1
|
Xue R, Tang Q, Zhang Y, Xie M, Li C, Wang S, Yang H. Integrative Analyses of Genes Associated With Otologic Disorders in Turner Syndrome. Front Genet 2022; 13:799783. [PMID: 35273637 PMCID: PMC8902304 DOI: 10.3389/fgene.2022.799783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Loss or partial loss of one X chromosome induces Turner syndrome (TS) in females, causing major medical concerns, including otologic disorders. However, the underlying genetic pathophysiology of otologic disorders in TS is mostly unclear. Methods: Ear-related genes of TS (TSEs) were identified by analyzing differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO)-derived expression profiles and ear-genes in the Comparative Toxicogenomic Database (CTD). Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) analyses; Gene Set Enrichment Analysis (GSEA); and Gene Set Variation Analysis (GSVA) were adopted to study biological functions. Moreover, hub genes within the TSEs were identified by assessing protein-protein interaction (PPI), gene-microRNA, and gene-transcription factor (TF) networks. Drug-Gene Interaction Database (DGIdb) analysis was performed to predict molecular drugs for TS. Furthermore, three machine-learning analysis outcomes were comprehensively compared to explore optimal biomarkers of otologic disorders in TS. Finally, immune cell infiltration was analyzed. Results: The TSEs included 30 significantly upregulated genes and 14 significantly downregulated genes. Enrichment analyses suggested that TSEs play crucial roles in inflammatory responses, phospholipid and glycerolipid metabolism, transcriptional processes, and epigenetic processes, such as histone acetylation, and their importance for inner ear development. Subsequently, we described three hub genes in the PPI network and confirmed their involvement in Wnt/β-catenin signaling pathway and immune cell regulation and roles in maintaining normal auditory function. We also constructed gene-microRNA and gene-TF networks. A novel biomarker (SLC25A6) of the pathogenesis of otologic disorders in TS was identified by comprehensive comparisons of three machine-learning analyses with the best predictive performance. Potential therapeutic agents in TS were predicted using the DGIdb. Immune cell infiltration analysis showed that TSEs are related to immune-infiltrating cells. Conclusion: Overall, our findings have deepened the understanding of the pathophysiology of otologic disorders in TS and made contributions to present a promising biomarker and treatment targets for in-depth research.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Yergöz F, Friebel J, Kränkel N, Rauch-Kroehnert U, Schultheiss HP, Landmesser U, Dörner A. Adenine Nucleotide Translocase 1 Expression Modulates the Immune Response in Ischemic Hearts. Cells 2021; 10:cells10082130. [PMID: 34440901 PMCID: PMC8393693 DOI: 10.3390/cells10082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Adenine nucleotide translocase 1 (ANT1) transfers ATP and ADP over the mitochondrial inner membrane and thus supplies the cell with energy. This study analyzed the role of ANT1 in the immune response of ischemic heart tissue. Ischemic ANT1 overexpressing hearts experienced a shift toward an anti-inflammatory immune response. The shift was characterized by low interleukin (IL)-1β expression and M1 macrophage infiltration, whereas M2 macrophage infiltration and levels of IL-10, IL-4, and transforming growth factor (TGFβ) were increased. The modulated immune response correlated with high mitochondrial integrity, reduced oxidative stress, low left ventricular end-diastolic heart pressure, and a high survival rate. Isolated ANT1-transgenic (ANT1-TG) cardiomyocytes expressed low levels of pro-inflammatory cytokines such as IL-1α, tumor necrosis factor α, and TGFβ. However, they showed increased expression and cellular release of anti-inflammatory immunomodulators such as vascular endothelial growth factor. The secretome from ANT1-TG cardiomyocytes initiated stress resistance when applied to ischemic wild-type cardiomyocytes and endothelial cells. It additionally prevented macrophages from expressing pro-inflammatory cytokines. Additionally, ANT1 expression correlated with genes that are related to cytokine and growth factor pathways in hearts of patients with ischemic cardiomyopathy. In conclusion, ANT1-TG cardiomyocytes secrete soluble factors that influence ischemic cardiac cells and initiate an anti-inflammatory immune response in ischemic hearts.
