1
|
Krátký M, Houngbedji NH, Vinšová J. Hydrazinecarboxamides: Comprehensive review of their anticancer, anticonvulsive, anti-inflammatory, enzyme inhibition, antioxidant and other activities. Eur J Med Chem 2024; 279:116835. [PMID: 39270449 DOI: 10.1016/j.ejmech.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
This review comprehensively summarizes recent advances in the field of hydrazinecarboxamide (semicarbazide) derivatives, highlighting their significant therapeutic potential and a broad spectrum of biological activities. As a promising and privileged scaffold in medicinal chemistry, hydrazinecarboxamides have emerged as a versatile class of compounds with significant bioactive properties. Based on their substitutions, their structural diversity permits extensive chemical modifications to enhance their interactions with various biological targets to combat multiple disorders. Notable, this group of compounds has shown significant efficacy against numerous cancer cell lines through diverse mechanisms of action and potent inhibition of enzymes, including cholinesterases, carbonic anhydrases, cyclooxygenases, lipoxygenases, etc. Beyond these, they have also been investigated for their anticonvulsive, analgesic/anti-inflammatory, and antioxidant properties, with detailed structure-activity relationships. For many applications, the hybridization of hydrazinecarboxamides with other bioactive scaffolds, such as primaquine, is of particular interest and offers advantages. Despite their promises, challenges such as suboptimal physicochemical properties and selectivity issues of certain derivatives require further effort. The review aims to inspire future innovation in the design and development of new potential hydrazinecarboxamide-based drugs, addressing existing challenges and expanding their therapeutic applications.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Fasolato S, Bonaiuto E, Rossetto M, Vanzani P, Ceccato F, Vittadello F, Zennaro L, Rigo A, Mammano E, Angeli P, Pontisso P, Di Paolo ML. Serum Vascular Adhesion Protein-1 and Endothelial Dysfunction in Hepatic Cirrhosis: Searching for New Prognostic Markers. Int J Mol Sci 2024; 25:7309. [PMID: 39000418 PMCID: PMC11242677 DOI: 10.3390/ijms25137309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Endothelial dysfunction plays a key role in the development of liver cirrhosis. Among the biomarkers of endothelial dysfunction, the soluble form of Vascular Adhesion Protein-1 (sVAP-1) is an unconventional and less known adhesion molecule endowed also with amine oxidase activity. The aim of this study was to explore and correlate the behavior of sVAP-1 with that of the soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1) and with the severity of liver cirrhosis. A cross-sectional study was carried out by enrolling 28 controls, 59 cirrhotic patients without hepatocellular carcinoma, and 56 patients with hepatocellular carcinoma (HCC), mainly caused by alcohol abuse. The levels of adhesion molecules and of the pro-inflammatory cytokines (IL-6 and TNF-αα) were determined by immunoassay and the enzymatic activity of sVAP-1 by a fluorometric assay. In non-diabetic patients without HCC, a specific behavior of sVAP-1 was highlighted. Differently from sVCAM-1, sICAM-1, and cytokines, the sVAP-1 level was significantly increased only in the early stage of disease, and then, it decreased in the last stage (866 ± 390 ng/mL vs. 545 ± 316 ng/mL, in Child-Pugh class A vs. C, respectively, p < 0.05). Bivariate analysis correlates sVAP-1 to sVCAM-1, in the absence of HCC (Spearman's rho = 0.403, p < 0.01). Multiple linear regression analysis revealed that sVCAM-1 appears to be a predictor of sVAP-1 (β coefficient = 0.374, p = 0.021). In conclusion, in non-diabetic and non-HCC cirrhotic patients, sVAP-1 may be a potential prognostic biomarker that, together with sVCAM-1 and pro-inflammatory cytokines, may provide information on the progression of sinusoidal liver endothelium damage.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, Padua University Hospital, 35128 Padua, Italy
| | - Emanuela Bonaiuto
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Paola Vanzani
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Fabio Ceccato
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Fabio Vittadello
- Explora s.n.c.-Research and Statistical Analysis, 35010 Padua, Italy
| | - Lucio Zennaro
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
| | - Adelio Rigo
- Nazionale di Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario Istituto, Viale Medaglie d'Oro, 00136 Roma, Italy
| | - Enzo Mammano
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Paolo Angeli
- Department of Medicine, Medical Clinic 5, University Hospital of Padua, 35128 Padua, Italy
| | - Patrizia Pontisso
- Department of Medicine, Medical Clinic 5, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
