1
|
Lv P, Zhang X, Song M, Hao G, Wang F, Sun S. Oral administration of recombinant Bacillus subtilis expressing a multi-epitope protein induces strong immune responses against Salmonella Enteritidis. Vet Microbiol 2023; 276:109632. [PMID: 36521295 DOI: 10.1016/j.vetmic.2022.109632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The S. Enteritidis causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against an S. Enteritidis infection because mucosa plays an important role in preventing S. Enteritidis from entering the body. In order to develop novel and potent oral vaccines based on Bacillus subtilis (B. subtilis) to control the spread of S. Enteritidis in the poultry industry, we constructed a B. subtilis that can secrete a multi-epitope protein (OmpC-FliC-SopF-SseB-IL-18). Oral immunization of chickens was performed, and serum antibodies, mucosal antibodies, specific cellular immunity and serum cytokines were detected. Immunizing chicks with S. Enteritidis was evaluated. The results showed high levels of specific IgG in addition to high levels of specific secretory immunoglobulin A (sIgA) in chickens who received oral administrations of recombinant B. subtilis. Additionally, recombinant B. subtilis may significantly increase the levels of IL-2 and T cell-mediated immunity. Recombinant B. subtilis effectively protected chickens against S. Enteritidis and reduced pathological damage to the spleen and jejunum. Our study's outcomes indicate that the expression of the multi-epitope protein OmpC-FliC-SopF-SseB-IL-18 by B. subtilis could generate a mucosal vaccine candidate for animals to defend against S. Enteritidis in the future.
Collapse
Affiliation(s)
- Penghao Lv
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xuesong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guijuan Hao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Arbulo-Echevarria MM, Vico-Barranco I, Zhang F, Fernandez-Aguilar LM, Chotomska M, Narbona-Sánchez I, Zhang L, Malissen B, Liang Y, Aguado E. Mutation of the glycine residue preceding the sixth tyrosine of the LAT adaptor severely alters T cell development and activation. Front Immunol 2022; 13:1054920. [PMID: 36569841 PMCID: PMC9768323 DOI: 10.3389/fimmu.2022.1054920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.
Collapse
Affiliation(s)
- Mikel M. Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Fanghui Zhang
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Luis M. Fernandez-Aguilar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Martyna Chotomska
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Lichen Zhang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain,*Correspondence: Enrique Aguado,
| |
Collapse
|
3
|
Nonconditioned ADA-SCID gene therapy reveals ADA requirement in the hematopoietic system and clonal dominance of vector-marked clones. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:424-433. [PMID: 34786435 PMCID: PMC8566957 DOI: 10.1016/j.omtm.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Two patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (ADA-SCID) received stem cell-based gene therapy (SCGT) using GCsapM-ADA retroviral vectors without preconditioning in 2003 and 2004. The first patient (Pt1) was treated at 4.7 years old, and the second patient (Pt2), who had previously received T cell gene therapy (TCGT), was treated at 13 years old. More than 10 years after SCGT, T cells showed a higher vector copy number (VCN) than other lineages. Moreover, the VCN increased with differentiation toward memory T and B cells. The distribution of vector-marked cells reflected variable levels of ADA requirements in hematopoietic subpopulations. Although neither patient developed leukemia, clonal expansion of SCGT-derived clones was observed in both patients. The use of retroviral vectors yielded clonal dominance of vector-marked clones, irrespective of the lack of leukemic changes. Vector integration sites common to all hematopoietic lineages suggested the engraftment of gene-marked progenitors in Pt1, who showed severe osteoblast (OB) insufficiency compared to Pt2, which might cause a reduction in the stem/progenitor cells in the bone marrow (BM). The impaired BM microenvironment due to metabolic abnormalities may create space for the engraftment of vector-marked cells in ADA-SCID, despite the lack of preconditioning.