Collapse
Affiliation(s)
- Fatih Yergöz
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ursula Rauch-Kroehnert
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- Institute of Health Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12200 Berlin, Germany; (F.Y.); (J.F.); (N.K.); (U.R.-K.); (U.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513-727
| |
Collapse
|
3
|
Calcium Phosphate Coating Prepared by Microarc Oxidation Affects hTERT Expression, Molecular Presentation, and Cytokine Secretion in Tumor-Derived Jurkat T Cells. MATERIALS 2020; 13:ma13194307. [PMID: 32992463 PMCID: PMC7579201 DOI: 10.3390/ma13194307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2–5 μm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150–300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3–0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and β-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5–2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2–14 days) 1.5–6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.
Collapse
|
4
|
Mock J, Pellegrino C, Neri D. A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci Rep 2020; 10:3234. [PMID: 32094407 PMCID: PMC7040017 DOI: 10.1038/s41598-020-60182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Engineered cytokine products represent a growing class of therapeutic proteins which need to be tested for biological activity at various stages of pharmaceutical development. In most cases, dedicated biological assays are established for different products, in a process that can be time-consuming and cumbersome. Here we describe the development and implementation of a universal cell-based reporter system for various classes of immunomodulatory proteins. The novel system capitalizes on the fact that the signaling of various types of pro-inflammatory agents (e.g., cytokines, chemokines, Toll-like receptor agonists) may involve transcriptional activation by NF-κB. Using viral transduction, we generated stably-transformed cell lines of B or T lymphocyte origin and compared the new reporter cell lines with conventional bioassays. The experimental findings with various interleukins and with members of the TNF superfamily revealed that the newly-developed “universal” bioassay method yielded bioactivity data which were comparable to the ones obtained with dedicated conventional methods. The engineered cell lines with reporters for NF-κB were tested with several antibody-cytokine fusions and may be generally useful for the characterization of novel immunomodulatory products. The newly developed methodology also revealed a mechanism for cytokine potentiation, based on the antibody-mediated clustering of TNF superfamily members on tumor-associated extracellular matrix components.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
5
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Dabbaghizadeh A, Morrow G, Amer YO, Chatelain EH, Pichaud N, Tanguay RM. Identification of proteins interacting with the mitochondrial small heat shock protein Hsp22 of Drosophila melanogaster: Implication in mitochondrial homeostasis. PLoS One 2018; 13:e0193771. [PMID: 29509794 PMCID: PMC5839585 DOI: 10.1371/journal.pone.0193771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
The small heat shock protein (sHsp) Hsp22 from Drosophila melanogaster (DmHsp22) is part of the family of sHsps in this diptera. This sHsp is characterized by its presence in the mitochondrial matrix as well as by its preferential expression during ageing. Although DmHsp22 has been demonstrated to be an efficient in vitro chaperone, its function within mitochondria in vivo remains largely unknown. Thus, determining its protein-interaction network (interactome) in the mitochondrial matrix would help to shed light on its function(s). In the present study we combined immunoaffinity conjugation (IAC) with mass spectroscopy analysis of mitochondria from HeLa cells transfected with DmHsp22 in non-heat shock condition and after heat shock (HS). 60 common DmHsp22-binding mitochondrial partners were detected in two independent IACs. Immunoblotting was used to validate interaction between DmHsp22 and two members of the mitochondrial chaperone machinery; Hsp60 and Hsp70. Among the partners of DmHsp22, several ATP synthase subunits were found. Moreover, we showed that expression of DmHsp22 in transiently transfected HeLa cells increased maximal mitochondrial oxygen consumption capacity and ATP contents, providing a mechanistic link between DmHsp22 and mitochondrial functions.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Yasmine Ould Amer
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Etienne Hebert Chatelain
- Laboratoire de Signalisation Mitochondriale, Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Laboratoire de Biochimie et Physiologie Comparée, Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada
| | - Robert M Tanguay
- Laboratoire de Génétique Cellulaire et Développementale, IBIS and PROTEO, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
7
|
The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One 2015; 10:e0117269. [PMID: 25822738 PMCID: PMC4378930 DOI: 10.1371/journal.pone.0117269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