- Nazionale di Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario Istituto, Viale Medaglie d'Oro, 00136 Roma, Italy
| |
Collapse
|
3
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Chen SC, Fan KC, Yen IW, Yang CY, Lin CH, Hsu CY, Lyu YP, Juan HC, Lin HH, Lin MS, Shih SR, Li HY, Kuo CH. Serum vascular adhesion protein-1 is associated with twelve-year risk of incident cancer, cancer mortality, and all-cause mortality: a community-based cohort study. Front Oncol 2023; 13:1308353. [PMID: 38162479 PMCID: PMC10754676 DOI: 10.3389/fonc.2023.1308353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background Vascular adhesion protein-1 (VAP-1), a dual-function glycoprotein, has been reported to play a crucial role in inflammation and tumor progression. We conducted a community-based cohort study to investigate whether serum VAP-1 could be a potential biomarker for predicting incident cancers and mortality. Method From 2006 to 2018, we enrolled 889 cancer-free subjects at baseline. Serum VAP-1 levels were measured using a time-resolved immunofluorometric assay. Cancer and vital status of the participants were obtained by linking records with the computerized cancer registry and death certificates in Taiwan. Results During a median follow-up of 11.94 years, 69 subjects developed incident cancers and 66 subjects died, including 29 subjects who died from malignancy. Subjects in the highest tertile of serum VAP-1 had a significantly higher risk of cancer incidence (p=0.0006), cancer mortality (p=0.0001), and all-cause mortality (p=0.0002) than subjects in the other tertiles. The adjusted hazard ratios per one standard deviation increase in serum VAP-1 concentrations were 1.28 for cancer incidence (95% CI=1.01-1.62), 1.60 for cancer mortality (95% CI=1.14-2.23), and 1.38 for all-cause mortality (95% CI=1.09-1.75). The predictive performance of serum VAP-1 was better than that of gender, smoking, body mass index, hypertension, diabetes, and estimated glomerular filtration rate but lower than that of age for cancer incidence, cancer mortality, and all-cause mortality, as evidenced by higher increments in concordance statistics and area under the receiver operating characteristic curve. Conclusion Serum VAP-1 levels are associated with a 12-year risk of incident cancer, cancer mortality, and all-cause mortality in a general population.
Collapse
Affiliation(s)
- Szu-Chi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Weng Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Chung-Yi Yang
- Department of Medical Imaging, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Chih-Yao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Ya-Pin Lyu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shyang-Rong Shih
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center of Anti-Aging and Health Consultation, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
5
|
Patel A, Perl A. Redox Control of Integrin-Mediated Hepatic Inflammation in Systemic Autoimmunity. Antioxid Redox Signal 2022; 36:367-388. [PMID: 34036799 PMCID: PMC8982133 DOI: 10.1089/ars.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
Significance: Systemic autoimmunity affects 3%-5% of the population worldwide. Systemic lupus erythematosus (SLE) is a prototypical form of such condition, which affects 20-150 of 100,000 people globally. Liver dysfunction, defined by increased immune cell infiltration into the hepatic parenchyma, is an understudied manifestation that affects up to 20% of SLE patients. Autoimmunity in SLE involves proinflammatory lineage specification in the immune system that occurs with oxidative stress and profound changes in cellular metabolism. As the primary metabolic organ of the body, the liver is uniquely capable to encounter oxidative stress through first-pass derivatization and filtering of waste products. Recent Advances: The traffic of immune cells from their development through recirculation in the liver is guided by cell adhesion molecules (CAMs) and integrins, cell surface proteins that tightly anchor cells together. The surface expression of CAMs and integrins is regulated via endocytic traffic that is sensitive to oxidative stress. Reactive oxygen species (ROS) that elicit oxidative stress in the liver may originate from the mitochondria, the cytosol, or the cell membrane. Critical Issues: While hepatic ROS production is a source of vulnerability, it also modulates the development and function of the immune system. In turn, the liver employs antioxidant defense mechanisms to protect itself from damage that can be harnessed to serve as therapeutic mechanisms against autoimmunity, inflammation, and development of hepatocellular carcinoma. Future Directions: This review is aimed at delineating redox control of integrin signaling in the liver and checkpoints of regulatory impact that can be targeted for treatment of inflammation in systemic autoimmunity. Antioxid. Redox Signal. 36, 367-388.
