1
|
Hasan AM, Jyoti MMS, Rana MR, Rezanujjaman M, Tokumoto T. Purification and Identification of the 20S Proteasome Complex from Zebrafish. Zebrafish 2022; 19:18-23. [PMID: 35171713 DOI: 10.1089/zeb.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proteasome is a large polymeric protease complex responsible for degradation of intracellular proteins and generation of peptides. In this study, we purified a native 20S proteasome protein complex from zebrafish (Danio rerio) from the whole body. The cytosolic fraction of zebrafish hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA (Suc-LLVY-MCA), a well-known substrate for the proteasome, in the presence of sodium dodecyl sulfate. From the cytosolic fraction, the 20S proteasome was purified using five column chromatography steps: DEAE cellulose, Q-Sepharose, Sephacryl S-300 gel, hydroxylapatite, and phenyl Sepharose. Electrophoresis and Western blot analyses showed that zebrafish 20S proteasome subunits have molecular masses ranging from 22 to 33 kDa. The subunit composition of the purified 20S proteasome was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation. Fourteen kinds of 20S subunits were found. As a special characteristic of zebrafish, two proteins of the α1 subunit were identified. In addition, the results suggested that the α8 subunit is in the 20S complex instead of the α4 subunit. In this study, we demonstrated the subunit composition of the 20S proteasome complex present in zebrafish cells.
Collapse
Affiliation(s)
- Ali Md Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Tokumoto T, Hossain MF, Jyoti MMS, Ali MH, Hossain MB, Acharjee M, Rezanujjaman M, Tokumoto M. Two-Step Mechanism of Cyclin B Degradation Initiated by Proteolytic Cleavage with the 26 S Proteasome in Fish. Sci Rep 2020; 10:8924. [PMID: 32488101 PMCID: PMC7265292 DOI: 10.1038/s41598-020-65009-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
To complete meiosis II, cyclin B is degraded in a short period by the inactivation of M-phase promoting factor (MPF). Previously, we showed that the destruction of cyclin B was initiated by the ubiquitin-independent proteolytic activity of the 26 S proteasome through an initial cut in the N-terminus of cyclin (at K57 in the case of goldfish cyclin B). We hypothesized that this cut allows cyclin to be ubiquitinated for further destruction by the ubiquitin-dependent proteolytic pathway, which leads to MPF inactivation. In this study, we aimed to identify the ubiquitination site for further degradation. The destruction of cyclin B point mutants in which lysine residues in a lysine-rich stretch following the cut site of cyclin B had been mutated was analyzed. All the lysine point mutants except K57R (a point mutant in which K57 was substituted with arginine) were susceptible to proteolytic cleavage by the 26 S proteasome. However, the degradation of the K77R and K7677R mutants in Xenopus egg extracts was significantly slower than the degradation of other mutants, and a 42 kDa truncated form of cyclin B was detected during the onset of the degradation of these mutants. The truncated form of recombinant cyclin B, an N-terminal truncated cyclin BΔ57 produced as cut by the 26 S proteasome, was not further cleaved by the 26 S proteasome but rather degraded in Xenopus egg extracts. The injection of the K57R, K77R and K7677R cyclin B proteins stopped cleavage in Xenopus embryos. From the results of a series of experiments, we concluded that cyclin B degradation involves a two-step mechanism initiated by initial ubiquitin-independent cleavage by the 26 S proteasome at lysine 57 followed by its ubiquitin-dependent destruction by the 26 S proteasome following ubiquitination at lysine 77.
Collapse
Affiliation(s)
- Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan. .,Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Forhad Hossain
- Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Maisum Sarwar Jyoti
- Biological Science Course, Graduate School of Science, National University Corporation, Shizuoka University, Oya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Babul Hossain
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Mrityunjoy Acharjee
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mika Tokumoto
- CREST Research Project, Japan Science and Technology Corporation, Shizuoka, Japan
| |
Collapse
|
3
|
Phosphorylation regulates mycobacterial proteasome. J Microbiol 2014; 52:743-54. [PMID: 25224505 DOI: 10.1007/s12275-014-4416-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.