The genetic improvement of disease resistance in poultry continues to be a challenge. To identify candidate genes and loci responsible for these traits, genome-wide association studies using the chicken 60k high density single nucleotide polymorphism (SNP) array for six immune traits, total serum immunoglobulin Y (IgY) level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against Avian Influenza Virus (AIV) and Sheep Red Blood Cell (SRBC), were performed. RT-qPCR was used to quantify the relative expression of the identified candidate genes. Nine significantly associated SNPs (P < 2.81E-06) and 30 SNPs reaching the suggestively significant level (P < 5.62E-05) were identified. Five of the 10 SNPs that were suggestively associated with the antibody response to SRBC were located within or close to previously reported QTL regions. Fifteen SNPs reached a suggestive significance level for AIV antibody titer and seven were found on the sex chromosome Z. Seven suggestive markers involving five different SNPs were identified for the numbers of heterophils and lymphocytes, and the heterophil/lymphocyte ratio. Nine significant SNPs, all on chromosome 16, were significantly associated with serum total IgY concentration, and the five most significant were located within a narrow region spanning 6.4kb to 253.4kb (P = 1.20E-14 to 5.33E-08). After testing expression of five candidate genes (IL4I1, CD1b, GNB2L1, TRIM27 and ZNF692) located in this region, changes in IL4I1, CD1b transcripts were consistent with the concentrations of IgY, while abundances of TRIM27 and ZNF692 showed reciprocal changes to those of IgY concentrations. This study has revealed 39 SNPs associated with six immune traits (total serum IgY level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against AIV and SRBC) in Beijing-You chickens. The narrow region spanning 247kb on chromosome 16 is an important QTL for serum total IgY concentration. Five candidate genes related to IgY level validated here are novel and may play critical roles in the modulation of immune responses. Potentially useful candidate SNPs for marker-assisted selection for disease resistance are identified. It is highly likely that these candidate genes play roles in various aspects of the immune response in chickens.
Collapse
|
8
|
Meitern R, Andreson R, Hõrak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014; 15:533. [PMID: 24972896 PMCID: PMC4092216 DOI: 10.1186/1471-2164-15-533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Background Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. Results A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. Conclusions This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-533) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | |
Collapse
|
9
|
Ravera S, Nobbio L, Visigalli D, Bartolucci M, Calzia D, Fiorese F, Mancardi G, Schenone A, Morelli A, Panfoli I. Oxydative phosphorylation in sciatic nerve myelin and its impairment in a model of dysmyelinating peripheral neuropathy. J Neurochem 2013; 126:82-92. [PMID: 23578247 DOI: 10.1111/jnc.12253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/30/2022]
Abstract
Myelin sheath is the proteolipid membrane wrapping the axons of CNS and PNS. We have shown data suggesting that CNS myelin conducts oxidative phosphorylation (OXPHOS), challenging its role in limiting the axonal energy expenditure. Here, we focused on PNS myelin. Samples were: (i) isolated myelin vesicles (IMV) from sciatic nerves, (ii) mitochondria from primary Schwann cell cultures, and (iii) sciatic nerve sections, from wild type or Charcot-Marie-Tooth type 1A (CMT1A) rats. The latter used as a model of dys-demyelination. O₂ consumption and activity of OXPHOS proteins from wild type (Wt) or CMT1A sciatic nerves showed some differences. In particular, O₂ consumption by IMV from Wt and CMT1A 1-month-old rats was comparable, while it was severely impaired in IMV from adult affected animals. Mitochondria extracted from CMT1A Schwann cell did not show any dysfunction. Transmission electron microscopy studies demonstrated an increased mitochondrial density in dys-demyelinated axons, as to compensate for the loss of respiration by myelin. Confocal immunohistochemistry showed the expression of OXPHOS proteins in the myelin sheath, both in Wt and dys-demyelinated nerves. These revealed an abnormal morphology. Taken together these results support the idea that also PNS myelin conducts OXPHOS to sustain axonal function.
Collapse
|
10
|
Yoon TD, Lee HW, Kim YS, Choi HJ, Moon JO, Yoon S. Identification and analysis of expressed genes using a cDNA library from rat thymus during regeneration following cyclophosphamide-induced T cell depletion. Int J Mol Med 2013; 31:731-9. [PMID: 23314113 DOI: 10.3892/ijmm.2013.1238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/12/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the mechanisms of thymus regeneration is necessary for designing strategies to enhance host immunity when immune function is suppressed due to T cell depletion. In this study, expressed sequence tag (EST) analysis was performed following generation of a regenerating thymus cDNA library to identify genes expressed in thymus regeneration. A total of 1,000 ESTs were analyzed, of which 770 (77%) matched to known genes, 178 matched to unknown genes (17.8%) and 52 (5.2%) did not match any known sequences. The ESTs matched to known genes were grouped into eight functional categories: gene/protein synthesis (28%), metabolism (24%), cell signaling and communication (17%), cell structure and motility (6%), cell/organism defense and homeostasis (6%), cell division (3%), cell death/apoptosis (2%), and unclassified genes (14%). Based on the data of RT-PCR analysis, the expression of TLP, E2IG2, pincher, Paip2, TGF-β1, 4-1BB and laminin α3 genes was increased during thymus regeneration. These results provide extensive molecular information, for the first time, on thymus regeneration indicating that the regenerating thymus cDNA library may be a useful source for identifying various genes expressed during thymus regeneration.
