1
|
Myrda J, Bremm F, Schaft N, Dörrie J. The Role of the Large T Antigen in the Molecular Pathogenesis of Merkel Cell Carcinoma. Genes (Basel) 2024; 15:1127. [PMID: 39336718 PMCID: PMC11431464 DOI: 10.3390/genes15091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The large T antigen (LT) of the Merkel cell polyomavirus (MCPyV) is crucial for Merkel cell carcinoma (MCC), a rare but very aggressive form of neuroendocrine skin cancer. The clonal integration of MCPyV DNA into the host genome is a signature event of this malignancy. The resulting expression of oncogenes, including the small T (sT) antigen and a truncated form of the LT (truncLT), directly contribute to carcinogenesis. The truncation of the C-terminus of LT prevents the virus from replicating due to the loss of the origin binding domain (OBD) and the helicase domain. This precludes cytopathic effects that would lead to DNA damage and ultimately cell death. At the same time, the LxCxE motif in the N-terminus is retained, allowing truncLT to bind the retinoblastoma protein (pRb), a cellular tumor suppressor. The continuously inactivated pRb promotes cell proliferation and tumor development. truncLT exerts several classical functions of an oncogene: altering the host cell cycle, suppressing innate immune responses to viral DNA, causing immune escape, and shifting metabolism in favor of cancer cells. Given its central role in MCC, the LT is a major target for therapeutic interventions with novel approaches, such as immune checkpoint inhibition, T cell-based immunotherapy, and cancer vaccines.
Collapse
Affiliation(s)
- Julia Myrda
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Cazzato G, Tamma R, Fanelli M, Colagrande A, Marzullo A, Cascardi E, Trilli I, Lorusso L, Lettini T, Ingravallo G, Ribatti D. Mast cell density in Merkel cell carcinoma and its correlation with prognostic features and MCPyV status: a pilot study. Clin Exp Med 2024; 24:151. [PMID: 38967728 PMCID: PMC11226501 DOI: 10.1007/s10238-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, primitive neuroendocrine carcinoma of the skin, the origin of which is not yet fully understood. Numerous independent prognostic factors have been investigated in an attempt to understand which are the most important parameters to indicate in the histological diagnostic report of MCC. Of these, mast cells have only been studied in one paper before this one. We present a retrospective descriptive study of 13 cases of MCC, received at the Department of Pathology over a 20-year period (2003-2023 inclusive) on which we performed a study using whole-slide (WSI) morphometric analysis scanning platform Aperio Scanscope CS for the detection and spatial distribution of mast cells, using monoclonal anti-tryptase antibody and anti-CD34 monoclonal antibody to study the density of microvessels. In addition, we analyzed MCPyV status with the antibody for MCPyV large T-antigen (Clone CM2B4). We found statistically significant correlation between mast cell density and local recurrence/distant metastasis/death-of-disease (p = 0.008). To our knowledge, we firstly reported that MCPyV ( -) MCC shows higher mast cells density compared to MCPyV ( +) MCC, the latter well known to be less aggressive. Besides, the median vascular density did not show no significant correlation with recurrence/metastasis/death-of-disease, (p = 0.18). Despite the small sample size, this paper prompts future studies investigating the role of mast cell density in MCC.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Margherita Fanelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Eliano Cascardi
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Teresa Lettini
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Becker JC, Stang A, Schrama D, Ugurel S. Merkel Cell Carcinoma: Integrating Epidemiology, Immunology, and Therapeutic Updates. Am J Clin Dermatol 2024; 25:541-557. [PMID: 38649621 PMCID: PMC11193695 DOI: 10.1007/s40257-024-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare skin cancer characterized by neuroendocrine differentiation. Its carcinogenesis is based either on the integration of the Merkel cell polyomavirus or on ultraviolet (UV) mutagenesis, both of which lead to high immunogenicity either through the expression of viral proteins or neoantigens. Despite this immunogenicity resulting from viral or UV-associated carcinogenesis, it exhibits highly aggressive behavior. However, owing to the rarity of MCC and the lack of epidemiologic registries with detailed clinical data, there is some uncertainty regarding the spontaneous course of the disease. Historically, advanced MCC patients were treated with conventional cytotoxic chemotherapy yielding a median response duration of only 3 months. Starting in 2017, four programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immune checkpoint inhibitors-avelumab, pembrolizumab, nivolumab (utilized in both neoadjuvant and adjuvant settings), and retifanlimab-have demonstrated efficacy in treating patients with disseminated MCC on the basis of prospective clinical trials. However, generating clinical evidence for rare cancers, such as MCC, is challenging owing to difficulties in conducting large-scale trials, resulting in small sample sizes and therefore lacking statistical power. Thus, to comprehensively understand the available clinical evidence on various immunotherapy approaches for MCC, we also delve into the epidemiology and immune biology of this cancer. Nevertheless, while randomized studies directly comparing immune checkpoint inhibitors and chemotherapy in MCC are lacking, immunotherapy shows response rates comparable to those previously reported with chemotherapy but with more enduring responses. Notably, adjuvant nivolumab has proven superiority to the standard-of-care therapy (observation) in the adjuvant setting.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), partner site Essen, University Duisburg-Essen, Universitätsstrasse 1, 45141, Essen, Germany.
