1
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2024:10.1038/s41576-024-00788-w. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
3
|
Jones MG, Sun D, Min KH(J, Colgan WN, Tian L, Weir JA, Chen VZ, Koblan LW, Yost KE, Mathey-Andrews N, Russell AJ, Stickels RR, Balderrama KS, Rideout WM, Chang HY, Jacks T, Chen F, Weissman JS, Yosef N, Yang D. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619529. [PMID: 39484491 PMCID: PMC11526908 DOI: 10.1101/2024.10.21.619529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a Kras;p53-driven mouse model of lung adenocarcinoma. We find that rapid tumor expansion contributes to a hypoxic, immunosuppressive, and fibrotic microenvironment that is associated with the emergence of pro-metastatic cancer cell states. Furthermore, metastases arise from spatially-confined subclones of primary tumors and remodel the distant metastatic niche into a fibrotic, collagen-rich microenvironment. Together, we present a comprehensive dataset integrating spatial assays and lineage tracing to elucidate how sequential changes in cancer cell state and microenvironmental structures cooperate to promote tumor progression.
Collapse
Affiliation(s)
- Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Dawei Sun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Kyung Hoi (Joseph) Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William N. Colgan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jackson A. Weir
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Victor Z. Chen
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
| | - Luke W. Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E. Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew J.C. Russell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - William M. Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tyler Jacks
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
- Lead Contact
| |
Collapse
|
4
|
Schiffman JS, D'Avino AR, Prieto T, Pang Y, Fan Y, Rajagopalan S, Potenski C, Hara T, Suvà ML, Gawad C, Landau DA. Defining heritability, plasticity, and transition dynamics of cellular phenotypes in somatic evolution. Nat Genet 2024; 56:2174-2184. [PMID: 39317739 PMCID: PMC11527590 DOI: 10.1038/s41588-024-01920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/21/2024] [Indexed: 09/26/2024]
Abstract
Single-cell sequencing has characterized cell state heterogeneity across diverse healthy and malignant tissues. However, the plasticity or heritability of these cell states remains largely unknown. To address this, we introduce PATH (phylogenetic analysis of trait heritability), a framework to quantify cell state heritability versus plasticity and infer cell state transition and proliferation dynamics from single-cell lineage tracing data. Applying PATH to a mouse model of pancreatic cancer, we observed heritability at the ends of the epithelial-to-mesenchymal transition spectrum, with higher plasticity at more intermediate states. In primary glioblastoma, we identified bidirectional transitions between stem- and mesenchymal-like cells, which use the astrocyte-like state as an intermediary. Finally, we reconstructed a phylogeny from single-cell whole-genome sequencing in B cell acute lymphoblastic leukemia and delineated the heritability of B cell differentiation states linked with genetic drivers. Altogether, PATH replaces qualitative conceptions of plasticity with quantitative measures, offering a framework to study somatic evolution.
Collapse
Affiliation(s)
- Joshua S Schiffman
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Andrew R D'Avino
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Yilin Fan
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Srinivas Rajagopalan
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Toshiro Hara
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Charles Gawad
- Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Asami S, Yin C, Garza LA, Kalhor R. Deconvolving organogenesis in space and time via spatial transcriptomics in thick tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614640. [PMID: 39386671 PMCID: PMC11463617 DOI: 10.1101/2024.09.24.614640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organ development is guided by a space-time landscape that constraints cell behavior. This landscape is challenging to characterize for the hair follicle - the most abundant mini organ - due to its complex microscopic structure and asynchronous development. We developed 3DEEP, a tissue clearing and spatial transcriptomic strategy for characterizing tissue blocks up to 400 µm in thickness. We captured 371 hair follicles at different stages of organogenesis in 1 mm3 of skin of a 12-hour-old mouse with 6 million transcripts from 81 genes. From this single time point, we deconvoluted follicles by age based on whole-organ molecular pseudotimes to animate a stop-motion 3D atlas of follicle development along its trajectory. We defined molecular stages for hair follicle organogenesis and characterized the order of emergence for its structures, differential signaling dynamics at its top and bottom, morphogen shifts preceding and accompanying structural changes, and series of structural changes leading to the formation of its canal and opening. We further found that hair follicle stem cells and their niche are established and stratified early in organogenesis, before the formation of the hair bulb. Overall, this work demonstrates the power of increased depth of spatial transcriptomics to provide a four-dimensional analysis of organogenesis.