Collapse
Affiliation(s)
- Tae-Deuk Yoon
- Department of Anatomy, Pusan National University, School of Medicine, Yangsan, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Helena Mangs A, Morris BJ. The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr Genomics 2011; 8:129-36. [PMID: 18660847 DOI: 10.2174/138920207780368141] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/23/2007] [Accepted: 02/24/2007] [Indexed: 12/27/2022] Open
Abstract
The pseudoautosomal regions (PAR1 and PAR2) of the human X and Y chromosomes pair and recombine during meiosis. Thus genes in this region are not inherited in a strictly sex-linked fashion. PAR1 is located at the terminal region of the short arms and PAR2 at the tips of the long arms of these chromosomes. To date, 24 genes have been assigned to the PAR1 region. Half of these have a known function. In contrast, so far only 4 genes have been discovered in the PAR2 region. Deletion of the PAR1 region results in failure of pairing and male sterility. The gene SHOX (short stature homeobox-containing) resides in PAR1. SHOX haploinsufficiency contributes to certain features in Turner syndrome as well as the characteristics of Leri-Weill dyschondrosteosis. Only two of the human PAR1 genes have mouse homologues. These do not, however, reside in the mouse PAR1 region but are autosomal. The PAR regions seem to be relics of differential additions, losses, rearrangements and degradation of the X and Y chromosome in different mammalian lineages. Marsupials have three homologues of human PAR1 genes in their autosomes, although, in contrast to mouse, do not have a PAR region at all. The disappearance of PAR from other species seems likely and this region will only be rescued by the addition of genes to both X and Y, as has occurred already in lemmings. The present review summarizes the current understanding of the evolution of PAR and provides up-to-date information about individual genes residing in this region.
Collapse
Affiliation(s)
- A Helena Mangs
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
12
|
Yang L, He Y, Kong Q, Zhang W, Xi D, Mao H, Deng W. Isolation, nucleotide identification and tissue expression of three novel ovine genes-SLC25A4, SLC25A5 and SLC25A6. Mol Biol Rep 2009; 37:2743-8. [PMID: 19763879 DOI: 10.1007/s11033-009-9812-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/02/2009] [Indexed: 01/07/2023]
Abstract
The complete coding sequences of three of sheep genes SLC25A4, SLC25A5 and SLC25A6 were firstly amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) according to the conserved sequence information of the cattle or other mammals and known highly homologous sheep ESTs. Sheep SLC25A4, SLC25A5 and SLC25A6 genes encode three corresponding proteins of 298 amino acids which contain the identically conserved putative mitochondrial carrier protein domain. Sheep SLC25A4 protein has high homology with the SLC25A4 proteins of six species-cattle (99%), human (95%), rat (95%), mouse (94%), dog (94%) and chicken (89%). Sheep SLC25A5 protein has high identity with the SLC25A5 proteins of five species-cattle (100%), dog (99%), mouse (98%), rat (98%) and human (98%). Sheep SLC25A6 protein also has high homology with the SLC25A6 proteins of four species-cattle (99%), human (97%), pig (97%) and chicken (93%). The phylogenetic tree analysis demonstrated that sheep SLC25A4, SLC25A5 and SLC25A6 proteins share a common ancestor. Moreover, SLC25A4, SLC25A5 and SLC25A6 proteins present stronger interaction each other. The tissue expression analysis indicated that sheep SLC25A4, SLC25A5 and SLC25A6 genes were expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for further insight into these three sheep genes.