Collapse
|
4
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
5
|
Song J, Zhao L, Song M. A Lactococcus lactis-vectored oral vaccine induces protective immunity of mice against enterotoxigenic Escherichia coli lethal challenge. Immunol Lett 2020; 225:57-63. [PMID: 32569608 DOI: 10.1016/j.imlet.2020.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a global primary pathogenic bacterium causing diarrhoea in human and a wide variety of neonatal animals. Lactococcus lactis as non-pathogenic and food-grade lactic acid bacteria has already been explored as a vector for mucosal vaccine. Here, the current study was undertaken to evaluate the live recombinant L. lactis (rL. lactis) vaccine expressing the trivalent enterotoxin protein STa-LTB-STb and the F5 fimbrial antigen (SLS-F5) with OmpH of Yersinia enterocolitica in protection against ETEC. Western blot confirmed the expression of fusion protein SLS-F5-OmpH in nisin-controlled expression (NICE) system. Mice orally immunized with rL. lactis-SLS-F5-OmpH were observed to produce high levels of mucosal SIgA and serum IgG antibodies, while also inducing increases in the production of CD4+ and CD8+ T cells, lymphocyte proliferation, and secretion of cytokines. Moreover, orally immunized mice produced complete protection after ETEC challenge. The above results suggested that rL. lactis-SLS-F5-OmpH has the potential as a candidate for oral vaccine against ETEC.
Collapse
Affiliation(s)
- Jijun Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Harbin Weike Biotechnology Co. Ltd., Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangyou Zhao
- Drug Safety Evaluation Center of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
6
|
Wang Y, Miao Y, Hu LP, Kai W, Zhu R. Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-b-x expressed by Bacillus subtilis. Mol Immunol 2020; 123:88-96. [PMID: 32447084 DOI: 10.1016/j.molimm.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
The anaerobic pathogen Clostridium perfringens is the most potent cause of intestinal diseases, such as enterotoxemia, hemorrhagic enteritis, and lamb dysentery, in sheep. Three toxinotypes (B, C, and D) are usually the cause of these diseases and are mainly mediated via three important exotoxins: alpha toxin (CPA), beta toxin (CPB), and epsilon toxin (ETX). We have designed a chimeric protein, rCpa-b-x, that contains the C-terminal binding region of CPA, partial sequence of CPB, and ETX (Cpa247-370, Cpb108-305, and EtxH118P, respectively) according to the principle of structural vaccinology. The rCpa-b-x protein was then expressed by pHT43 plasmid in vivo using Bacillus subtilis as a delivery vector (Bs-pHT43-Cpa-b-x). The immunological activity of the rCpa-b-x protein was verified by western blot and its immunological efficacy was evaluated in a murine model. Oral administration with a recombinant agent caused local mucosal and systemic immune responses, and serum lgG and intestinal mucosal secretory IgA (sIgA) antibody titers were significantly increased. Levels of IL-2, IL-4, and IFN-γ were significantly higher in lymphocytes isolated from the Bs-pHT43-Cpa-b-x group compared with levels from the control groups. The percentages of CD4+ and CD8+ T lymphocytes in the Bs-pHT43-Cpa-b-x and inactivated vaccine (IV) groups were in the normal range. Mice of vaccine groups and control groups were challenged with 1x LD100 unit filtrate containing alpha, beta, and epsilon toxins. Mice in the Bs-pHT43-Cpa-b-x group were found to have lower rates of morbidity. The active immunization of mice with Bs-pHT43-Cpa-b-x still maintained 85% to 90% survival at the end of the 10-day observation period, whereas mice of control groups died within two to five days. The results of this study demonstrate the effectiveness of Bs-pHT43-Cpa-b-x in preventing C. perfringens infection in mice, and that Bs-pHT43-Cpa-b-x could be considered a potential vaccine against C. perfringens.
Collapse
Affiliation(s)
- Yujian Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Li-Ping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - Wei Kai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| |
Collapse
|
7
|
Gao Z, Zhang C, Jing L, Feng M, Li R, Yang Y. The structural characterization and immune modulation activitives comparison of Codonopsis pilosula polysaccharide (CPPS) and selenizing CPPS (sCPPS) on mouse in vitro and vivo. Int J Biol Macromol 2020; 160:814-822. [PMID: 32446900 DOI: 10.1016/j.ijbiomac.2020.05.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023]
Abstract
Codonopsis pilosula polysaccharide (CPPS) and selenizing CPPS (sCPPS) were prepared and identified by a combination of chemical and instrumental analysis. Their immune modulation activities were compared by lymphocyte proliferation and flowcytometry tests in vitro or serum antibody responses and cytokines with immunization against OVA mice in vivo. The results showed that the sCPPS was successfully modified in selenylation. In vitro, the sCPPS were more effective compared with CPPS in promoting lymphocyte proliferation synergistically with PHA or LPS and increasing the ratio of CD4+ to CD8 + T cells. In vivo, sCPPS could significantly raised IgG, IgM, IFN-γ, IL-2 and IL-4 contents in the serum of mouse against OVA in comparison with CPPS. These results indicate that selenylation modification can enhance the immune modulation activitives of CPPS. sCPPS would be as a component drug of new-type immunoenhancer.