- Department of Dermatology, University Medicine Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
- Cancer Registry of North Rhine-Westphalia, Bochum, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Selma Ugurel
- Department of Dermatology, University Medicine Essen, Essen, Germany
| |
Collapse
|
4
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Celikdemir B, Houben R, Kervarrec T, Samimi M, Schrama D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin Biol Ther 2023; 23:1015-1034. [PMID: 37691397 DOI: 10.1080/14712598.2023.2257603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Merkel cell carcinoma (MCC) is a rare, highly aggressive form of skin cancer with neuroendocrine features. The origin of this cancer is still unclear, but research in the last 15 years has demonstrated that MCC arises via two distinct etiologic pathways, i.e. virus and UV-induced. Considering the high mortality rate and the limited therapeutic options available, this review aims to highlight the significance of MCC research and the need for advancement in MCC treatment. AREAS COVERED With the advent of the immune checkpoint inhibitor therapies, we now have treatment options providing a survival benefit for patients with advanced MCC. However, the issue of primary and acquired resistance to these therapies remains a significant concern. Therefore, ongoing efforts seeking additional therapeutic targets and approaches for MCC therapy are a necessity. Through a comprehensive literature search, we provide an overview on recent preclinical and clinical studies with respect to MCC therapy. EXPERT OPINION Currently, the only evidence-based therapy for MCC is immune checkpoint blockade with anti-PD-1/PD-L1 for advanced patients. Neoadjuvant, adjuvant and combined immune checkpoint blockade are promising treatment options.
Collapse
Affiliation(s)
- Büke Celikdemir
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire De Tours, Tours, France
| | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Ouyang K, Zheng DX, Agak GW. T-Cell Mediated Immunity in Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14246058. [PMID: 36551547 PMCID: PMC9775569 DOI: 10.3390/cancers14246058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and frequently lethal skin cancer with neuroendocrine characteristics. MCC can originate from either the presence of MCC polyomavirus (MCPyV) DNA or chronic ultraviolet (UV) exposure that can cause DNA mutations. MCC is predominant in sun-exposed regions of the body and can metastasize to regional lymph nodes, liver, lungs, bone, and brain. Older, light-skinned individuals with a history of significant sun exposure are at the highest risk. Previous studies have shown that tumors containing a high number of tumor-infiltrating T-cells have favorable survival, even in the absence of MCPyV DNA, suggesting that MCPyV infection enhances T-cell infiltration. However, other factors may also play a role in the host antitumor response. Herein, we review the impact of tumor infiltrating lymphocytes (TILs), mainly the CD4+, CD8+, and regulatory T-cell (Tregs) responses on the course of MCC, including their role in initiating MCPyV-specific immune responses. Furthermore, potential research avenues related to T-cell biology in MCC, as well as relevant immunotherapies are discussed.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - David X. Zheng
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
7
|
Church C, Pulliam T, Longino N, Park SY, Smythe KS, Makarov V, Riaz N, Jing L, Amezquita R, Campbell JS, Gottardo R, Pierce RH, Choi J, Chan TA, Koelle DM, Nghiem P. Transcriptional and functional analyses of neoantigen-specific CD4 T cells during a profound response to anti-PD-L1 in metastatic Merkel cell carcinoma. J Immunother Cancer 2022; 10:e005328. [PMID: 36252564 PMCID: PMC9472219 DOI: 10.1136/jitc-2022-005328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) often responds to PD-1 pathway blockade, regardless of tumor-viral status (~80% of cases driven by the Merkel cell polyomavirus (MCPyV)). Prior studies have characterized tumor-specific T cell responses to MCPyV, which have typically been CD8, but little is known about the T cell response to UV-induced neoantigens. METHODS A patient in her mid-50s with virus-negative (VN) MCC developed large liver metastases after a brief initial response to chemotherapy. She received anti-PD-L1 (avelumab) and had a partial response within 4 