Collapse
Affiliation(s)
- Liangyu Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | | | |
Collapse
|
13
|
SOCS1 protects protein tyrosine phosphatases by thioredoxin upregulation and attenuates Jaks to suppress ROS-mediated apoptosis. Oncogene 2009; 28:3145-56. [PMID: 19561639 DOI: 10.1038/onc.2009.169] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Suppressors of cytokine signaling (SOCS) are negative regulators of cytokine-induced signal transduction, which play multiple roles in cell growth, differentiation and apoptosis. In this study, the regulatory role of SOCS in oxidative stress-induced apoptosis was investigated. In Jurkat T cells and mouse splenocytes, we have found that SOCS1 is induced in response to tumor necrosis factor-alpha or H(2)O(2), concomitant with the activation of Jaks which act as important mediators of reactive oxygen species (ROS)-induced apoptosis upstream of p38 mitogen-activated protein kinase. Using SOCS1 overexpressing or knockdown Jurkat T-cell systems we clearly demonstrate that, SOCS1 inhibits the ROS-mediated apoptosis. The antiapoptotic action of SOCS1 was exerted not only by suppressing Jaks, but also by sustaining protein tyrosine phosphatase (PTP) activities. Notably, SOCS1-transduced cells displayed increase in thioredoxin levels and decrease in ROS generation induced by oxidative stress. In addition, the Jak-inhibiting and PTP-sustaining effect of SOCS1 was significantly reduced on thioredoxin ablation. Moreover, coimmunoprecipitation data revealed molecular interaction of SHP1 or CD45 with thioredoxin, which was promoted in SOCS1-transfected cells. Together, our data strongly suggest that both the protection of PTPs by thioredoxin from ROS attack and the attenuation of Jaks account for the antiapoptotic function of SOCS1 in immune cells under oxidative stress.
Collapse
|
14
|
Kim SH, Oh J, Choi JY, Jang JY, Kang MW, Lee CE. Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production. BMC Immunol 2008; 9:64. [PMID: 18983687 PMCID: PMC2596082 DOI: 10.1186/1471-2172-9-64] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 11/05/2008] [Indexed: 02/07/2023] Open
Abstract
Background IFN-γ is a multifunctional peptide with a potent immune defense function which is also known as a prototypic Th1 cytokine. While screening for genes differentially expressed by Th1 and Th2 cytokines, human thioredoxin was identified as a novel target gene induced by IFN-γ. The mechanism by which thioredoxin is induced by IFN-γ and the signaling pathways involved in its induction were analyzed. In addition, the effects of thioredoxin on immune cell survival and cytokine production were examined by thioredoxin over-expression and recombinant thioredoxin treatment. Results Human thioredoxin was selectively induced by IFN-γ in monocytic and T cell lines. In monocytic cells, the induction of thioredoxin gene expression by IFN-γ was dose-dependent, and both the mRNA and protein levels were increased by 2~3 fold within 4 to 24 h hours of IFN-γ treatment. The thioredoxin induction by IFN-γ was insensitive to cycloheximide treatment, suggesting that it is a primary response gene induced by IFN-γ. Subsequent analysis of the signaling pathways indicated that the Jak/Stat, Akt, and Erk pathways play a role in IFN-γ signaling that leads to thioredoxin gene expression. Thioredoxin was induced by oxidative or radiation stresses, and it protected the immune cells from apoptosis by reducing the levels of reactive oxygen species. Furthermore, thioredoxin modulated the oxidant-induced cytokine balance toward Th1 by counter-regulating the production of IL-4 and IFN-γ in T cells. Conclusion These data suggest that thioredoxin is an IFN-γ-induced factor that may play a role in developing Th1 immunity and in the maintenance of immune homeostasis upon infection, radiation, and oxidative stress.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Laboratory of Immunology, Department of Biological Science, Sungkyunkwan University, Suwon, Korea.
| | | | | | | | | | | |
Collapse
|
15
|
van Grevenynghe J, Halwani R, Chomont N, Ancuta P, Peretz Y, Tanel A, Procopio FA, shi Y, Said EA, Haddad EK, Sekaly RP. Lymph node architecture collapse and consequent modulation of FOXO3a pathway on memory T- and B-cells during HIV infection. Semin Immunol 2008; 20:196-203. [PMID: 18757210 DOI: 10.1016/j.smim.2008.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/16/2022]
Abstract
Lymph nodes (LNs) represent the principal site where antigen-specific memory T- and B-cell responses are primed and differentiated into memory and effector cells. During chronic viral infections such as HIV, these lymphoid tissues undergo substantial structural changes. These changes are mostly caused by an imbalanced cytokine milieu, hyper-immune activation and collagen deposition leading to fibrotic LNs. The structural integrity of the LNs is essential to prime and maintain memory responses. Because cellular signalling events both up- and down-stream of FOXO3a are critical to the generation and the maintenance of lymphocyte memory, this review will focus on the interplay between the deregulation of the immune system caused by the virus and its impact on FOXO3a.