Collapse
Affiliation(s)
- Akshay Patel
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Chang SJ, Tu HP, Lai YCC, Luo CW, Nejo T, Tanaka S, Chai CY, Kwan AL. Increased Vascular Adhesion Protein 1 (VAP-1) Levels are Associated with Alternative M2 Macrophage Activation and Poor Prognosis for Human Gliomas. Diagnostics (Basel) 2020; 10:diagnostics10050256. [PMID: 32349342 PMCID: PMC7278017 DOI: 10.3390/diagnostics10050256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Glioma is characterized by a high heterogeneity in the brain tumor. Abundant tumor-associated macrophages (TAMs) exist as neoplastic tissues, implicating tumor plasticity and thus leading to therapeutic challenges. Vascular adhesion protein (VAP-1) potentially serves as a mediator for TAM immunity in tumor milieu. We previously demonstrated that VAP-1 could contribute to tumor malignancy, but its characteristics in TAM immunity of glioma progression are still unclear. This study explored the association of VAP-1 expression with TAM distribution as well as the resulting clinical significance and prognostic value in human gliomas. An in-depth analysis of AOC3 (VAP-1) gene expression was performed using 695 glioma samples derived from the cancer genome atlas (TCGA)-lower grade glioma and glioblastoma (GBMLGG) cohort. Bioinformatic analysis confirmed that VAP-1 expression is associated with poor prognosis of glioma patients (p = 0.0283). VAP-1 and TAM biomarkers (CD68, iNOS, and CD163) were evaluated by immunohistochemistry in 108 gliomas from Kaohsiung Medical University Hospital. VAP-1+ was expressed in 56 (51.85%) cases and this phenotype revealed a significant association with overall survival in Kaplan–Meier analysis (p < 0.0001). Immunohistochemical double staining showed that VAP-1 immunoreactivity was present around CD163+ M2 infiltration location, including aggressive lesions and neighboring neovasculature. We demonstrated that high VAP-1 expression levels positively correlated with CD163+ M2 activation and coexpression of these two proteins was associated with worse survival in gliomas (p < 0.0001). Multivariate analysis indicated that VAP-1 alone and co-expressed with CD163 were the significantly independent indicators (both p < 0.0001). Furthermore, VAP-1/CD163 coexpression exhibited excellent diagnostic accuracy in gliomas (AUC = 0.8008). In conclusion, VAP-1 and TAM CD163 M2 coexpression was found in glioma tissues belonging to a highly malignant subgroup that was associated with poor prognosis. These results implied VAP-1 abundance is closely linked to alternative M2 activation during glioma progression. From the aforementioned data, a reasonable inference is that VAP-1 combined with targeting M2 immunity might be an effective therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yen-Chang Clark Lai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Surgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; (T.N.); (S.T.)
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Chung Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (A.-L.K.); Tel.: +88-6-7312-1101 (ext. 7081) (C.-Y.C.); +88-6-7312-1101 (ext. 5880) (A.-L.K.); Fax: +88-6-7313-6681 (C.-Y.C.); +88-6-7321-5039 (A.-L.K.)