Collapse
Affiliation(s)
- Zhenzhen Gao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Chao Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Lirong Jing
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Min Feng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ran Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ying Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| |
Collapse
|
8
|
Long-Term Effects of Experimental Human Endotoxemia on Immune Cell Function: Similarities and Differences With Sepsis. Shock 2019; 51:678-689. [DOI: 10.1097/shk.0000000000001222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Immunomodulatory Effects of Robinia pseudoacacia Polysaccharides on Live Vaccine against Infectious Bronchitis in Immunosuppressive Chickens. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9542759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In order to investigate the immunomodulatory effect of Robinia pseudoacacia Polysaccharides (RPPS) on vaccine against Infectious Bronchitis (IB) in immunosuppressive chickens, the artificial leukemia chicken model was established and then the IB live vaccine (H120 strain) was immunized. The immunomodulatory efficacy of RPPS was determined by the antibody titer, the lymphocyte transformation rate in peripheral blood, the CD4+ and CD8+ T lymphocyte levels in peripheral blood, and the cytokine levels in the serum. The results showed that RPPS could not only enhance the immune effect of IB live vaccine but also improve the immunity of immunosuppressive chickens. Thus, the function of RPPS immunopotentiator could be further developed.
Collapse
|
10
|
Yang S, Li G, Zhao Z, Huang Z, Fu J, Song M, Lin S, Zhu R. Taishan Pinus massoniana Pollen Polysaccharides Enhance Immune Responses in Chickens Infected by Avian Leukosis Virus Subgroup B. Immunol Invest 2018; 47:443-456. [DOI: 10.1080/08820139.2018.1435689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ruiliang Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
11
|
Ruwali P, Ambwani TK, Gautam P. In vitro immunomodulatory potential of Artemisia indica Willd. in chicken lymphocytes. Vet World 2018; 11:80-87. [PMID: 29479161 PMCID: PMC5813516 DOI: 10.14202/vetworld.2018.80-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Aim: Evaluation of the in vitro immunomodulatory potential of Artemisia indica Willd. methanolic extract in chicken lymphocyte culture system through lymphocyte (B and T cells) proliferation assay, after standardizing the maximum non-cytotoxic dose (MNCD) in chicken lymphocytes. Materials and Methods: Fresh aerial parts of A. indica Willd. (family: Asteraceae) specimens were collected (altitude 1560 m), gotten authenticated, processed, dried, and Soxhlet extracted to yield methanolic extract (AME). Chicken splenocytes were isolated from spleens collected from healthy birds; lymphocytes were separated by density gradient centrifugation, percentage cell viability determined and final cell count adjusted to 107 cells/ml in RPMI-1640 medium. MNCD of AME in chicken lymphocytes was determined through 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide dye reduction assay. Immunomodulatory potential of AME was evaluated through lymphocytes proliferation or B and T cells blastogenesis assay in the presence of appropriate mitogens, namely, lipopolysaccharide (LPS) and concanavalin A (Con A), respectively. Results: Maximum concentration of AME exhibiting 100% cell viability (MNCD) was 200 μg/ml and was selected for further in vitro analysis. The in vitro exposure of chicken lymphocytes to 200 µg/ml dose of AME, resulted in significant (p<0.05) upregulation of 11.76% in B cell proliferation in the presence of B cell mitogen (LPS) and a significant (p<0.05) increase of 12.018% T cells proliferation in the presence of the mitogen (Con A), as compared to the control. Conclusion: The significant upregulation in the proliferation of two major cell types modulating the immune system is an indication of the immunostimulatory potential of the plant. It would be worthwhile to further evaluate A. indica on relevant immunomodulatory aspects, especially the in vivo studies in a poultry system.