weeks. Whole exome sequencing (WES) was performed to determine potential neoantigen peptides. Characterization of peripheral blood neoantigen T cell responses was evaluated via interferon-gamma (IFNγ) ELISpot, flow cytometry and single-cell RNA sequencing. Tumor-resident T cells were characterized by multiplexed immunohistochemistry. RESULTS WES identified 1027 tumor-specific somatic mutations, similar to the published average of 1121 for VN-MCCs. Peptide prediction with a binding cut-off of ≤100 nM resulted in 77 peptides that were synthesized for T cell assays. Although peptides were predicted based on class I HLAs, we identified circulating CD4 T cells targeting 5 of 77 neoantigens. In contrast, no neoantigen-specific CD8 T cell responses were detected. Neoantigen-specific CD4 T cells were undetectable in blood before anti-PD-L1 therapy but became readily detectible shortly after starting therapy. T cells produced robust IFNγ when stimulated by neoantigen (mutant) peptides but not by the normal (wild-type) peptides. Single cell RNAseq showed neoantigen-reactive T cells expressed the Th1-associated transcription factor (T-bet) and associated cytokines. These CD4 T cells did not significantly exhibit cytotoxicity or non-Th1 markers. Within the pretreatment tumor, resident CD4 T cells were also Th1-skewed and expressed T-bet. CONCLUSIONS We identified and characterized tumor-specific Th1-skewed CD4 T cells targeting multiple neoantigens in a patient who experienced a profound and durable partial response to anti-PD-L1 therapy. To our knowledge, this is the first report of neoantigen-specific T cell responses in MCC. Although CD4 and CD8 T cells recognizing viral tumor antigens are often detectible in virus-positive MCC, only CD4 T cells recognizing neoantigens were detected in this patient. These findings suggest that CD4 T cells can play an important role in the response to anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
- Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Natalie Longino
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Song Y Park
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kimberly S Smythe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Immunotherapy and Precision Immuno-oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robert Amezquita
- Biostatistics Bioinformatics and Epidemiology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jean S Campbell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raphael Gottardo
- Biostatistics Bioinformatics and Epidemiology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Lausanne University Hospital, Lausanne, Vaud, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jaehyuk Choi
- Department of Dermatology, Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
8
|
Hansen UK, Lyngaa R, Ibrani D, Church C, Verhaegen M, Dlugosz AA, Becker JC, Straten PT, Nghiem P, Hadrup SR. Extended T-Cell Epitope Landscape in Merkel Cell Polyomavirus Large T and Small T Oncoproteins Identified Uniquely in Patients with Cancer. J Invest Dermatol 2022; 142:239-243.e13. [PMID: 34298058 PMCID: PMC9413685 DOI: 10.1016/j.jid.2021.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Ulla Kring Hansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Rikke Lyngaa
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Dafina Ibrani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Monique Verhaegen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrzej Antoni Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA;,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jürgen Christian Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany;,German Cancer Consortium (DKTK), Essen, Germany;,German Cancer Research Center (DKFZ), Heidelberg, Germany;,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Per thor Straten
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington, USA;,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA;,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;,Seattle Cancer Care Alliance Center, Seattle, Washington, USA
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark;,Corresponding author:
| |
Collapse
|
9
|
T-Cell Responses in Merkel Cell Carcinoma: Implications for Improved Immune Checkpoint Blockade and Other Therapeutic Options. Int J Mol Sci 2021; 22:ijms22168679. [PMID: 34445385 PMCID: PMC8395396 DOI: 10.3390/ijms22168679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.