| |
Collapse
|
7
|
Vakal S, Jalkanen S, Dahlström KM, Salminen TA. Human Copper-Containing Amine Oxidases in Drug Design and Development. Molecules 2020; 25:E1293. [PMID: 32178384 PMCID: PMC7144023 DOI: 10.3390/molecules25061293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Two members of the copper-containing amine oxidase family are physiologically important proteins: (1) Diamine oxidase (hDAO; AOC1) with a preference for diamines is involved in degradation of histamine and (2) Vascular adhesion protein-1 (hVAP-1; AOC3) with a preference for monoamines is a multifunctional cell-surface receptor and an enzyme. hVAP-1-targeted inhibitors are designed to treat inflammatory diseases and cancer, whereas the off-target binding of the designed inhibitors to hDAO might result in adverse drug reactions. The X-ray structures for both human enzymes are solved and provide the basis for computer-aided inhibitor design, which has been reported by several research groups. Although the putative off-target effect of hDAO is less studied, computational methods could be easily utilized to avoid the binding of VAP-1-targeted inhibitors to hDAO. The choice of the model organism for preclinical testing of hVAP-1 inhibitors is not either trivial due to species-specific binding properties of designed inhibitors and different repertoire of copper-containing amine oxidase family members in mammalian species. Thus, the facts that should be considered in hVAP-1-targeted inhibitor design are discussed in light of the applied structural bioinformatics and structural biology approaches.
Collapse
Affiliation(s)
- Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland;
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| |
Collapse
|
8
|
Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer 2019; 18:130. [PMID: 31464625 PMCID: PMC6714090 DOI: 10.1186/s12943-019-1047-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Incidence of hepatocellular carcinoma (HCC) is on the rise due to the prevalence of chronic hepatitis and cirrhosis. Although there are surgical and chemotherapy treatment avenues the mortality rate of HCC remains high. Immunotherapy is currently the new frontier of cancer treatment and the immunobiology of HCC is emerging as an area for further exploration. The tumor microenvironment coexists and interacts with various immune cells to sustain the growth of HCC. Thus, immunosuppressive cells play an important role in the anti-tumor immune response. This review will discuss the current concepts of immunosuppressive cells, including tumor-associated macrophages, marrow-derived suppressor cells, tumor-associated neutrophils, cancer-associated fibroblasts, and regulatory T cell interactions to actively promote tumorigenesis. It further elaborates on current treatment modalities and future areas of exploration.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Betty Zhang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
| | - Ziyi Chen
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Ucal S, Häkkinen MR, Alanne AL, Alhonen L, Vepsäläinen J, Keinänen TA, Hyvönen MT. Controlling of N-alkylpolyamine analogue metabolism by selective deuteration. Biochem J 2018; 475:663-676. [PMID: 29301981 DOI: 10.1042/bcj20170887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 01/26/2023]
Abstract
Replacing protium with deuterium is an efficient method to modulate drug metabolism. N-alkylated polyamine analogues are polyamine antimetabolites with proven anticancer efficacy. We have characterized earlier the preferred metabolic routes of N1,N12-diethylspermine (DESpm), N1-benzyl-N12-ethylspermine (BnEtSpm) and N1,N12-dibenzylspermine (DBSpm) by human recombinant spermine oxidase (SMOX) and acetylpolyamine oxidase (APAO). Here, we studied the above analogues, their variably deuterated counterparts and their metabolites as substrates and inhibitors of APAO, SMOX, semicarbazide-sensitive amine oxidase (SSAO), diamine oxidase (DAO) and monoamine oxidases. We found that targeted deuteration efficiently redirected the preferable cleavage site and suppressed reaction rate by APAO and SMOX in vitro We found a three- to six-fold decline in Vmax with moderate variable effect on Km when deuterium was located at the preferred hydrogen abstraction site of the analogue. We also found some of the metabolites to be potent inhibitors of DAO and SSAO. Surprisingly, analogue deuteration did not markedly alter the anti-proliferative efficacy of the drugs in DU145 prostate cancer cells, while in mouse embryonic fibroblasts, which had higher basal APAO and SMOX activities, moderate effect was observed. Interestingly, the anti-proliferative efficacy of the analogues did not correlate with their ability to suppress polyamine biosynthetic enzymes, induce spermidine/spermine-N1-acetyltransferase or deplete intracellular polyamine levels, but correlated with their ability to induce SMOX. Our data show that selective deuteration of N-alkyl polyamine analogues enables metabolic switching, offering the means for selective generation of bioactive metabolites inhibiting, e.g. SSAO and DAO, thus setting a novel basis for in vivo studies of this class of analogues.