Collapse
Affiliation(s)
- Pushpa Ruwali
- Department of Biotechnology, Graphic Era University, Dehradun - 248 002, Uttarakhand, India
| | - Tanuj Kumar Ambwani
- Department of Veterinary Physiology and Biochemistry, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar - 263 145; Uttarakhand, India
| | - Pankaj Gautam
- Department of Biotechnology, Graphic Era University, Dehradun - 248 002, Uttarakhand, India
| |
Collapse
|
12
|
Recombinant Lactobacillus casei expressing Clostridium perfringens toxoids α, β2, ε and β1 gives protection against Clostridium perfringens in rabbits. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.05.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Yang Y, Wei K, Yang S, Li B, Zhang Y, Zhu F, Wang D, Chi S, Jiang X, Zhu R. Co-adjuvant effects of plant polysaccharide and propolis on chickens inoculated with Bordetella avium inactivated vaccine. Avian Pathol 2016; 44:248-53. [PMID: 25989924 DOI: 10.1080/03079457.2015.1040372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Taishan Pinus massoniana pollen polysaccharide (TPPPS), propolis (PP) and aloe polysaccharide (AP), used as adjuvants, have been proven to possess immunity-enhancing functions. However, their collaborative immunomodulatory effects are largely unknown. To determine which combination can induce the best effects, the three adjuvants were separately or conjointly added into Bordetella avium inactivated vaccines to investigate their co-adjuvant effects on vaccinated chickens. We found that, among all six adjuvant-treated vaccine inoculated groups (TPPPS, PP, AP, TPPPS-PP, PP-AP and TPPPS-AP), the chickens inoculated with TPPPS, PP or TPPPS-PP adjuvant vaccines showed significantly higher levels of antibody titre, cytokine, lymphocyte transformation and peripheral blood T-lymphocyte count than those of non-adjuvant vaccine inoculated groups (P < 0.05), indicating the good immune-enhancing effects of TPPPS and PP. The TPPPS-PP group showed the highest levels of antibody titres and interleukin-2 (IL-2) at 14-28 days post the first inoculation (dpi), lymphocyte transformation rates (LTRs) at 14-35 dpi, CD4(+) T-lymphocyte counts at 14-42 dpi, and CD8(+) T-lymphocyte counts at 28 dpi. The results revealed that B. avium inactivated vaccine used conjointly with TPPPS and PP induced the strongest humoral and cellular immune responses. Thus, there was a synergistic effect between TPPPS and PP on enhancing immunity, which suggests that they can be used as a novel adjuvant formulation for the development of poultry vaccines.
Collapse
Affiliation(s)
- Ya Yang
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , College of Animal Science and Technology, Shandong Agricultural University , Taian , P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao Z, Chen J, Qiu S, Li Y, Wang D, Liu C, Li X, Hou R, Yue C, Liu J, Li H, Hu Y. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr Polym 2016; 136:560-9. [DOI: 10.1016/j.carbpol.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/17/2023]
|
15
|
Fan Y, Ma X, Zhang J, Ma L, Gao Y, Zhang W, Song X, Hou W, Guo C, Tong D. Ophiopogon polysaccharide liposome can enhance the non-specific and specific immune response in chickens. Carbohydr Polym 2015; 119:219-27. [DOI: 10.1016/j.carbpol.2014.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
|
16
|
Effects of polysaccharide on chicks co-infected with Bordetella avium and Avian leukosis virus. Carbohydr Polym 2014; 109:71-6. [DOI: 10.1016/j.carbpol.2014.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 12/24/2022]
|
17
|
Li X, Jiang J, Shi S, Bligh SWA, Li Y, Jiang Y, Huang D, Ke Y, Wang S. A RG-II type polysaccharide purified from Aconitum coreanum alleviates lipopolysaccharide-induced inflammation by inhibiting the NF-κB signal pathway. PLoS One 2014; 9:e99697. [PMID: 24927178 PMCID: PMC4057409 DOI: 10.1371/journal.pone.0099697] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023] Open
Abstract
Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography-mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB-p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200 µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation.
