluate how the unique challenges of aDNA can impact phasing quality. We also develop a software tool that simulates aDNA taking into account the features of aDNA as well as the evolutionary history of the population. We measured phasing error as a function of aDNA quality and demographic history, and found that low phasing error is achievable even for very ancient individuals (~ 400 generations in the past) as long as contamination and read depth are adequate. Our results show that population splits or bottleneck events occurring between the reference and phased populations affect phasing quality, with bottlenecks resulting in the highest average error rates. Finally, we found that using estimated haplotypes, even if not completely accurate, is superior to using the simulated genotype data when reconstructing changes in population structure after population splits between present-day and ancient populations.
Collapse
Affiliation(s)
| | - Flora Jay
- Interdisciplinary Laboratory of Numerical Sciences, Université Paris-Saclay
| | | | | |
Collapse
|
19
|
Vyas DN, Koncz I, Modi A, Mende BG, Tian Y, Francalacci P, Lari M, Vai S, Straub P, Gallina Z, Szeniczey T, Hajdu T, Pejrani Baricco L, Giostra C, Radzevičiūtė R, Hofmanová Z, Évinger S, Bernert Z, Pohl W, Caramelli D, Vida T, Geary PJ, Veeramah KR. Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr Biol 2023; 33:3951-3961.e11. [PMID: 37633281 DOI: 10.1016/j.cub.2023.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
As the collapse of the Western Roman Empire accelerated during the 4th and 5th centuries, arriving "barbarian" groups began to establish new communities in the border provinces of the declining (and eventually former) empire. This was a time of significant cultural and political change throughout not only these border regions but Europe as a whole.1,2 To better understand post-Roman community formation in one of these key frontier zones after the collapse of the Hunnic movement, we generated new paleogenomic data for a set of 38 burials from a time series of three 5th century cemeteries3,4,5 at Lake Balaton, Hungary. We utilized a comprehensive sampling approach to characterize these cemeteries along with data from 38 additional burials from a previously published mid-6th century site6 and analyzed them alongside data from over 550 penecontemporaneous individuals.7,8,9,10,11,12,13,14,15,16,17,18,19 The range of genetic diversity in all four of these local burial communities is extensive and wider ranging than penecontemporaneous Europeans sequenced to date. Despite many commonalities in burial customs and demography, we find that there were substantial differences in genetic ancestry between the sites. We detect evidence of northern European gene flow into the Lake Balaton region. Additionally, we observe a statistically significant association between dress artifacts and genetic ancestry among 5th century genetically female burials. Our analysis shows that the formation of early Medieval communities was a multifarious process even at a local level, consisting of genetically heterogeneous groups.
Collapse
Affiliation(s)
- Deven N Vyas
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - István Koncz
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Tóth Kálmán utca 4, 1097 Budapest, Hungary
| | - Yijie Tian
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Via T. Fiorelli 1, 09126 Cagliari, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy
| | | | | | - Tamás Szeniczey
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Tamás Hajdu
- Department of Biological Anthropology, ELTE - Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| | - Luisella Pejrani Baricco
- Soprintendenza Archeologia, Belle Arti e Paesaggio per la Città Metropolitana di Torino, piazza San Giovanni 2, 10122 Torino, Italy
| | - Caterina Giostra
- Dipartimento di Storia, Archeologia e Storia dell'Arte, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 1, 20123 Milano, Italy
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Arna Nováka 1/1, Brno 60200, Czech Republic
| | - Sándor Évinger
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
| | - Walter Pohl
- Institute for Medieval Research, Austrian Academy of Sciences, Dr-Ignaz-Seipel-Platz 2, 1020 Vienna, Austria; Institute for Austrian Historical Research, University of Vienna, Universitätsring 1, 1010 Vienna, Austria
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via del Proconsolo 12, 50122 Firenze, Italy.
