1
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
2
|
Yang Z, Teng Y, Lin M, Peng Y, Du Y, Sun Q, Gao D, Yuan Q, Zhou Y, Yang Y, Li J, Zhou Y, Li X, Qi X. Reinforced Immunogenic Endoplasmic Reticulum Stress and Oxidative Stress via an Orchestrated Nanophotoinducer to Boost Cancer Photoimmunotherapy. ACS NANO 2024; 18:7267-7286. [PMID: 38382065 DOI: 10.1021/acsnano.3c13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cancer progression and treatment-associated cellular stress impairs therapeutic outcome by inducing resistance. Endoplasmic reticulum (ER) stress is responsible for core events. Aberrant activation of stress sensors and their downstream components to disrupt homeostasis have emerged as vital regulators of tumor progression as well as response to cancer therapy. Here, an orchestrated nanophotoinducer (ERsNP) results in specific tumor ER-homing, induces hyperthermia and mounting oxidative stress associated reactive oxygen species (ROS), and provokes intense and lethal ER stress upon near-infrared laser irradiation. The strengthened "dying" of ER stress and ROS subsequently induce apoptosis for both primary and abscopal B16F10 and GL261 tumors, and promote damage-associated molecular patterns to evoke stress-dependent immunogenic cell death effects and release "self-antigens". Thus, there is a cascade to activate maturation of dendritic cells, reprogram myeloid-derived suppressor cells to manipulate immunosuppression, and recruit cytotoxic T lymphocytes and effective antitumor response. The long-term protection against tumor recurrence is realized through cascaded combinatorial preoperative and postoperative photoimmunotherapy including the chemokine (C-C motif) receptor 2 antagonist, ERsNP upon laser irradiation, and an immune checkpoint inhibitor. The results highlight great promise of the orchestrated nanophotoinducer to exert potent immunogenic cell stress and death by reinforcing ER stress and oxidative stress to boost cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
- Drug Clinical Trial Center, Institute of Medical Innovation and Research, Peking University Third Hospital, Peking University, Beijing 100191, P.R. China
| | - Yulu Teng
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Meng Lin
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yiwei Peng
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yitian Du
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Qi Sun
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Datong Gao
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Quan Yuan
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yu Zhou
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yiliang Yang
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jiajia Li
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yanxia Zhou
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinru Li
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xianrong Qi
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
3
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
4
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
5
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
6
|
Alimu X, Zhang J, Pang N, Zhang R, Chen R, Zeng X, Tudahong S, Chen G, Muhashi M, Zhao F, Ding J, Qu J. Galectin-9 and myeloid-derived suppressor cell as prognostic indicators for chronic lymphocytic leukemia. Immun Inflamm Dis 2023; 11:e853. [PMID: 37249287 PMCID: PMC10165952 DOI: 10.1002/iid3.853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Galectin-9 and myeloid-derived suppressor cells (MDSCs) have an important role in tumors, but their clinical values in chronic lymphocytic leukemia (CLL) have not been fully elucidated. This study aimed to analyze the prognosis values of Galectin-9 and MDSCs in CLL. METHODS The concentrations of Galectin-9, argininase-1, and inducible nitric oxide synthase in serum were detected by enzyme-linked immune sorbent assay. The expression of Tim-3 protein in peripheral blood mononuclear cell was detected by Western blot. Flow cytometry was used to analyze the percentages of Tim-3 on T-cells (CD3+ T, CD4+ T, and CD8+ T cells) and MDSCs. RESULTS Our results showed that Galectin-9 and MDSCs significantly increased in CLL patients and were closely related to the disease progression. Patient's receiver operating characteristic, progression-free survival, and Cox regression analysis showed that Galectin9 and MDSCs were poor prognostic factors of CLL. CONCLUSION Galectin-9 and MDSCs were associated with clinical progression and could be important prognostic indicators for CLL.
Collapse
Affiliation(s)
- Xierenguli Alimu
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Juan Zhang
- Senior Department of HematologyThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Nannan Pang
- CAS Key Lab of Bio‐Medical Diagnostics, Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Rui Zhang
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Rong Chen
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Xuejiao Zeng
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Shabaaiti Tudahong
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Gang Chen
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Maliya Muhashi
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Fang Zhao
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical SciencesXinjiang Medical UniversityUrumqiXinjiangChina
| | - Jianhua Qu
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| |
Collapse
|
7
|
Endoplasmic reticulum stress mediates the myeloid-derived immune suppression associated with cancer and infectious disease. J Transl Med 2023; 21:1. [PMID: 36593497 PMCID: PMC9809056 DOI: 10.1186/s12967-022-03835-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), which are immature heterogeneous bone marrow cells, have been described as potent immune regulators in human and murine cancer models. The distribution of MDSCs varies across organs and is divided into three subpopulations: granulocytic MDSCs or polymorphonuclear MDSCs (G-MDSCs or PMN-MDSCs), monocytic MDSCs (M-MDSCs), as well as a recently identified early precursor MDSC (eMDSCs) in humans. Activated MDSCs induce the inactivation of NK cells, CD4+, and CD8+ T cells through a variety of mechanisms, thus promoting the formation of tumor immunosuppressive microenvironment. ER stress plays an important protecting role in the survival of MDSC, which aggravates the immunosuppression in tumors. In addition, ferroptosis can promote an anti-tumor immune response by reversing the immunosuppressive microenvironment. This review summarizes immune suppression by MDSCs with a focus on the role of endoplasmic reticulum stress-mediated immune suppression in cancer and infectious disease, in particular leprosy and tuberculosis.