Collapse
Affiliation(s)
- Xiaojun Li
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Jiang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| | - S. W. Annie Bligh
- Department of Complementary Medicine, Faculty of Science and Technology, University of Westminster, Westminster, United Kingdom
| | - Yuan Li
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbo Jiang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Huang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ke
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|
18
|
Qiu S, Chen J, Qin T, Hu Y, Wang D, Fan Q, Zhang C, Chen X, Chen X, Liu C, Gao Z, Li X. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide. PLoS One 2014; 9:e86377. [PMID: 24497946 PMCID: PMC3907442 DOI: 10.1371/journal.pone.0086377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(3(4)) to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h.
Collapse
Affiliation(s)
- Shulei Qiu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Chen
- National Research Center of Veterinary Biological Engineering and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao Qin
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiang Fan
- China Institute of Veterinary Drug Control, Beijing, China
| | - Cunshuai Zhang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xingying Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaolan Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cui Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Gao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiuping Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Zhao X, Liang M, Yang P, Guo F, Pan D, Huang X, Li Y, Wu C, Qu T, Zhu R. Taishan Pinus massoniana pollen polysaccharides promote immune responses of recombinant Bordetella avium ompA in BALB/c mice. Int Immunopharmacol 2013; 17:793-8. [DOI: 10.1016/j.intimp.2013.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023]
|
20
|
Fan Y, Ma L, Zhang W, Xu Y, Suolangzhaxi, Zhi X, Cui E, Song X. Microemulsion can improve the immune-enhancing activity of propolis flavonoid on immunosuppression and immune response. Int J Biol Macromol 2013; 63:126-32. [PMID: 24099936 DOI: 10.1016/j.ijbiomac.2013.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
The objective of the present study was to investigate whether the immune-enhancing activity of propolis flavone (PF) could be improved after PF was made into PF microemulsion (PFM). Two experiments were carried out. In immunosuppression experiment, the immune-enhancing effect of PFM in immunosuppressive chickens was performed. The results showed that PFM at high and medium doses was able to overcome the CTX-induced immunosuppression, significantly increases the immune organ indexes, enhances lymphocyte proliferation and improves the concentrations of IL-2 and IL-6 in serum when compared with PF. In immune response experiment, the adjuvant effect of PFM at three doses and PF were compared on chickens which were immunized intramuscularly with Avian Influenza Recombinant Newcastle Disease Virus bivalent Vaccine. The results showed that PFM at high and medium doses could significantly promote lymphocyte proliferation, enhances antibody titer and the concentrations of IgG and IgM, and its efficacy were significantly better than PF at most time points. These results indicated that PFM could significantly improve the immune-enhancing activity and adjuvanticity of PF, and its high and medium doses possessed the best efficacy. Therefore, the microemulsion could be used as an effective formulation for enhancing the bioavailability of PF.
Collapse
Affiliation(s)
- Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Suolangzhaxi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyan Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Enhui Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
21
|
Carson MJ, Wilson EH. Visualizing chemokine-dependent T cell activation and migration in response to central nervous system infection. Methods Mol Biol 2013; 1013:171-83. [PMID: 23625499 DOI: 10.1007/978-1-62703-426-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In response to central nervous system (CNS) injury and infection, astrocytes, neurons, and CNS vasculature express several chemokines, including CCL21. Quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemical methods can quantify mRNA and protein expression. However, these methods do not quantify chemokine bioavailability and bioactivity, variables modified by many environmental factors including composition of the extracellular matrix (ECM). Here we illustrate how two-photon microscopy and carboxyfluorescein succinimidyl ester (CFSE or CFDA SE) labeling of T cells coupled with flow cytometry can be used as tools to assess chemokine-mediated regulation of T cell proliferation, activation, and migration.