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE - Eötvös Loránd University, Múzeum krt. 4/B, 1088 Budapest, Hungary.
| | - Patrick J Geary
- School of Historical Studies, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Krishna R Veeramah
- Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
Zhur KV, Sharko FS, Sedov VV, Dobrovolskaya MV, Volkov VG, Maksimov NG, Seslavine AN, Makarov NA, Prokhortchouk EB. The Rurikids: The First Experience of Reconstructing the Genetic Portrait of the Ruling Family of Medieval Rus' Based on Paleogenomic Data. Acta Naturae 2023; 15:50-65. [PMID: 37908771 PMCID: PMC10615192 DOI: 10.32607/actanaturae.23425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 11/02/2023] Open
Abstract
The Rurikids were the reigning house of Rus', its principalities and, ultimately the Tsardom of Russia, for seven centuries: from the IX to the end of the XVI century. According to the Primary Chronicle (the Tale of Bygone Years), the main chronicle of Rus', the Rurik dynasty was founded by the Varangian prince Rurik, invited to reign in Novgorod in 862, but still there is no direct genetic evidence of the origin of the early Rurikids. This research, for the first time, provides a genome-wide paleogenetic analysis of bone remains belonging to one of the Rurikids, Prince Dmitry Alexandrovich (?-1294), the son of the Grand Prince of Vladimir Alexander Yaroslavich Nevsky (1221-1263). It has been established that his Y chromosome belongs to the N1a haplogroup. Most of the modern Rurikids, according to their genealogies, belonging to the N1a haplogroup, have the most similar variants of Y chromosomes to each other, as well as to the Y chromosome of Prince Dmitry Alexandrovich. Genome-wide data of the medieval and modern Rurikids unequivocally indicates that they belong to the N1a haplogroup of the Y chromosome, starting at least from the XI century (since the time of Prince Yaroslav the Wise). All the other alleged Rurikids, both ancient and modern, being carriers of other haplogroups (R1a, I2a), possess high heterogeneity of the sequence of Y chromosomes, meaning that we cannot confirm their common ancestry. The most probable ancestors of Prince Dmitry Alexandrovich in the male line were the men who left the burial ground Bolshoy Oleny Island on the coast of the Kola Peninsula about 3,600 years ago. The reconstruction of the genome of Prince Dmitry Alexandrovich indicates the contribution of three ancestral components to his origin: (1) the early medieval population of the east of Scandinavia from the island of Oland, (2) representatives of the steppe nomadic peoples of the Eurasian steppes of the Iron Age or the early medieval population of central Europe (steppe nomads from the territory of Hungary), and (3) the ancient East-Eurasian component. Reliable statistics were also obtained when the Scandinavians were replaced with the Medieval Russian Slavic populations of the XI century. Thus, for the first time, we have shown the complex nature of interethnic interactions in the formation of the nobility of medieval Rus' on the example of the ancient Rurikid.
Collapse
Affiliation(s)
- K V Zhur
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - F S Sharko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| | - Vl V Sedov
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - M V Dobrovolskaya
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - V G Volkov
- Regional State Autonomous Institution "Center of Tatar Culture", Tomsk, 634050 Russian Federation
| | - N G Maksimov
- ANO "Runiverse", Moscow, 119071 Russian Federation
| | - A N Seslavine
- Russian Public Organisation "RDS", Moscow, 109028 Russian Federation
| | - N A Makarov
- Institute of Archeology, Russian Academy of Sciences, Moscow, 117292 Russian Federation
| | - E B Prokhortchouk
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071 Russian Federation
| |
Collapse
|
21
|
Török T. Integrating Linguistic, Archaeological and Genetic Perspectives Unfold the Origin of Ugrians. Genes (Basel) 2023; 14:1345. [PMID: 37510249 PMCID: PMC10379071 DOI: 10.3390/genes14071345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
In the last year two publications shed new light on the linguistic and genomic history of ancient Uralic speakers. Here I show that these novel genetic and linguistic data are compatible with each-other and with the archaeological inferences, allowing us to formulate a very plausible hypothesis about the prehistory of Ugric speakers. Both genetic and archaeological data indicate the admixture of the Mezhovskaya population with northern forest hunters in the late Bronze Age, which gave rise to a "proto-Ugric" community. This finding is consistent with the linguistic reconstruction of the proto-Ugric language. Genetic data indicate an admixture of proto-Hungarians with early Sarmatians and early Huns, and I show that the first admixture can be reconciled with the formation of the Gorokhovo culture and its integration into the early Sarmatian Prokhorovka culture, while the second admixture corresponds to the transformation of the Sargat and Sarmatian cultures due to Xiongnu invasions.
