1
|
Tsukahara S, Bousios A, Perez-Roman E, Yamaguchi S, Leduque B, Nakano A, Naish M, Osakabe A, Toyoda A, Ito H, Edera A, Tominaga S, Juliarni, Kato K, Oda S, Inagaki S, Lorković Z, Nagaki K, Berger F, Kawabe A, Quadrana L, Henderson I, Kakutani T. Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis. Nature 2025:10.1038/s41586-024-08319-7. [PMID: 39743586 DOI: 10.1038/s41586-024-08319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3-5. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | - Sota Yamaguchi
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Aimi Nakano
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Akihisa Osakabe
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Juliarni
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Kae Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Shoko Oda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Zdravko Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Cahn J, Regulski M, Lynn J, Ernst E, de Santis Alves C, Ramakrishnan S, Chougule K, Wei S, Lu Z, Xu X, Ramu U, Drenkow J, Kramer M, Seetharam A, Hufford MB, McCombie WR, Ware D, Jackson D, Schatz MC, Gingeras TR, Martienssen RA. MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication. Nat Commun 2024; 15:10854. [PMID: 39738013 DOI: 10.1038/s41467-024-55195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp. mexicana), yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified transcription factors controlling these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Transcriptomic analysis reveals that pollen grains share features with endosperm, and express dozens of "proto-miRNAs" potential vestiges of gene drive and hybrid incompatibility. Integrated analysis with chromatin modifications results in the identification of a comprehensive set of regulatory regions in each tissue of each inbred, and notably of distal enhancers expressing non-coding enhancer RNAs bi-directionally, reminiscent of "super enhancers" in animal genomes. Furthermore, the morphological traits selected during domestication are recapitulated, both in gene expression and within regulatory regions containing enhancer RNAs, while highlighting the conflict between enhancer activity and silencing of the neighboring transposable elements.
Collapse
Affiliation(s)
- Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Cristiane de Santis Alves
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Arun Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Johns Hopkins University; 1900 E. Monument Street, Baltimore, MD, 21205, USA
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
3
|
Cahn J, Lloyd JPB, Karemaker ID, Jansen PWTC, Pflueger J, Duncan O, Petereit J, Bogdanovic O, Millar AH, Vermeulen M, Lister R. Characterization of DNA methylation reader proteins in Arabidopsis thaliana. Genome Res 2024; 34:2229-2243. [PMID: 39632087 DOI: 10.1101/gr.279379.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
In plants, cytosine DNA methylation (mC) is largely associated with transcriptional repression of transposable elements, but it can also be found in the body of expressed genes, referred to as gene body methylation (gbM). gbM is correlated with ubiquitously expressed genes; however, its function, or absence thereof, is highly debated. The different outputs that mC can have raise questions as to how it is interpreted-or read-differently in these sequence and genomic contexts. To screen for potential mC-binding proteins, we performed an unbiased DNA affinity pull-down assay combined with quantitative mass spectrometry using methylated DNA probes for each DNA sequence context. All mC readers known to date preferentially bind to the methylated probes, along with a range of new mC-binding protein candidates. Functional characterization of these mC readers, focused on the MBD and SUVH families, was undertaken by ChIP-seq mapping of genome-wide binding sites, their protein interactors, and the impact of high-order mutations on transcriptomic and epigenomic profiles. Together, these results highlight specific context preferences for these proteins, and in particular the ability of MBD2 to bind predominantly to gbM. This comprehensive analysis of Arabidopsis mC readers emphasizes the complexity and interconnectivity between DNA methylation and chromatin remodeling processes in plants.
Collapse
Affiliation(s)
- Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ino D Karemaker
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Pascal W T C Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Jahnvi Pflueger
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jakob Petereit
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ozren Bogdanovic
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
4
|
Frost JM, Rhee JH, Choi Y. Dynamics of DNA methylation and its impact on plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102593. [PMID: 38941722 DOI: 10.1016/j.pbi.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.
Collapse
Affiliation(s)
- Jennifer M Frost
- Medical and Molecular Genetics, King's College London, St Thomas' Street, London SE1 9RT, UK.
