1
|
Selvavinayagam ST, Aswathy B, Yong YK, Frederick A, Murali L, Kalaivani V, Karishma SJ, Rajeshkumar M, Anusree A, Kannan M, Gopalan N, Vignesh R, Murugesan A, Tan HY, Zhang Y, Chandramathi S, Sivasankaran MP, Balakrishnan P, Govindaraj S, Byrareddy SN, Velu V, Larsson M, Shankar EM, Raju S. Plasma CXCL8 and MCP-1 as surrogate plasma biomarkers of latent tuberculosis infection among household contacts-A cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002327. [PMID: 37992019 PMCID: PMC10664947 DOI: 10.1371/journal.pgph.0002327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. The study investigates whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. The plasma cytokines were measured using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Our study suggests that CXCL-8 and MCP-1 could serve as the surrogate biomarkers of LTBI, particularly in resource-limited settings. Further laboratory investigations are warranted before extrapolating CXCL8 and MCP-1 for their usefulness as surrogate biomarkers of LTBI in resource-limited settings.
Collapse
Affiliation(s)
- Sivaprakasam T. Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Bijulal Aswathy
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Yean K. Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Asha Frederick
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Lakshmi Murali
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Sree J. Karishma
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| | - Adukkadukkam Anusree
- Department of Life Sciences, Blood and Vascular Biology, Central University of Tamil Nadu, Thiruvarur, India
| | - Meganathan Kannan
- Department of Life Sciences, Blood and Vascular Biology, Central University of Tamil Nadu, Thiruvarur, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Ramachandran Vignesh
- Pre-clinical Department, Royal College of Medicine, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Ying Zhang
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Pachamuthu Balakrishnan
- Department of Microbiology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Centre for Infectious Diseases, Velappanchavadi, Chennai, India
| | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Division of Microbiology and Immunology, Emory University School of Medicine, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, United States of America
| | - Marie Larsson
- Department of Biomedicine and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Esaki M. Shankar
- Department of Biotechnology, Infection and Inflammation, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Selvavinayagam ST, Aswathy B, Yong YK, Frederick A, Murali L, Kalaivani V, Jith KS, Rajeshkumar M, Anusree A, Kannan M, Gopalan N, Vignesh R, Murugesan A, Tan HY, Zhang Y, Chandramathi S, Sivasankaran MP, Govindaraj S, Byrareddy SN, Velu V, Larsson M, Shankar EM, Raju S. Plasma CXCL8 and MCP-1 as biomarkers of latent tuberculosis infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.07.23293767. [PMID: 37609153 PMCID: PMC10441491 DOI: 10.1101/2023.08.07.23293767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Early detection of latent tuberculosis infection (LTBI) is critical to TB elimination in the current WHO vision of End Tuberculosis Strategy. Methods We investigated whether detecting plasma cytokines could aid in diagnosing LTBI across household contacts (HHCs) positive for IGRA, HHCs negative for IGRA, and healthy controls. We also measured the plasma cytokines using a commercial Bio-Plex Pro Human Cytokine 17-plex assay. Results Increased plasma CXCL8 and decreased MCP-1, TNF-α, and IFN-γ were associated with LTBI. Regression analysis showed that a combination of CXCL8 and MCP-1 increased the risk of LTBI among HHCs to 14-fold. Conclusions We postulated that CXCL8 and MCP-1 could be the surrogate biomarkers of LTBI, especially in resource-limited settings.