Collapse
|
10
|
Stachyra K, Dudzisz-Śledź M, Bylina E, Szumera-Ciećkiewicz A, Spałek MJ, Bartnik E, Rutkowski P, Czarnecka AM. Merkel Cell Carcinoma from Molecular Pathology to Novel Therapies. Int J Mol Sci 2021; 22:6305. [PMID: 34208339 PMCID: PMC8231245 DOI: 10.3390/ijms22126305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon and highly aggressive skin cancer. It develops mostly within chronically sun-exposed areas of the skin. MCPyV is detected in 60-80% of MCC cases as integrated within the genome and is considered a major risk factor for MCC. Viral negative MCCs have a high mutation burden with a UV damage signature. Aberrations occur in RB1, TP53, and NOTCH genes as well as in the PI3K-AKT-mTOR pathway. MCC is highly immunogenic, but MCC cells are known to evade the host's immune response. Despite the characteristic immunohistological profile of MCC, the diagnosis is challenging, and it should be confirmed by an experienced pathologist. Sentinel lymph node biopsy is considered the most reliable staging tool to identify subclinical nodal disease. Subclinical node metastases are present in about 30-50% of patients with primary MCC. The basis of MCC treatment is surgical excision. MCC is highly radiosensitive. It becomes chemoresistant within a few months. MCC is prone to recurrence. The outcomes in patients with metastatic disease are poor, with a historical 5-year survival of 13.5%. The median progression-free survival is 3-5 months, and the median overall survival is ten months. Currently, immunotherapy has become a standard of care first-line therapy for advanced MCC.
Collapse
Affiliation(s)
- Karolina Stachyra
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Mateusz J. Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Davies SI, Barrett J, Wong S, Chang MJ, Muranski PJ, Brownell I. Robust Production of Merkel Cell Polyomavirus Oncogene Specific T Cells From Healthy Donors for Adoptive Transfer. Front Immunol 2020; 11:592721. [PMID: 33362774 PMCID: PMC7756016 DOI: 10.3389/fimmu.2020.592721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Virus positive Merkel cell carcinoma (VP-MCC) is an aggressive but immunogenic skin malignancy driven by Merkel cell polyomavirus (MCPyV) T antigen (TAg). Since adoptive T cell transfer (ACT) can be effective against virus-driven malignancies, we set out to develop a methodology for generating MCPyV TAg specific T cells. MCPyV is a common, asymptomatic infection and virus-exposed healthy donors represent a potential source of MCPyV TAg specific T cells for ACT. Virus specific T cells were generated using monocyte-derived dendritic cells (moDCs) pulsed with MCPyV TAg peptide libraries and co-cultured with autologous T cells in supplemented with pro-inflammatory and homeostatic cytokines for 14 days. Specific reactivity was observed predominantly within the CD4+ T cell compartment in the cultures generated from 21/46 random healthy donors. Notably, responses were more often seen in donors aged 50 years and older. TAg specific CD4+ T cells specifically secreted Th1 cytokines and upregulated CD137 upon challenge with MCPyV TAg peptide libraries and autologous transduced antigen presenting cells. Expanded T cells from healthy donors recognized epitopes of both TAg splice variants found in VP-MCC tumors, and minimally expressed exhaustion markers. Our data show that MCPyV specific T cells can be expanded from healthy donors using methods appropriate for the manufacture of clinical grade ACT products.