Collapse
Affiliation(s)
- Soichiro Asami
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenshuo Yin
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis A. Garza
- Department of Dermatology, Department of Cell Biology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Department of Medicine, Department of Neuroscience, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Sashittal P, Zhang RY, Law BK, Strzalkowski A, Schmidt H, Bolondi A, Chan MM, Raphael BJ. Inferring cell differentiation maps from lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611835. [PMID: 39314473 PMCID: PMC11419031 DOI: 10.1101/2024.09.09.611835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During development, mulitpotent cells differentiate through a hierarchy of increasingly restricted progenitor cell types until they realize specialized cell types. A cell differentiation map describes this hierarchy, and inferring these maps is an active area of research spanning traditional single marker lineage studies to data-driven trajectory inference methods on single-cell RNA-seq data. Recent high-throughput lineage tracing technologies profile lineages and cell types at scale, but current methods to infer cell differentiation maps from these data rely on simple models with restrictive assumptions about the developmental process. We introduce a mathematical framework for cell differentiation maps based on the concept of potency, and develop an algorithm, Carta, that infers an optimal cell differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the trade-off between the complexity of the cell differentiation map and the number of unobserved cell type transitions on the lineage tree. We show that Carta more accurately infers cell differentiation maps on both simulated and real data compared to existing methods. In models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods including convergent differentiation of specialized cell types, progenitor differentiation dynamics, and the refinement of routes of differentiation via new intermediate progenitors.
Collapse
Affiliation(s)
- Palash Sashittal
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Richard Y. Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
| | - Benjamin K. Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | | - Henri Schmidt
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Adriano Bolondi
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics; 14195 Berlin, Germany
| | - Michelle M. Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | |
Collapse
|
7
|
Bolondi A, Law BK, Kretzmer H, Gassaloglu SI, Buschow R, Riemenschneider C, Yang D, Walther M, Veenvliet JV, Meissner A, Smith ZD, Chan MM. Reconstructing axial progenitor field dynamics in mouse stem cell-derived embryoids. Dev Cell 2024; 59:1489-1505.e14. [PMID: 38579718 PMCID: PMC11187653 DOI: 10.1016/j.devcel.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/13/2023] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Benjamin K Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Seher Ipek Gassaloglu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - René Buschow
- Microscopy Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics & Systems Biology, Columbia University, New York, NY 10032, USA
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Deng S, Gong H, Zhang D, Zhang M, He X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat Methods 2024; 21:597-608. [PMID: 38379073 DOI: 10.1038/s41592-024-02189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Quantifying the number of progenitor cells that found an organ, tissue or cell population is of fundamental importance for understanding the development and homeostasis of a multicellular organism. Previous efforts rely on marker genes that are specifically expressed in progenitors. This strategy is, however, often hindered by the lack of ideal markers. Here we propose a general statistical method to quantify the progenitors of any tissues or cell populations in an organism, even in the absence of progenitor-specific markers, by exploring the cell phylogenetic tree that records the cell division history during development. The method, termed targeting coalescent analysis (TarCA), computes the probability that two randomly sampled cells of a tissue coalesce within the tissue-specific monophyletic clades. The inverse of this probability then serves as a measure of the progenitor number of the tissue. Both mathematic modeling and computer simulations demonstrated the high accuracy of TarCA, which was then validated using real data from nematode, fruit fly and mouse, all with related cell phylogenetic trees. We further showed that TarCA can be used to identify lineage-specific upregulated genes during embryogenesis, revealing incipient cell fate commitments in mouse embryos.
Collapse
Affiliation(s)
- Shanjun Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Di Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mengdong Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Wang L, Dong W, Yin Z, Sheng J, Ezeana CF, Yang L, Yu X, Wong SSY, Wan Z, Danforth RL, Han K, Gao D, Wong STC. Charting Single Cell Lineage Dynamics and Mutation Networks via Homing CRISPR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574236. [PMID: 38260351 PMCID: PMC10802354 DOI: 10.1101/2024.01.05.574236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Single cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model's attributes, reconstructs cellular lineage pathways, shedding light on the cell's evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.
Collapse
Affiliation(s)
- Lin Wang
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Wenjuan Dong
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Zheng Yin
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
- Biostatistics and Bioinformatics Shared Resource, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Jianting Sheng
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Chika F. Ezeana
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Li Yang
- T.T. and W. F. Chao Center for BRAIN, Houston Methodist Research Institute, Houston, Texas 77030
| | - Xiaohui Yu
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | | | - Zhihao Wan
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Rebecca L. Danforth
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Kun Han
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Dingcheng Gao
- Department of Cell & Development Biology, Weill Cornell Medical College, New York, NY 10065
| | - Stephen T. C. Wong
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
- Departments of Radiology, Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Cornell Medical College, Houston, TX 77030
| |
Collapse
|
10
|
Li Z, Yang W, Wu P, Shan Y, Zhang X, Chen F, Yang J, Yang JR. Reconstructing cell lineage trees with genomic barcoding: approaches and applications. J Genet Genomics 2024; 51:35-47. [PMID: 37269980 DOI: 10.1016/j.jgg.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In multicellular organisms, developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree (CLT). The reconstruction of the CLT has long been a major goal in developmental biology and other related fields. Recent technological advancements, especially those in editable genomic barcodes and single-cell high-throughput sequencing, have sparked a new wave of experimental methods for reconstructing CLTs. Here we review the existing experimental approaches to the reconstruction of CLT, which are broadly categorized as either image-based or DNA barcode-based methods. In addition, we present a summary of the related literature based on the biological insight provided by the obtained CLTs. Moreover, we discuss the challenges that will arise as more and better CLT data become available in the near future. Genomic barcoding-based CLT reconstructions and analyses, due to their wide applicability and high scalability, offer the potential for novel biological discoveries, especially those related to general and systemic properties of the developmental process.