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, USA
| | | |
Collapse
|
22
|
Liang M, Zhao Q, Liu G, Yang S, Zuo X, Cui G, Zhong S, Sun J, Liu J, Zhu R. Pathogenicity of Bordetella avium under immunosuppression induced by Reticuloendotheliosis virus in specific-pathogen-free chickens. Microb Pathog 2013; 54:40-5. [DOI: 10.1016/j.micpath.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/02/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023]
|
23
|
Guo L, Wang D, Hu Y, Zhao X, Wang Y, Yang S, Wang J, Fan Y, Han G, Gao H. Adjuvanticity of compound polysaccharides on chickens against Newcastle disease and avian influenza vaccine. Int J Biol Macromol 2012; 50:512-7. [DOI: 10.1016/j.ijbiomac.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/26/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022]
|
24
|
Effect of immunological enhancement of aloe polysaccharide on chickens immunized with Bordetella avium inactivated vaccine. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Ploix CC, Noor S, Crane J, Masek K, Carter W, Lo DD, Wilson EH, Carson MJ. CNS-derived CCL21 is both sufficient to drive homeostatic CD4+ T cell proliferation and necessary for efficient CD4+ T cell migration into the CNS parenchyma following Toxoplasma gondii infection. Brain Behav Immun 2011; 25:883-96. [PMID: 20868739 PMCID: PMC3032828 DOI: 10.1016/j.bbi.2010.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Injury, infection and autoimmune triggers increase CNS expression of the chemokine CCL21. Outside the CNS, CCL21 contributes to chronic inflammatory disease and autoimmunity by three mechanisms: recruitment of lymphocytes into injured or infected tissues, organization of inflammatory infiltrates into lymphoid-like structures and promotion of homeostatic CD4+ T-cell proliferation. To test if CCL21 plays the same role in CNS inflammation, we generated transgenic mice with astrocyte-driven expression of CCL21 (GFAP-CCL21 mice). Astrocyte-produced CCL21 was bioavailable and sufficient to support homeostatic CD4+ T-cell proliferation in cervical lymph nodes even in the absence of endogenous CCL19/CCL21. However, lymphocytes and glial-activation were not detected in the brains of uninfected GFAP-CCL21 mice, although CCL21 levels in GFAP-CCL21 brains were higher than levels expressed in inflamed Toxoplasma-infected non-transgenic brains. Following Toxoplasma infection, T-cell extravasation into submeningeal, perivascular and ventricular sites of infected CNS was not CCL21-dependent, occurring even in CCL19/CCL21-deficient mice. However, migration of extravasated CD4+, but not CD8+ T cells from extra-parenchymal CNS sites into the CNS parenchyma was CCL21-dependent. CD4+ T cells preferentially accumulated at perivascular, submeningeal and ventricular spaces in infected CCL21/CCL19-deficient mice. By contrast, greater numbers of CD4+ T cells infiltrated the parenchyma of infected GFAP-CCL21 mice than in wild-type or CCL19/CCL21-deficient mice. Together these data indicate that CCL21 expression within the CNS has the potential to contribute to T cell-mediated CNS pathology via: (a) homeostatic priming of CD4+ T-lymphocytes outside the CNS and (b) by facilitating CD4+ T-cell migration into parenchymal sites following pathogenic insults to the CNS.