Collapse
Affiliation(s)
- Sivaprakasam T Selvavinayagam
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Bijulal Aswathy
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Yean K Yong
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Asha Frederick
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Lakshmi Murali
- National Tuberculosis Elimination Programme, Chennai, Tamil Nadu, India
| | - Vasudevan Kalaivani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Karishma S Jith
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| | - Adukkadukkam Anusree
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Meganathan Kannan
- Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Natarajan Gopalan
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Ramachandran Vignesh
- Pre-clinical Department, Royal College of Medicine, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, The Government Theni Medical College and Hospital, Theni, India
| | - Hong Yien Tan
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Ying Zhang
- Laboratory Centre, Xiamen University Malaysia, 43 900 Sepang, Selangor, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68131, USA
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory Vaccine Center, Atlanta, GA, 30329, USA
| | - Marie Larsson
- Department of Biomedicine and Clinical Sciences, Linkoping University, 58 185 Linköping, Sweden
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, DMS Campus, Teynampet 600 018, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Fang J, Zhuge L, Rao H, Huang S, Jin L, Li J. Increased Levels of miR-155 are Related to Higher T-Cell Activation in the Peripheral Blood of Patients with Chronic Hepatitis B. Genet Test Mol Biomarkers 2019; 23:118-123. [PMID: 30735455 DOI: 10.1089/gtmb.2018.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES MicroRNA-155 (miR-155) is an important regulator of immune responses in humans. However, its role in T-cell activation in hepatitis B virus (HBV) infection remains unclear. MATERIALS AND METHODS Eighty-one patients with chronic hepatitis B (CHB), 77 HBV carriers, and 51 healthy controls were recruited. HBV DNA and serologic tests were carried out for each subject. Levels of miR-155 in peripheral blood were detected by quantitative reverse transcription/polymerase chain reaction. Immune activation of T-cells was determined by detection of surface molecules CD38 and HLA-DR using flow cytometry. RESULTS We found higher miR-155 levels in CD4+ and CD8+ T-cells of CHB patients than HBV carriers or healthy controls (p < 0.01), moreover, miR-155 levels in the CD8+ T-cells of HBV carriers were higher than in healthy controls (p < 0.01). Furthermore, immune activation of CD4+ and CD8+ T-cells in CHB patients was much higher than in healthy controls (p < 0.01). CONCLUSION Our findings suggest that miR-155 expression positively correlates with T-cell activation, especially in CHB patients, and is a potential biomarker for immune activation and disease progression in HBV infection.
Collapse
Affiliation(s)
- Jiajie Fang
- 1 Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Zhuge
- 2 Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Heping Rao
- 3 Department of Nursing, School of Medicine, Quzhou College of Technology, Quzhou China
| | - Shanshan Huang
- 2 Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingxiang Jin
- 2 Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Li
- 2 Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
5
|
Barathan M, Mohamed R, Yong YK, Kannan M, Vadivelu J, Saeidi A, Larsson M, Shankar EM. Viral Persistence and Chronicity in Hepatitis C Virus Infection: Role of T-Cell Apoptosis, Senescence and Exhaustion. Cells 2018; 7:cells7100165. [PMID: 30322028 PMCID: PMC6210370 DOI: 10.3390/cells7100165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) represents a challenging global health threat to ~200 million infected individuals. Clinical data suggest that only ~10–15% of acutely HCV-infected individuals will achieve spontaneous viral clearance despite exuberant virus-specific immune responses, which is largely attributed to difficulties in recognizing the pathognomonic symptoms during the initial stages of exposure to the virus. Given the paucity of a suitable small animal model, it is also equally challenging to study the early phases of viral establishment. Further, the host factors contributing to HCV chronicity in a vast majority of acutely HCV-infected individuals largely remain unexplored. The last few years have witnessed a surge in studies showing that HCV adopts myriad mechanisms to disconcert virus-specific immune responses in the host to establish persistence, which includes, but is not limited to viral escape mutations, viral growth at privileged sites, and antagonism. Here we discuss a few hitherto poorly explained mechanisms employed by HCV that are believed to lead to chronicity in infected individuals. A better understanding of these mechanisms would aid the design of improved therapeutic targets against viral establishment in susceptible individuals.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Rosmawati Mohamed
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 LembahPantai, Kuala Lumpur, Malaysia.
| | - Yean K Yong
- Laboratory Center, Xiamen University Malaysia, 43900 Sepang, Malaysia.
| | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, LembahPantai, 50603 Kuala Lumpur, Malaysia.
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linkoping University, 58 183 Linkoping, Sweden.
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, India.
| |
Collapse
|
6
|
Correa-Rocha R, Lopez-Abente J, Gutierrez C, Pérez-Fernández VA, Prieto-Sánchez A, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion. PLoS One 2018; 13:e0203419. [PMID: 30161254 PMCID: PMC6117071 DOI: 10.1371/journal.pone.0203419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Collapse
Affiliation(s)
- Rafael Correa-Rocha
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Gutierrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Santiago Moreno-Guillen
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| |
Collapse
|
7
|
Shankar EM, Vignesh R, Dash AP. Recent advances on T-cell exhaustion in malaria infection. Med Microbiol Immunol 2018; 207:167-174. [PMID: 29936565 DOI: 10.1007/s00430-018-0547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
Collapse
Affiliation(s)
- Esaki M Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences (DLS), School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India.