Collapse
Affiliation(s)
- Zizhang Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenjing Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyan Shan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Feng Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junnan Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
11
|
Sashittal P, Schmidt H, Chan M, Raphael BJ. Startle: A star homoplasy approach for CRISPR-Cas9 lineage tracing. Cell Syst 2023; 14:1113-1121.e9. [PMID: 38128483 PMCID: PMC11257033 DOI: 10.1016/j.cels.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
CRISPR-Cas9-based genome editing combined with single-cell sequencing enables the tracing of the history of cell divisions, or cellular lineage, in tissues and whole organisms. Although standard phylogenetic approaches may be applied to reconstruct cellular lineage trees from this data, the unique features of the CRISPR-Cas9 editing process motivate the development of specialized models that describe the evolution of CRISPR-Cas9-induced mutations. Here, we introduce the "star homoplasy" evolutionary model that constrains a phylogenetic character to mutate at most once along a lineage, capturing the "non-modifiability" property of CRISPR-Cas9 mutations. We derive a combinatorial characterization of star homoplasy phylogenies and use this characterization to develop an algorithm, "Startle", that computes a maximum parsimony star homoplasy phylogeny. We demonstrate that Startle infers more accurate phylogenies on simulated lineage tracing data compared with existing methods and finds parsimonious phylogenies with fewer metastatic migrations on lineage tracing data from mouse metastatic lung adenocarcinoma.
Collapse
Affiliation(s)
- Palash Sashittal
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Henri Schmidt
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Michelle Chan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
12
|
Deng S, He X. Tree of life at two levels: from species to cell. Sci Bull (Beijing) 2023; 68:2515-2518. [PMID: 37778944 DOI: 10.1016/j.scib.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Affiliation(s)
- Shanjun Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
Wang Y, Zhang X, Wang Z. Cellular barcoding: From developmental tracing to anti-tumor drug discovery. Cancer Lett 2023:216281. [PMID: 37336285 DOI: 10.1016/j.canlet.2023.216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Clonal evolution has gained immense attention in explaining cancer cell status, history, and fate during cancer progression. Current single-cell or spatial transcriptome technologies have broadened our understanding of various mechanisms underlying cancer initiation, relapse, and drug resistance. However, technical challenges still hinder a better understanding of the dynamics of distinctive phenotypic states and abnormal trajectories from normal physiological transition to malignant stages. Cellular barcoding enabled lineage tracing on parallelly massive cells at single-cell resolution through different mechanisms lately, enabling new insights into exploring developmental trajectories, cancer progression, and targeted therapies. This review summarizes the latest noteworthy and robust strategies for different types of cellular barcodes. To introduce the major characteristics, advantages and limitations of these different strategies, this review will further guide in choosing or improving cellular barcoding technologies and their applications in cancer research.
Collapse
Affiliation(s)
- Yuqing Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Zheng Wang
- Medical Center of Hematology, The Second Affiliated Hospital, Army Medical University, Chongqing, 40037, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 40037, China; Bio-Med Informatics Research Center & Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
14
|
Domcke S, Shendure J. A reference cell tree will serve science better than a reference cell atlas. Cell 2023; 186:1103-1114. [PMID: 36931241 DOI: 10.1016/j.cell.2023.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
Single-cell biology is facing a crisis of sorts. Vast numbers of single-cell molecular profiles are being generated, clustered and annotated. However, this is overwhelmingly ad hoc, and we continue to lack a principled, unified, and well-moored system for defining, naming, and organizing cell types. In this perspective, we argue against an atlas or periodic table-like discretization as the right metaphor for a reference taxonomy of cell types. In its place, we advocate for a data-driven, tree-based nomenclature that is rooted in a "consensus ontogeny" spanning the life cycle of a given species. We explore how such a reference cell tree, inclusive of both lineage histories and molecular states, could be constructed, represented, and segmented in practice. Analogous to the taxonomic classification of species, a consensus ontogeny would provide a universal, stable, and extendable framework for precise scientific communication, both contemporaneously and across the ages.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|