Collapse
Affiliation(s)
- Tibor Török
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
- Department of Archaeogenetics, Institute of Hungarian Research, H-1041 Budapest, Hungary
| |
Collapse
|
22
|
Borbély N, Székely O, Szeifert B, Gerber D, Máthé I, Benkő E, Mende BG, Egyed B, Pamjav H, Szécsényi-Nagy A. High Coverage Mitogenomes and Y-Chromosomal Typing Reveal Ancient Lineages in the Modern-Day Székely Population in Romania. Genes (Basel) 2023; 14:133. [PMID: 36672874 PMCID: PMC9858685 DOI: 10.3390/genes14010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Here we present 115 whole mitogenomes and 92 Y-chromosomal Short Tandem Repeat (STR) and Single Nucleotide Polymorphism (SNP) profiles from a Hungarian ethnic group, the Székelys (in Romanian: Secuii, in German: Sekler), living in southeast Transylvania (Romania). The Székelys can be traced back to the 12th century in the region, and numerous scientific theories exist as to their origin. We carefully selected sample providers that had local ancestors inhabiting small villages in the area of Odorheiu Secuiesc/Székelyudvarhely in Romania. The results of our research and the reported data signify a qualitative leap compared to previous studies since it presents the first complete mitochondrial DNA sequences and Y-chromosomal profiles of 23 STRs from the region. We evaluated the results with population genetic and phylogenetic methods in the context of the modern and ancient populations that are either geographically or historically related to the Székelys. Our results demonstrate a predominantly local uniparental make-up of the population that also indicates limited admixture with neighboring populations. Phylogenetic analyses confirmed the presumed eastern origin of certain maternal (A, C, D) and paternal (Q, R1a) lineages, and, in some cases, they could also be linked to ancient DNA data from the Migration Period (5th-9th centuries AD) and Hungarian Conquest Period (10th century AD) populations.
Collapse
Affiliation(s)
- Noémi Borbély
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Orsolya Székely
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
| | - Bea Szeifert
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Dániel Gerber
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Socio-Human Sciences and Engineering, Faculty of Economics, Sapientia Hungarian University of Transylvania (Cluj-Napoca), Piața Libertății 1, 530104 Miercurea-Ciuc, Romania
| | - Elek Benkő
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
| | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
| | - Balázs Egyed
- Department of Genetics, Faculty of Natural Sciences, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Horolma Pamjav
- Department of Reference Sample Analysis, Institute of Forensic Genetics, Hungarian Institutes for Forensic Sciences, Mosonyi Street 9, 1087 Budapest, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, Tóth Kálmán Street 4, 1097 Budapest, Hungary
| |
Collapse
|
23
|
Saag L, Staniuk R. Historical human migrations: From the steppe to the basin. Curr Biol 2022; 32:R738-R741. [PMID: 35820383 DOI: 10.1016/j.cub.2022.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many migrations during human history have made the Carpathian Basin the melting pot of Europe. New ancient genomes confirm the Asian origin of European Huns, Avars and Magyars and huge within-group variability that is linked with social structure.
Collapse
Affiliation(s)
- Lehti Saag
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| | - Robert Staniuk
- Institute of Archaeology, University College London, 31-34 Gordon Square, London WC1H 0PY, UK.
| |
Collapse
|
24
|
Fregel R. The origin of the Carpathian Avar elites revealed. CELL GENOMICS 2022; 2:100143. [PMID: 36778139 PMCID: PMC9903741 DOI: 10.1016/j.xgen.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the sixth century, the Avar elites established themselves in the Carpathian Basin as evidenced today by the astounding archaeological sites with exquisite grave goods made of silver and gold. Recently reported in Cell, Gnecchi-Ruscone et al.1 obtained paleogenomic evidence from Avar sites in Hungary, placing the Avar elites' origin in Mongolia and confirming their own historical claims.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain,Corresponding author
| |
Collapse
|