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
Shinkai A, Hashimoto H, Shimura C, Fujimoto H, Fukuda K, Horikoshi N, Okano M, Niwa H, Debler E, Kurumizaka H, Shinkai Y. The C-terminal 4CXXC-type zinc finger domain of CDCA7 recognizes hemimethylated DNA and modulates activities of chromatin remodeling enzyme HELLS. Nucleic Acids Res 2024; 52:10194-10219. [PMID: 39142653 PMCID: PMC11417364 DOI: 10.1093/nar/gkae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.
Collapse
Affiliation(s)
- Akeo Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
| | - Hiroaki Fujimoto
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| | - Kei Fukuda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto 860-0811, Japan
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako City, Saitama 351-0198, Japan
- Division of Life Science, Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura Ward, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Shimada A, Cahn J, Ernst E, Lynn J, Grimanelli D, Henderson I, Kakutani T, Martienssen RA. Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs. NATURE PLANTS 2024; 10:1304-1316. [PMID: 39223305 PMCID: PMC11410651 DOI: 10.1038/s41477-024-01773-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis. Fertility and segregation defects are epigenetically inherited with centromere 5, and can be rescued by directing artificial small RNAs to ATHILA5 retrotransposons that interrupt tandem satellite repeats. Epigenetically activated short interfering RNAs promote pericentromeric condensation, chromosome cohesion and chromosome segregation in mitosis. We propose that insertion of ATHILA silences centromeric transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs in the absence of DDM1. Parallels are made with the fission yeast Schizosaccharomyces pombe, where chromosome cohesion depends on RNA interference, and with humans, where chromosome segregation depends on both RNA interference and HELLSDDM1.
Collapse
Affiliation(s)
- Atsushi Shimada
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA
| | | | - Ian Henderson
- Department of Plant Sciences, Cambridge University, Cambridge, UK
| | | | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York, NY, USA.
| |
Collapse
|
7
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
8
|
Zhang H, Gu Z, Zeng Y, Zhang Y. Mechanism of heterochromatin remodeling revealed by the DDM1 bound nucleosome structures. Structure 2024; 32:1222-1230.e4. [PMID: 38870940 DOI: 10.1016/j.str.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The SWI/SNF2 chromatin remodeling factor decreased DNA methylation 1 (DDM1) is essential for the silencing of transposable elements (TEs) in both euchromatic and heterochromatic regions. Here, we determined the cryo-EM structures of DDM1-nucleosomeH2A and DDM1-nucleosomeH2A.W complexes at near-atomic resolution in the presence of the ATP analog ADP-BeFx. The structures show that nucleosomal DNA is unwrapped more on the surface of the histone octamer containing histone H2A than that containing histone H2A.W. DDM1 embraces one DNA gyre of the nucleosome and interacts with the N-terminal tails of histone H4. Although we did not observe DDM1-H2A.W interactions in our structures, the results of the pull-down experiments suggest a direct interaction between DDM1 and the core region of histone H2A.W. Our work provides mechanistic insights into the heterochromatin remodeling process driven by DDM1 in plants.
Collapse
Affiliation(s)
- Hongwei Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
9
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
10
|
Osakabe A, Takizawa Y, Horikoshi N, Hatazawa S, Negishi L, Sato S, Berger F, Kakutani T, Kurumizaka H. Molecular and structural basis of the chromatin remodeling activity by Arabidopsis DDM1. Nat Commun 2024; 15:5187. [PMID: 38992002 PMCID: PMC11239853 DOI: 10.1038/s41467-024-49465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Hitoshi Kurumizaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
James AM, Schmid EW, Walter JC, Farnung L. In silico screening identifies SHPRH as a novel nucleosome acidic patch interactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600687. [PMID: 38979307 PMCID: PMC11230416 DOI: 10.1101/2024.06.26.600687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Nucleosomes are the fundamental unit of eukaryotic chromatin. Diverse factors interact with nucleosomes to modulate chromatin architecture and facilitate DNA repair, replication, transcription, and other cellular processes. An important platform for chromatin binding is the H2A-H2B acidic patch. Here, we used AlphaFold-Multimer to screen over 7000 human proteins for nucleosomal acidic patch binding and identify 41 potential acidic patch binders. We determined the cryo-EM structure of one hit, SHPRH, with the nucleosome at 2.8 Å. The structure confirms the predicted acidic patch interaction, reveals that the SHPRH ATPase engages a different nucleosomal DNA location than other SF2-type ATPases, and clarifies the roles of SHPRH's domains in nucleosome recognition. Our results illustrate the use of in silico screening as a high throughput method to identify specific interaction types and expands the set of potential acidic patch binding factors. All the screening data is freely available at https://predictomes.org/view/acidicpatch.