Collapse
Affiliation(s)
- Julien van Grevenynghe
- Laboratoire d'Immunologie, Centre de Recherche, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kang MW, Jang JY, Choi JY, Kim SH, Oh J, Cho BS, Lee CE. Induction of IFN-gamma gene expression by thioredoxin: positive feed-back regulation of Th1 response by thioredoxin and IFN-gamma. Cell Physiol Biochem 2008; 21:215-24. [PMID: 18209488 DOI: 10.1159/000113763] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2007] [Indexed: 12/16/2022] Open
Abstract
T cell differentiation, which leads to the generation of Th cells with a characteristic cytokine expression pattern, is regulated by diverse factors. In addition to the cytokine environment, the cellular redox status often serves as an important factor in survival and differentiation of Th cells. Thioredoxin, an intracellular redox sensor protein, has been suggested in the induction of Th1 response through the production of IL-12 by monocytes. Here we report that thioredoxin expression is up-regulated by IFN-gamma and other Th1 type cytokines in human primary immune cells, and that the overexpression of thioredoxin resulted in a specific increase in the mRNA level and promoter activity of IFN-gamma in mitogen-stimulated Jurkat T cells. Using the active site mutant (C32S/C35S) of thioredoxin, we demonstrate that such IFN-gamma-inducing capacity of thioredoxin is dependent on the redox-sensing activity of thioredoxin and involves the activation of transcription factors such as NF-kappaB and Stat1. Together, the results of the present study suggest that thioredoxin is a direct stimulator of IFN-gamma gene expression in human T cells and that there is a positive feed-back circuit by IFN-gamma and thioredoxin in the regulation of Th1 immune response.
Collapse
Affiliation(s)
- Myoung-Wha Kang
- Laboratory of Immunology, Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Yang Z, Cheng W, Hong L, Chen W, Wang Y, Lin S, Han J, Zhou H, Gu J. Adenine nucleotide (ADP/ATP) translocase 3 participates in the tumor necrosis factor induced apoptosis of MCF-7 cells. Mol Biol Cell 2007; 18:4681-9. [PMID: 17855512 PMCID: PMC2043556 DOI: 10.1091/mbc.e06-12-1161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial adenine nucleotide translocase (ANT) is believed to be a component or a regulatory component of the mitochondrial permeability transition pore (mtPTP), which controls mitochondrial permeability transition during apoptosis. However, the role of ANT in apoptosis is still uncertain, because hepatocytes isolated from ANT knockout and wild-type mice are equally sensitive to TNF- and Fas-induced apoptosis. In a screen for genes required for tumor necrosis factor alpha (TNF-alpha)-induced apoptosis in MCF-7 human breast cancer cells using retrovirus insertion-mediated random mutagenesis, we discovered that the ANT3 gene is involved in TNF-alpha-induced cell death in MCF-7 cells. We further found that ANT3 is selectively required for TNF- and oxidative stress-induced cell death in MCF-7 cells, but it is dispensable for cell death induced by several other inducers. This data supplements previous data obtained from ANT knockout studies, indicating that ANT is involved in some apoptotic processes. We found that the resistance to TNF-alpha-induced apoptosis observed in ANT3 mutant (ANT3(mut)) cells is associated with a deficiency in the regulation of the mitochondrial membrane potential and cytochrome c release. It is not related to intracellular ATP levels or survival pathways, supporting a previous model in which ANT regulates mtPTP. Our study provides genetic evidence supporting a role of ANT in apoptosis and suggests that the involvement of ANT in cell death is cell type- and stimulus-dependent.
Collapse
Affiliation(s)
- Ziqiang Yang
- *National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Cheng
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Lixin Hong
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Wanze Chen
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Yanhai Wang
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Shengcai Lin
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Jiahuai Han
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; and
| | - Huamin Zhou
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jun Gu
- *National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Lu YC, Huang CC, Huang CJ, Chu ST, Chi CC, Su HH, Hsu SS, Wang JL, Chen IS, Liu SI, Huang JK, Ho CM, Kuo SJ, Jan CR. Effects ofAntrodia camphorata on viability, apoptosis, [Ca2+]i, and MAPKs phosphorylation in MG63 human osteosarcoma cells. Drug Dev Res 2007. [DOI: 10.1002/ddr.20168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|