Collapse
Affiliation(s)
- Sarah I Davies
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Mark Jesse Chang
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Pawel J Muranski
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Columbia Center for Translational Immunology (CCTI), Cellular Immunotherapy Laboratory, Columbia University Medical Center, New York City, NY, United States
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Marchand A, Kervarrec T, Bhatia S, Samimi M. Pembrolizumab and other immune checkpoint inhibitors in locally advanced or metastatic Merkel Cell Carcinoma: safety and efficacy. Expert Rev Anticancer Ther 2020; 20:1093-1106. [PMID: 33044876 DOI: 10.1080/14737140.2021.1835477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Merkel Cell Carcinoma (MCC) is a rare aggressive skin cancer, mostly affecting elderly patients. Until recently, patients with advanced disease were treated with cytotoxic chemotherapies despite rapid chemoresistance and high toxicity. As with other cancers, immune checkpoint inhibitors (CPI), including pembrolizumab, allow durable responses with a manageable safety profile in these patients. AREAS COVERED This review describes the rationale for using PD-1/PD-L1 inhibitors in MCC, as well as efficacy and safety results from the three open-label trials investigating pembrolizumab or other PD-1/PD-L1 inhibitors in patients with advanced MCC. Real-life experience and predictive pre-treatment biomarkers are discussed to assess which patients are likely to be candidates for such strategies. Ongoing fields of research include the use of CPI in the adjuvant or neoadjuvant setting and combined strategies in refractory patients. Expert Opinion: CPI have become the standard of care for frontline treatment in patients with advanced MCC. Earlier introduction of CPI in the disease course, including neo-adjuvant and adjuvant settings, is likely to improve the outcomes further. Given the rarity of this cancer, we still need to harmonize efforts in order to conduct large-scale trials and efficiently identify best optimal care.
Collapse
Affiliation(s)
- Antoine Marchand
- Dermatology Department, University Hospital of Tours , Tours, France
| | - Thibault Kervarrec
- Pathology Department, University Hospital of Tours , Tours, France.,BIP (Biology of Polyomaviruses), ISP1282 INRA-University of Tours , Tours, France
| | - Shailender Bhatia
- Department of Medicine/Medical Oncology, University of Washington Medical Center , Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, Washington, USA
| | - Mahtab Samimi
- Dermatology Department, University Hospital of Tours , Tours, France.,BIP (Biology of Polyomaviruses), ISP1282 INRA-University of Tours , Tours, France
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer, which is associated in 80% of cases with the Merkel cell polyomavirus (MCPyV). Advanced stages respond to immune checkpoint inhibitors in 50% of cases. Major issues remain unanswered regarding its oncogenesis and optimal treatment. RECENT FINDINGS MCPyV-negative and MCPyV-positive MCCs have been hypothesized to derive from distinct cells, although the cell of origin remains a matter of debate. The crucial role the MCPyV small T oncoprotein was recently confirmed by its ability to inactivate p53, together with its contribution to the metastatic progression. In advanced cases, tumoral microenvironment may adequately predict responses to immunotherapies, and several mechanisms of primary and secondary resistance have been investigated. SUMMARY Identifying the mechanisms of oncogenesis allow experimentation of new therapeutic targets, which remain mandatory even at the era of immunotherapies. Although new insights in the mechanisms of primary and secondary resistance pave the way for development of further immunotherapy strategies, neoadjuvant strategies may challenge our whole approach of the disease.
Collapse
|
14
|
Tabachnick-Cherny S, Pulliam T, Church C, Koelle DM, Nghiem P. Polyomavirus-driven Merkel cell carcinoma: Prospects for therapeutic vaccine development. Mol Carcinog 2020; 59:807-821. [PMID: 32219902 PMCID: PMC8238237 DOI: 10.1002/mc.23190] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent anśd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.
Collapse
Affiliation(s)
- Shira Tabachnick-Cherny
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Thomas Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Candice Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - David M Koelle
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
15
|
Jing L, Ott M, Church CD, Kulikauskas RM, Ibrani D, Iyer JG, Afanasiev OK, Colunga A, Cook MM, Xie H, Greninger AL, Paulson KG, Chapuis AG, Bhatia S, Nghiem P, Koelle DM. Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8 + T Cells within Polyomavirus-Driven Merkel Cell Carcinomas. Cancer Immunol Res 2020; 8:648-659. [PMID: 32179557 DOI: 10.1158/2326-6066.cir-19-0647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag-specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1-8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70-110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag-expressing DCs was documented. Recovery of MCPyV oncoprotein-specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.
Collapse
Affiliation(s)
- Lichen Jing
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Mariliis Ott
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | - Candice D Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Rima M Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Dafina Ibrani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Jayasri G Iyer
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Olga K Afanasiev
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Aric Colunga
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Maclean M Cook
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | | | - Kelly G Paulson
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Aude G Chapuis
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shailender Bhatia
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington. .,Department of Laboratory Medicine, University of Washington, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Benaroya Research Institute, Seattle, Washington
| |
Collapse
|