Collapse
|
4
|
Phosphorylation and methylation of proteasomal proteins of the haloarcheon Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:481725. [PMID: 20671954 PMCID: PMC2910475 DOI: 10.1155/2010/481725] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 05/08/2010] [Indexed: 01/10/2023]
Abstract
Proteasomes are composed of 20S core particles (CPs) of alpha- and beta-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of alpha1 and alpha2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including alpha1 Thr147, alpha2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to alpha1, thus, revealing a new type of proteasomal modification. Probing the biological role of alpha1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for alpha1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to alpha1. The alpha1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.
Collapse
|
5
|
Changes in Activity and Kinetic Properties of the Proteasome in Different Rat Organs during Development and Maturation. Curr Gerontol Geriatr Res 2010:230697. [PMID: 20379353 PMCID: PMC2850129 DOI: 10.1155/2010/230697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/19/2009] [Accepted: 01/27/2010] [Indexed: 11/17/2022] Open
Abstract
The proteasome is considered the most important proteolytic system for removal of damaged proteins with aging. Using fluorogenic peptide substrates, the chymotrypsin-like, the trypsin-like, and the peptidylglutamyl peptidase activities of the proteasome were measured in the soluble fractions of liver, brain, and lens rat homogenates. Specific activity was significantly decreased in liver and brain homogenates with maturation of the animal, that is, from newborn (7 days old) to fertile rats (2–4 months old). Rat lens homogenate exhibited an increase in activity with maturation and also with aging. Chymotrypsin-like activity was stimulated by calcium and this proteolytic activity was significantly decreased with maturation of the rat brain. The Michaelis-Menten constant (Km) increased with age in rat liver and lens, indicating a loss of affinity for its substrates by the proteasome in the animal with maturation and aging. The present data suggest that the loss of function of the proteasome with maturation may be due to structural changes of the proteasome or a decreased content of regulatory components.
Collapse
|
6
|
Eang R, Girbal-Neuhauser E, Xu B, Gairin JE. Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines. Fundam Clin Pharmacol 2009; 23:215-24. [PMID: 19645816 DOI: 10.1111/j.1472-8206.2009.00665.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The search of new pharmacological targets with original mechanism of action within the ubiquitin-proteasome pathway is still a goal to be reached in oncopharmacology. Modification by phosphorylation/dephosphorylation has been found to be involved in cancer and to regulate functional activity of proteasome. Until now, phosphorylated forms of alpha subunits of the 20S human proteasome have been mostly reported. Here, we have rationally designed a polyclonal antibody specifically directed against a phosphorylated peptide sequence bearing the beta7 subunit Ser249 residue of the human 20S proteasome. This anti-beta7 phosphoSer249 antibody appeared to be a probe of choice to detect the presence of a phosphorylated isoform of the beta7 subunit of the human 20S proteasome using mono or two-dimensional gel electrophoresis. PhosphoSer249 was sensitive to acid phosphatase treatment of native 20S proteasome. Dephosphorylation affected the peptidylglutamyl-peptide hydrolyzing activity whereas the chymotrypsin-like and trypsin-like activities remained unchanged. A comparative analysis between human normal and tumor cells showed a differential expression of the phosphoSer249 beta7 isoform with a significantly lower detection in the proteasome isolated from tumor cells, suggesting its possible use as a biomarker.
Collapse
Affiliation(s)
- Rothmony Eang
- Centre de Recherche en Pharmacologie-Santé, UMR 2587 CNRS-Pierre Fabre, ISTMT, 3 rue des satellites, 31400 Toulouse, France
| | | | | | | |
Collapse
|
7
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
8
|
Abstract
The ubiquitin proteasome system (UPS) represents a major pathway for intracellular protein degradation. Proteasome dependent protein quality control participates in cell cycle, immune response and apoptosis. Therefore, the UPS is in focus of therapeutic investigations and the development of pharmaceutical agents. Detailed analyses on proteasome structure and function are the foundation for drug development and clinical studies. Proteomic approaches contributed significantly to our current knowledge in proteasome research. In particular, 2-DE has been essential in facilitating the development of current models on molecular composition and assembly of proteasome complexes. Furthermore, developments in MS enabled identification of UPS proteins and their PTMs at high accuracy and high-throughput. First results on global characterization of the UPS are also available. Although the UPS has been intensively investigated within the last two decades, its functional significance and contribution to the regulation of cell and tissue phenotypes remain to be explored. This review recapitulates a variety of applied proteomic approaches in proteasome exploration, and presents an overview of current technologies and their potential in driving further investigations.