Collapse
|
12
|
Torres JR, Sanchez DH. Emerging roles of plant transcriptional gene silencing under heat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38864847 DOI: 10.1111/tpj.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.
Collapse
Affiliation(s)
- José Roberto Torres
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Diego H Sanchez
- Facultad de Agronomía, IFEVA (CONICET-UBA), Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
13
|
Jia W, Li N, Wang J, Gong X, Ouedraogo SY, Wang Y, Zhao J, Grech G, Chen L, Zhan X. Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach. EPMA J 2024; 15:375-404. [PMID: 38841623 PMCID: PMC11148001 DOI: 10.1007/s13167-024-00359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/07/2024] [Indexed: 06/07/2024]
Abstract
Background DNA methylation is an important mechanism in epigenetics, which can change the transcription ability of genes and is closely related to the pathogenesis of ovarian cancer (OC). We hypothesize that DNA methylation is significantly different in OCs compared to controls. Specific DNA methylation status can be used as a biomarker of OC, and targeted drugs targeting these methylation patterns and DNA methyltransferase may have better therapeutic effects. Studying the key DNA methylation sites of immune-related genes (IRGs) in OC patients and studying the effects of these methylation sites on the immune microenvironment may provide a new method for further exploring the pathogenesis of OC, realizing early detection and effective monitoring of OC, identifying effective biomarkers of DNA methylation subtypes and drug targets, improving the efficacy of targeted drugs or overcoming drug resistance, and better applying it to predictive diagnosis, prevention, and personalized medicine (PPPM; 3PM) of OC. Method Hypermethylated subtypes (cluster 1) and hypomethylated subtypes (cluster 2) were established in OCs based on the abundance of different methylation sites in IRGs. The differences in immune score, immune checkpoints, immune cells, and overall survival were analyzed between different methylation subtypes in OC samples. The significant pathways, gene ontology (GO), and protein-protein interaction (PPI) network of the identified methylation sites in IRGs were enriched. In addition, the immune-related methylation signature was constructed with multiple regression analysis. A methylation site model based on IRGs was constructed and verified. Results A total of 120 IRGs with 142 differentially methylated sites (DMSs) were identified. The DMSs were clustered into a high-level methylation group (cluster 1) and a low-level methylation group (cluster 2). The significant pathways and GO analysis showed many immune-related and cancer-associated enrichments. A methylation site signature based on IRGs was constructed, including RORC|cg25112191, S100A13|cg14467840, TNF|cg04425624, RLN2|cg03679581, and IL1RL2|cg22797169. The methylation sites of all five genes showed hypomethylation in OC, and there were statistically significant differences among RORC|cg25112191, S100A13|cg14467840, and TNF|cg04425624 (p < 0.05). This prognostic model based on low-level methylation and high-level methylation groups was significantly linked to the immune microenvironment as well as overall survival in OC. Conclusions This study provided different methylation subtypes for OC patients according to the methylation sites of IRGs. In addition, it helps establish a relationship between methylation and the immune microenvironment, which showed specific differences in biological signaling pathways, genomic changes, and immune mechanisms within the two subgroups. These data provide ones to deeply understand the mechanism of immune-related methylation genes on the occurrence and development of OC. The methylation-site signature is also to establish new possibilities for OC therapy. These data are a precious resource for stratification and targeted treatment of OC patients toward an advanced 3PM approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00359-3.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Yan Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Junkai Zhao
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
14
|
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N. Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 2024; 81:222. [PMID: 38767725 PMCID: PMC11106227 DOI: 10.1007/s00018-024-05255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.