| | - R Vignesh
- Laboratory-Based Department, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Malaysia
| | - A P Dash
- Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India
| |
Collapse
|
8
|
Yong YK, Saeidi A, Tan HY, Rosmawati M, Enström PF, Batran RA, Vasuki V, Chattopadhyay I, Murugesan A, Vignesh R, Kamarulzaman A, Rajarajeswaran J, Ansari AW, Vadivelu J, Ussher JE, Velu V, Larsson M, Shankar EM. Hyper-Expression of PD-1 Is Associated with the Levels of Exhausted and Dysfunctional Phenotypes of Circulating CD161 ++TCR iVα7.2 + Mucosal-Associated Invariant T Cells in Chronic Hepatitis B Virus Infection. Front Immunol 2018; 9:472. [PMID: 29616020 PMCID: PMC5868455 DOI: 10.3389/fimmu.2018.00472] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, defined as CD161++TCR iVα7.2+ T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV) infection. The peripheral CD3+CD161++TCR iVα7.2+ MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR) iVα7.2+ CD161+ MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4+ T cells and MAIT cells and with CD57 on CD8+ T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2+ MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.
Collapse
Affiliation(s)
- Yean K Yong
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia.,Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.,China-ASEAN Institute of Marine Science (CAMS), Xiamen University Malaysia, Sepang, Malaysia
| | - Alireza Saeidi
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Hong Y Tan
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia.,Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.,China-ASEAN Institute of Marine Science (CAMS), Xiamen University Malaysia, Sepang, Malaysia.,Department of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Mohamed Rosmawati
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Philip F Enström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rami Al Batran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - V Vasuki
- Department of Microbiology, The Government Thiruvarur Medical College and Hospital, Thiruvarur, India
| | - Indranil Chattopadhyay
- Division of Molecular Cancer Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | | | | | - Adeeba Kamarulzaman
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.,Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia
| | - Jayakumar Rajarajeswaran
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdul W Ansari
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Vijayakumar Velu
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, United States
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia.,Division of Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India.,Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
9
|
Pollock KM, Montamat-Sicotte DJ, Grass L, Cooke GS, Kapembwa MS, Kon OM, Sampson RD, Taylor GP, Lalvani A. PD-1 Expression and Cytokine Secretion Profiles of Mycobacterium tuberculosis-Specific CD4+ T-Cell Subsets; Potential Correlates of Containment in HIV-TB Co-Infection. PLoS One 2016; 11:e0146905. [PMID: 26756579 PMCID: PMC4710462 DOI: 10.1371/journal.pone.0146905] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
HIV co-infection is an important risk factor for tuberculosis (TB) providing a powerful model in which to dissect out defective, protective and dysfunctional Mycobacterium tuberculosis (MTB)-specific immune responses. To identify the changes induced by HIV co-infection we compared MTB-specific CD4+ responses in subjects with active TB and latent TB infection (LTBI), with and without HIV co-infection. CD4+ T-cell subsets producing interferon-gamma (IFN-γ), interleukin-2 (IL-2) and tumour necrosis factor-alpha (TNF-α) and expressing CD279 (PD-1) were measured using polychromatic flow-cytometry. HIV-TB co-infection was consistently and independently associated with a reduced frequency of CD4+ IFN-γ and IL-2-dual secreting T-cells and the proportion correlated inversely with HIV viral load (VL). The impact of HIV co-infection on this key MTB-specific T-cell subset identifies them as a potential correlate of mycobacterial immune containment. The percentage of MTB-specific IFN-γ-secreting T-cell subsets that expressed PD-1 was increased in active TB with HIV co-infection and correlated with VL. This identifies a novel correlate of dysregulated immunity to MTB, which may in part explain the paucity of inflammatory response in the face of mycobacterial dissemination that characterizes active TB with HIV co-infection.
Collapse
Affiliation(s)
- Katrina M. Pollock
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| | - Damien J. Montamat-Sicotte
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lisa Grass
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graham S. Cooke
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Moses S. Kapembwa
- Department of GU and HIV Medicine, The North West London Hospitals NHS Trust, London, United Kingdom
| | - Onn M. Kon
- Tuberculosis Service, St Mary’s Hospital, Imperial College Healthcare Trust, London, United Kingdom
| | - Robert D. Sampson
- Centre for Respiratory Infection, Flow Cytometry Facility, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ajit Lalvani
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|