Collapse
Affiliation(s)
- Oliver Drews
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
9
|
Bhojwani M, Rudolph E, Kanitz W, Zuehlke H, Schneider F, Tomek W. Molecular Analysis of Maturation Processes by Protein and Phosphoprotein Profiling during In Vitro Maturation of Bovine Oocytes: A Proteomic Approach. CLONING AND STEM CELLS 2006; 8:259-74. [PMID: 17196091 DOI: 10.1089/clo.2006.8.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular maturation and differentiation processes are accompanied by the expression of specific proteins. Especially in oocytes, there is no reliable strict linear correlation between mRNA levels and the abundance of proteins. Furthermore, the activity of proteins is modulated by specific kinases and phosphatases which control cellular processes like cellular growth, differentiation, cell cycle and meiosis. During the meiotic maturation of oocytes, the activation of protein kinases, namely of the MPF and MAPK play a predominant role. Therefore, the present study was performed to analyze meiotic maturation at a molecular level, concerning alterations of the proteom and phosphoproteom during IVM. Using a proteomic approach by combining two-dimensional gel electrophoresis followed by selective protein and phosphoprotein staining and mass spectrometry, we identified proteins which were differentially expressed and/or phosphorylated during IVM. Furthermore, we used the MPF inhibitor butyrolactone I, to reveal new molecular effects which are potentially essential for successful maturation. The results show that approximately 550 protein spots could be visualized by the fluorescent dye Sypro ruby at any maturation stage (GV, M I, M II) investigated. From GV stage to M II, ProQ diamond staining indicate in GV 30%, in M I 50%, and in M II 45% of the spots were phosphorylated. The Identity of 40 spots could be established. These proteins belong to different families, for example, cytoskeleton, molecular chaperons, redox, energy and metabolism related proteins, nucleic acid binding proteins, cell cycle regulators, and protein kinases. Four of them were differentially expressed (alteration higher than factor 2) during IVM, namely tubulin beta-chain, cyclin E(2), protein disulfide isomerase and one of two different forms of peroxiredoxin 2. Seven proteins were differentially stained by ProQ diamond, indicating a differential phosphorylation. These are tubulin beta-chain, beta-actin, cyclin E(2), aldose reductase and UMP-synthase, protein disulfide isomerase 2, and peroxiredoxin 2. Furthermore, the results indicate that the phosphorylation of at least peroxiredoxin 2 respond to BL I treatment. This indicates that its phosphorylation is under the control of MPF or MAPK. In summary these results indicates that the reduction of cyclin Eexpression and the (partially) inactivation of peroxiredoxin 2 by phosphorylation, hence alterations in the peroxide levels which can mediate signal transduction are essential components for successful maturation.
Collapse
Affiliation(s)
- Monika Bhojwani
- Department of Reproductive Biology, Research Institute for the Biology of Farm Animals (FBN), Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Humbard MA, Stevens SM, Maupin-Furlow JA. Posttranslational modification of the 20S proteasomal proteins of the archaeon Haloferax volcanii. J Bacteriol 2006; 188:7521-30. [PMID: 16950923 PMCID: PMC1636277 DOI: 10.1128/jb.00943-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
20S proteasomes are large, multicatalytic proteases that play an important role in intracellular protein degradation. The barrel-like architecture of 20S proteasomes, formed by the stacking of four heptameric protein rings, is highly conserved from archaea to eukaryotes. The outer two rings are composed of alpha-type subunits, and the inner two rings are composed of beta-type subunits. The halophilic archaeon Haloferax volcanii synthesizes two different alpha-type proteins, alpha1 and alpha2, and one beta-type protein that assemble into at least two 20S proteasome subtypes. In this study, we demonstrate that all three of these 20S proteasomal proteins (alpha1, alpha2, and beta) are modified either post- or cotranslationally. Using electrospray ionization quadrupole time-of-flight mass spectrometry, a phosphorylation site of the beta subunit was identified at Ser129 of the deduced protein sequence. In addition, alpha1 and alpha2 contained N-terminal acetyl groups. These findings represent the first evidence of acetylation and phosphorylation of archaeal proteasomes and are one of the limited examples of post- and/or cotranslational modification of proteins in this unusual group of organisms.