Collapse
Affiliation(s)
- Sebahat Ucal
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Merja R Häkkinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Aino-Liisa Alanne
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Leena Alhonen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Jouko Vepsäläinen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Tuomo A Keinänen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| | - Mervi T Hyvönen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, Yliopistonranta 1B, FI-70210 Kuopio, Finland
| |
Collapse
|
11
|
Zhang Q, Lin Z, Yin X, Tang L, Luo H, Li H, Zhang Y, Luo W. In vitro and in vivo study of hydralazine, a potential anti-angiogenic agent. Eur J Pharmacol 2016; 779:138-46. [PMID: 26968484 DOI: 10.1016/j.ejphar.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/05/2023]
Abstract
Hydralazine (HYD), an old routine clinical anti-hypertension drug, is rarely used in clinic nowadays. Since the strategy of repositioning old drugs was put forward, HYD has been reported to possess various biological activities, including antitumor efficacy and reducing intra-tumor microvessel. Here, we investigated that whether HYD had the ability of anti-angiogeneis and its underlying mechanism. Cells proliferation, wound-healing, Transwell migration and invasion, tube formation and rat aortic ring assays in vitro and chicken chorioallantoic membrane (CAM) model in vivo were designed to investigated HYD's anti-angiogenic effect. Levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were assessed by enzyme-linked immune sorbent assay (ELISA). Hepatocellular carcinoma (HCC) mice model was used to evaluate HYD's effect on tumor growth and microvessel density. Our results showed that HYD not only inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, wound-healing, Transwell migration and invasion and tube formation, but also suppressed the microvessel outgrowth of rat aortic ring in vitro and the neovascularzation of CAM in vivo. Furthermore, we demonstrated that HYD attenuated tumor angiogenesis and tumor growth. In the co-culture system of Transwell migration, the secretion of VEGF and bFGF was reduced by HYD respectively. In sum, our data indicate that HYD has the pharmacological effect of ant-angiogenesis by interference with VEGF and bFGF signaling pathways in endothelial cells. These findings suggest that HYD might be a promising angiogenesis inhibitor and a potential effective therapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Quanwei Zhang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhexuan Lin
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiukai Yin
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lingzhi Tang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Hongjun Luo
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Hui Li
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuan Zhang
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenhong Luo
- The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
12
|
Triethylenetetramine modulates polyamine and energy metabolism and inhibits cancer cell proliferation. Biochem J 2016; 473:1433-41. [DOI: 10.1042/bcj20160134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Copper chelators show anticancer effects by preventing neo-angiogenesis. In the present study, we show that triethylenetetramine (TETA) is a multi-targeting drug, which modulates several key regulatory proteins of polyamine metabolism that contributes to its anticancer effect.
Collapse
|
13
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 2015; 52:284-300. [PMID: 26287391 DOI: 10.3109/10408363.2015.1050714] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is a member of the copper-containing amine oxidase/semicarbazide-sensitive amine oxidase (AOC/SSAO) enzyme family. SSAO enzymes catalyze oxidative deamination of primary amines, which results in the production of the corresponding aldehyde, hydrogen peroxide and ammonium. VAP-1 is continuously expressed as a transmembrane glycoprotein in the vascular wall during development and facilitates the accumulation of inflammatory cells into the inflamed environment in concert with other leukocyte adhesion molecules. The soluble form of VAP-1 is released into the circulation mainly from vascular endothelial cells. Over- and under-expression of sVAP-1 result in alterations of the reported reaction product levels, which are involved in the pathogenesis of multiple human diseases. The combination of enzymatic and adhesion capacities as well as its strong association with inflammatory pathologies makes VAP-1 an interesting therapeutic target for drug discovery. In this article, we will review the general characteristics and biological functions of VAP-1, focusing on its important role as a prognostic biomarker in human pathologies. In addition, the potential therapeutic application of VAP-1 inhibitors will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nanja van Geel
- c Department of Dermatology , Ghent University Hospital , Gent , Belgium
| | | | | |
Collapse
|