Collapse
Affiliation(s)
- Bapatla Kesava Pavan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Molecular Biology, Acrannolife Genomics Private Limited, Chennai, Tamilnadu, 600035, India
| | - Sébastien Beaubiat
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Chandra Bhan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Department of Genetics, Genomics, and Breeding, NIAB-EMR, East Malling, East Malling, ME19 6BJ, UK
| | - Ravit Eshed
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel.
| | - Nicolas Bouché
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
15
|
Candela-Ferre J, Diego-Martin B, Pérez-Alemany J, Gallego-Bartolomé J. Mind the gap: Epigenetic regulation of chromatin accessibility in plants. PLANT PHYSIOLOGY 2024; 194:1998-2016. [PMID: 38236303 PMCID: PMC10980423 DOI: 10.1093/plphys/kiae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Chromatin plays a crucial role in genome compaction and is fundamental for regulating multiple nuclear processes. Nucleosomes, the basic building blocks of chromatin, are central in regulating these processes, determining chromatin accessibility by limiting access to DNA for various proteins and acting as important signaling hubs. The association of histones with DNA in nucleosomes and the folding of chromatin into higher-order structures are strongly influenced by a variety of epigenetic marks, including DNA methylation, histone variants, and histone post-translational modifications. Additionally, a wide array of chaperones and ATP-dependent remodelers regulate various aspects of nucleosome biology, including assembly, deposition, and positioning. This review provides an overview of recent advances in our mechanistic understanding of how nucleosomes and chromatin organization are regulated by epigenetic marks and remodelers in plants. Furthermore, we present current technologies for profiling chromatin accessibility and organization.
Collapse
Affiliation(s)
- Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022Spain
| |
Collapse
|
16
|
Shi L, Ying K, Sha L, Zhang Y, Sun L, Li G. DNA-Peptide Interaction-Modulated Charge Reversal in Biomimetic Nanochannels for Simple and Efficient Detection of Histone Deacetylases. Anal Chem 2024; 96:4817-4824. [PMID: 38482584 DOI: 10.1021/acs.analchem.3c04819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Protein acetylation, a fundamental post-translational modification, plays a critical role in the regulation of gene expression and cellular processes. Monitoring histone deacetylases (HDACs) is important for understanding epigenetic dynamics and advancing the early diagnosis of malignancies. Here, we leverage the dynamic characteristics of DNA-peptide interactions in biomimetic nanochannels to develop a HDAC detection method. In specific, the catalysis of peptide deacetylation by HDACs triggers alterations in the charge states of the nanochannel surface to accommodate DNA molecules. Then, the interaction between DNA and peptides shifts the nanochannel surface charge from positive to negative, leading to a reversal of the ion current rectification (ICR). By calculation of the ICR ratio, quantitative detection of HDACs can be efficiently achieved using the nanochannel-based method in an enzyme-free and label-free manner. Our experimental results demonstrate that HDACs can be detected by using this method within a concentration range of 0.5-500 nM. The innate simplicity and efficiency of this strategy may render it a valuable tool for advancing both fundamental research and clinical applications in the realm of epigenetics and personalized medicine.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Keqin Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lingjun Sha
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
17
|
Liu Y, Zhang Z, Hu H, Chen W, Zhang F, Wang Q, Wang C, Yan K, Du J. Molecular basis of chromatin remodelling by DDM1 involved in plant DNA methylation. NATURE PLANTS 2024; 10:374-380. [PMID: 38413824 DOI: 10.1038/s41477-024-01640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers1. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components2-5. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation6-11. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeFx-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeFx-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhihui Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Wei Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qian Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kaige Yan
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
19
|
Kovalchuk I. Role of Epigenetic Factors in Response to Stress and Establishment of Somatic Memory of Stress Exposure in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3667. [PMID: 37960024 PMCID: PMC10648063 DOI: 10.3390/plants12213667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|