Collapse
Affiliation(s)
- Matthew A Humbard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611-0700, USA
| | | | | |
Collapse
|
11
|
Tokumoto M, Kurita Y, Tokumoto T. Molecular Cloning of cDNA Encoding APC11, a Catalytic Component of Anaphase-promoting-complex (APC/C), from Goldfish ( Carassius auratus), and Establishment of in vitroUbiquitinating System. Zoolog Sci 2006; 23:675-8. [PMID: 16971785 DOI: 10.2108/zsj.23.675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Destruction of cyclin B is required for exit from mitosis and meiosis. A cyclin-degrading system, including anaphase-promoting-complex/cyclosome (APC/C), has been shown to be responsible for cyclin B destruction. Here we present the cloning, sequencing, and expression analysis of goldfish (Carassius auratus) APC11, which encodes the catalytic component of APC/C from goldfish ovary. The cloned cDNA is 348 bp long and encodes 88 amino acids. The deduced amino acid sequence is highly homologous to APC11 from other species. The expression of mRNA for APC11 was ubiquitous among tissues, as opposed to that of mRNA for E2-C, which occurred at a very high level in the ovary. Recombinant goldfish APC11 possesses ubiquitinating activity against cyclin B. We established an in vitro ubiquitinating system of proteins composed of purified recombinant E1, E2-C, and APC11 from goldfish. The reconstructed system for these ubiquitinating enzymes makes it feasible to elucidate the molecular mechanism of cyclin B degradation.
Collapse
Affiliation(s)
- Mika Tokumoto
- Department of Biology and Geosciences, Faculty of Science, National University Corporation Shizuoka University, Japan
| | | | | |
Collapse
|
12
|
Horiguchi R, Dohra H, Tokumoto T. Comparative proteome analysis of changes in the 26S proteasome during oocyte maturation in goldfish. Proteomics 2006; 6:4195-202. [PMID: 16791828 DOI: 10.1002/pmic.200600055] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. An alteration of proteasome function may be important for the regulation of the meiotic cell cycle. To study the change at the subunit level of the 26S proteasome during meiotic maturation, we purified 26S proteasomes from immature and mature oocytes of goldfish. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. For differential analysis, whole spots of the 26S proteasome from goldfish oocytes were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database analysis. Four spots that were different (only detected in mature oocyte 265 proteasomes and not in immature ones) and four protein spots that were up- or down-regulated were identified unambiguously. The mature-specific spots were not 26S proteasome components but rather their interacting proteins, and were identified as chaperonin-containing TCP-1 subunits and myosin light chain. Minor spots of three subunits of the 20S core particle and one of the 19S regulatory particle showed meiotic cell cycle-dependent changes. These results demonstrate that modifications of proteasomal subunits and cell cycle phase-dependent interactions of proteins with proteasomes occur during oocyte maturation in goldfish.
Collapse
Affiliation(s)
- Ryo Horiguchi
- Department of Biology and Geosciences, Faculty of Science, National University Corporation Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
13
|
Liu X, Huang W, Li C, Li P, Yuan J, Li X, Qiu XB, Ma Q, Cao C. Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell 2006; 22:317-27. [PMID: 16678104 DOI: 10.1016/j.molcel.2006.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 09/07/2005] [Accepted: 04/10/2006] [Indexed: 11/15/2022]
Abstract
Proteasome-mediated proteolysis is a primary protein degradation pathway in cells. The present study demonstrates that c-Abl and Arg (abl-related gene) tyrosine kinases associate with and phosphorylate the proteasome PSMA7 (alpha4) subunit at Tyr-153. Consequently, proteasome-dependent proteolysis is compromised. Notably, cells expressing a phosphorylation mutant of PSMA7(Y153F) display impaired G1/S transition and S/G2 progression, highlighting the biological significance of tyrosine phosphorylation of a proteasome subunit as an important cellular regulatory control.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Institute of Biotechnology, Beijing 100850, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The proteasome has an important role in the degradation of normal, damaged, mutant, or misfolded proteins. This includes the degradation of normal and regulatory proteins in the cellular metabolism and additionally the removal of damaged proteins as a stress response. The two well-described proteasome regulators, the 11S and the 19S regulators, forming together with the 20S 'core' proteasome various forms of the proteasome, including the ATP-stimulated 26S proteasome. As a result of aerobic metabolism, reactive oxygen species (ROS) are constantly generated during the lifetime of biological organisms. Consequently a permanent generation of oxidative damage takes place. This includes the formation of oxidatively modified proteins. These oxidized protein derivatives tend to aggregate, and accumulation of these aggregates may lead to cell death. To prevent this, such oxidatively modified proteins are selectively recognized and either repaired or degraded by the proteasome. The current knowledge of the repair systems and the degradation mechanism is reviewed here. The possible interactions between the ubiquitin-proteasome-system, the chaperone system, the protein repair mechanisms, and other antioxidative defense strategies are highlighted.