Collapse
Affiliation(s)
| | - Shahani Noor
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, Graduate Program in Biomedical Sciences, University of California Riverside
| | - Janelle Crane
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Kokoechat Masek
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Whitney Carter
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - David D. Lo
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside
| | - Emma H. Wilson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside,Correspondence should be directed to: Emma H. Wilson and Monica J. Carson, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92421, Tel: 951-827-2584, FAX: 951-827-5504, ,
| | - Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside,Correspondence should be directed to: Emma H. Wilson and Monica J. Carson, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92421, Tel: 951-827-2584, FAX: 951-827-5504, ,
| |
Collapse
|
26
|
Ferrando-Martínez S, Ruiz-Mateos E, Hernández A, Gutiérrez E, Rodríguez-Méndez MDM, Ordoñez A, Leal M. Age-related deregulation of naive T cell homeostasis in elderly humans. AGE (DORDRECHT, NETHERLANDS) 2011; 33:197-207. [PMID: 20700658 PMCID: PMC3127472 DOI: 10.1007/s11357-010-9170-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/15/2010] [Indexed: 05/20/2023]
Abstract
Immunosenescence is characterized by phenotypic and functional changes of effector memory T cells. In spite of the well-described senescent defects of these experienced T cells, immune responses to new pathogens are also deeply affected in elderly humans, suggesting that naive T cells could also show age-related defects. It has been reported in both, animal models and humans, alterations of the naive T cell turnover associated to advanced age or low thymic function. However, as far as we know, homeostatic mechanisms involved in the deregulation of naive T cell peripheral dynamics and their consequences are still not well understood. Thus, the aim of our study was to analyze homeostatic parameters of peripheral naive T cells and their relationship with thymic function in young and elderly humans. Our results show that lower naive T cell numbers were associated with a lower thymic function and higher activation and proliferating naive T cell levels. We then analyzed sjTREC numbers and relative telomere length from sorted naive T cells. Our results show that the aberrant activation and proliferation status was related to lower sjTREC numbers (a peripheral proliferation marker) and both, higher CD57 expression levels and shortened telomeres (replicative senescence-related markers). Elderly individuals show a greater contraction of the CD8 naive T cell numbers and all homeostatic alterations were more severe in this compartment. In addition, we found that low functional thymus show a CD4-biased thymocyte production. Taken together, our results suggest a homeostatic deregulation, affecting mostly the naive CD8 T cell subset, leading to the accumulation of age-associated defects in, otherwise, phenotypically naive T cells.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| | - Ana Hernández
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | | | - Maria del Mar Rodríguez-Méndez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Ordoñez
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|
27
|
Karamitros D, Kotantaki P, Lygerou Z, Veiga-Fernandes H, Pachnis V, Kioussis D, Taraviras S. Differential geminin requirement for proliferation of thymocytes and mature T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2432-41. [PMID: 20107189 DOI: 10.4049/jimmunol.0901983] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stem/progenitor cells coordinate proliferation and differentiation, giving rise to appropriate cell numbers of functionally specialized cells during organogenesis. In different experimental systems, Geminin was shown to maintain progenitor cells and participate in fate determination decisions and organogenesis. Although the exact mechanisms are unclear, Geminin has been postulated to influence proliferation versus differentiation decisions. To gain insight into the in vivo role of Geminin in progenitor cell division and differentiation, we have generated mice that specifically lack Geminin in cells of lymphoid lineage through Cre-mediated recombination. T cells lacking Geminin expression upregulate early activation markers efficiently upon TCR stimulation in vitro and are able to enter the S phase of cell cycle, but show a marked defect in completing the cycle, leading to a large proportion of T cells accumulating in S/G2/M phases. Accordingly, T cells deficient in Geminin show a reduced ability to repopulate lymphopenic hosts in vivo. Contrary to expectations, Geminin deficiency does not alter development and differentiation of T cells in vivo. Our data suggest that Geminin is required for the proliferation events taking place either in vitro upon TCR receptor activation or during homeostatic expansion, but appears to be redundant for the proliferation and differentiation of the majority of progenitor T cell populations.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Pharmacology, Medical Research Council/National Institute for Medical Research, The Ridgeway, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Larbi A, Zelba H, Goldeck D, Pawelec G. Induction of HIF-1α and the glycolytic pathway alters apoptotic and differentiation profiles of activated human T cells. J Leukoc Biol 2009; 87:265-73. [DOI: 10.1189/jlb.0509304] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
29
|
Abstract
Acute lymphopenia-induced homeostatic proliferation (HP) of T cells promotes antitumor immunity, but the mechanism is unclear. We hypothesized that this is due to a lack of inhibitory signals that allows activation of T cells with low affinity for self-antigens. Tumors resist immunity in part by expressing inhibitory molecules such as PD-1 ligand 1 (PD-L1), B7-H4, and TGF-beta. In irradiated mice undergoing HP, we found that T cells displayed a severe deficit in the activation-induced expression of inhibitory molecules PD-1 and CTLA-4, and TGF-beta1-induced expression of Foxp3. HP T cells were also less suppressed by B7-H4/Ig and, unlike control T cells, failed to produce IL-10 in response to this molecule. This deficiency in regulation was reversed as normal T-cell numbers were restored. We conclude that T cells are weakly regulated by inhibitory molecules during the acute phase of HP, which could explain their increased effectiveness in cancer immunotherapy.
Collapse
|