Collapse
|
8
|
Mark J, Fisher DT, Kim M, Emmons T, Khan ANMN, Alqassim E, Singel K, Mistarz A, Lugade A, Zhan H, Yu H, Segal B, Lele S, Frederick P, Kozbor D, Skitzki J, Odunsi K. Carboplatin enhances lymphocyte-endothelial interactions to promote CD8 + T cell trafficking into the ovarian tumor microenvironment. Gynecol Oncol 2023; 168:92-99. [PMID: 36410228 PMCID: PMC11236086 DOI: 10.1016/j.ygyno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/16/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Standard chemotherapy agents, including carboplatin, have known immunogenic properties. We sought to determine how carboplatin may influence lymphocyte trafficking to tumor sites. METHODS Murine models of ovarian cancer were utilized to examine lymphocyte trafficking with common clinically used agents including carboplatin, anti-PD-1 antibody, or anti-VEGFR-2 antibody. Adhesion interactions of lymphocytes with tumor vasculature were measured using intravital microscopy, lymphocyte homing with immunohistochemistry, and treatment groups followed for overall survival. RESULTS Carboplatin chemotherapy profoundly alters the tumor microenvironment to promote lymphocyte adhesive interactions with tumor vasculature and resultant improvement in lymphocyte trafficking. The measured results seen with carboplatin in the tumor microenvironment were superior to anti-PD-1 treatment or anti-VEGFR-2 which may have contributed to increased overall survival in carboplatin treated groups. CONCLUSIONS These novel findings suggest a role for chemotherapeutic agents to broadly influence anti-tumor immune responses beyond the induction of immunogenic tumor cell death.
Collapse
Affiliation(s)
- Jaron Mark
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Dan T Fisher
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Minhyung Kim
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Tiffany Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - A N M Nazmul Khan
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Emad Alqassim
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Kelly Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Amit Lugade
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Haiying Zhan
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Brahm Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Peter Frederick
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Joseph Skitzki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, United States; University of Chicago Comprehensive Cancer Center, 5841 S. Maryland Avenue, Chicago, IL 60637, United States.
| |
Collapse
|
9
|
Koinis F, Xagara A, Chantzara E, Leontopoulou V, Aidarinis C, Kotsakis A. Myeloid-Derived Suppressor Cells in Prostate Cancer: Present Knowledge and Future Perspectives. Cells 2021; 11:20. [PMID: 35011582 PMCID: PMC8750906 DOI: 10.3390/cells11010020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several lines of research are being investigated to better understand mechanisms implicated in response or resistance to immune checkpoint blockade in prostate cancer (PCa). Myeloid-derived suppressor cells (MDSCs) have emerged as a major mediator of immunosuppression in the tumor microenvironment that promotes progression of various tumor types. The main mechanisms underlying MDSC-induced immunosuppression are currently being explored and strategies to enhance anti-tumor immune response via MDSC targeting are being tested. However, the role of MDSCs in PCa remains elusive. In this review, we aim to summarize and present the state-of-the-art knowledge on current methodologies to phenotypically and metabolically characterize MDSCs in PCa. We describe how these characteristics may be linked with MDSC function and may influence the clinical outcomes of patients with PCa. Finally, we briefly discuss emerging strategies being employed to therapeutically target MDSCs and potentiate the long-overdue improvement in the efficacy of immunotherapy in patients with PCa.
Collapse
Affiliation(s)
- Filippos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| | - Evangelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Vassiliki Leontopoulou
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Chrissovalantis Aidarinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Thessaly, Greece; (F.K.); (E.C.); (V.L.); (C.A.)
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Thessaly, Greece;
| |
Collapse
|
10
|
Myeloid-derived suppressor cells: Multi-talented immune suppressive cells that can be either helpful or harmful. Cell Immunol 2021; 365:104374. [PMID: 34038759 DOI: 10.1016/j.cellimm.2021.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|