Collapse
Affiliation(s)
- Diana Poppek
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | |
Collapse
|
15
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Horiguchi R, Tokumoto M, Nagahama Y, Tokumoto T. Molecular cloning and expression of cDNA coding for four spliced isoforms of casein kinase Ialpha in goldfish oocytes. ACTA ACUST UNITED AC 2004; 1727:75-80. [PMID: 15652160 DOI: 10.1016/j.bbaexp.2004.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/05/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022]
Abstract
Casein kinase I (CKI) is a member of the serine/threonine protein kinases and located in a separate group within the superfamily of eukaryotic protein kinases. CKI isoforms regulate several checkpoints of the cell cycle and meiosis. In higher eukaryotes, CKIalpha has four isoforms produced through the alternative splicing of two short inserts. Here, we report the cloning, sequencing and expression of four alternatively spliced isoforms of CKIalpha from goldfish ovary. The cloned cDNAs were 2099-3002-bp long and classified as CKIalpha, CKIalphaS, CKIalphaL and CKIalphaLS. It was revealed that two major (3.0 and 2.0 kb) messages were strongly expressed in the ovary. Four isoforms are expressed in previtellogenic to vitellogenic oocytes. In the huge nucleus of the oocyte, referred to as the germinal vesicle, CKIalphaS is dominant and CKIalphaL is expressed at a detectable level. Immunoblot analysis revealed that CKIalpha and CKIalphaS are major products in both immature and mature oocytes. These two isoforms were expressed in a tissue-dependent manner.
Collapse
Affiliation(s)
- Ryo Horiguchi
- Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
| | | | | | | |
Collapse
|
17
|
Identification of alpha-type subunits of the Xenopus 20S proteasome and analysis of their changes during the meiotic cell cycle. BMC BIOCHEMISTRY 2004; 5:18. [PMID: 15603592 PMCID: PMC544557 DOI: 10.1186/1471-2091-5-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 12/17/2004] [Indexed: 11/10/2022]
Abstract
Background The 26S proteasome is the proteolytic machinery of the ubiquitin-dependent proteolytic system responsible for most of the regulated intracellular protein degradation in eukaryotic cells. Previously, we demonstrated meiotic cell cycle dependent phosphorylation of α4 subunit of the 26S proteasome. In this study, we analyzed the changes in the spotting pattern separated by 2-D gel electrophoresis of α subunits during Xenopus oocyte maturation. Results We identified cDNA for three α-type subunits (α1, α5 and α6) of Xenopus, then prepared antibodies specific for five subunits (α1, α3, α5, α6, and α7). With these antibodies and previously described monoclonal antibodies for subunits α2 and α4, modifications to all α-type subunits of the 26S proteasome during Xenopus meiotic maturation were examined by 2D-PAGE. More than one spot for all subunits except α7 was identified. Immunoblot analysis of 26S proteasomes purified from immature and mature oocytes showed a difference in the blots of α2 and α4, with an additional spot detected in the 26S proteasome from immature oocytes (in G2-phase). Conclusions Six of α-type subunits of the Xenopus 26S proteasome are modified in Xenopus immature oocytes and two subunits (α2 and α4) are modified meiotic cell cycle-dependently.
Collapse
|