1
|
Miyoshi K, Hagita H, Horiguchi T, Tanimura A, Noma T. Redefining GBA gene structure unveils the ability of Cap-independent, IRES-dependent gene regulation. Commun Biol 2022; 5:639. [PMID: 35831491 PMCID: PMC9279297 DOI: 10.1038/s42003-022-03577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Glucosylceramide is the primary molecule of glycosphingolipids, and its metabolic regulation is crucial for life. Defects in the catabolizing enzyme, glucocerebrosidase (GCase), cause a lysosomal storage disorder known as Gaucher disease. However, the genetic regulation of GCase has not been fully understood. Here we show the redefined structure of the GCase coding gene (GBA), and clarify the regulatory mechanisms of its transcription and translation. First, alternative uses of the two GBA gene promoters were identified in fibroblasts and HL60-derived macrophages. Intriguingly, both GBA transcripts and GCase activities were induced in macrophages but not in neutrophils. Second, we observed cap-independent translation occurs via unique internal ribosome entry site activities in first promoter-driven GBA transcripts. Third, the reciprocal expression was observed in GBA and miR22-3p versus GBAP1 transcripts before and after HL60-induced macrophage differentiation. Nevertheless, these findings clearly demonstrate novel cell-type-specific GBA gene expression regulatory mechanisms, providing new insights into GCase biology. The cell type-specific expression of the glucocerebrosidase gene, associated with the lysosomal storage disorder called Gaucher disease, is linked to cis- and trans-regulatory transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| | - Hiroko Hagita
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Taigo Horiguchi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan
| | - Ayako Tanimura
- Division of Food & Health Sciences, Department of Environmental and Symbiotic Sciences, Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Takafumi Noma
- Department of Nutrition and Health Promotion, Faculty of Human Life Studies, Hiroshima Jogakuin University, 4-13-1 Ushita-higashi, Higashi-ku, Hiroshima, 732-0063, Japan
| |
Collapse
|
2
|
Alim MA, Njenda D, Lundmark A, Kaminska M, Jansson L, Eriksson K, Kats A, Johannsen G, Arvidsson CK, Mydel PM, Yucel-Lindberg T. Pleckstrin Levels Are Increased in Patients with Chronic Periodontitis and Regulated via the MAP Kinase-p38α Signaling Pathway in Gingival Fibroblasts. Front Immunol 2022; 12:801096. [PMID: 35087525 PMCID: PMC8787058 DOI: 10.3389/fimmu.2021.801096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic periodontitis (CP) is a bacteria-driven inflammatory disease characterized by the breakdown of gingival tissue, the periodontal ligament, and alveolar bone, leading ultimately to tooth loss. We previously reported the pleckstrin gene (PLEK) to be highly upregulated in gingival tissue of patients with CP and the only gene concurrently upregulated in other inflammatory diseases including rheumatoid arthritis and cardiovascular diseases. Using saliva from 169 individuals diagnosed with CP and healthy controls, we investigated whether pleckstrin could serve as a novel biomarker of periodontitis. Additionally, we explored signal pathways involved in the regulation of PLEK using human gingival fibroblasts (HGFs). Pleckstrin levels were significantly higher (p < 0.001) in the saliva samples of patients with CP compared to controls and closely associated with CP severity. Immunohistochemical analysis revealed the expression of pleckstrin in inflammatory cells and gingival fibroblasts of CP patients. To explore the signal pathways involved in pleckstrin regulation, we stimulated HGFs with either interleukin-1β (IL-1β) or lipopolysaccharides (LPS) alone, or in combination with inhibitors targeting c-Jun N-terminal kinase, tyrosine kinase, protein kinase C, or p38 MAP kinase. Results showed that IL-1β and LPS significantly increased PLEK mRNA and pleckstrin protein levels. VX-745, the p38 MAP kinase inhibitor significantly decreased IL-1β- and LPS-induced pleckstrin levels at both the mRNA and the protein level. Together, these findings show that pleckstrin could serve as a salivary biomarker for the chronic inflammatory disease periodontitis and a regulator of inflammation via the p38 MAP kinase pathway.
Collapse
Affiliation(s)
- M Abdul Alim
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Duncan Njenda
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.,Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Leif Jansson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden.,Department of Periodontology, Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Stockholm, Sweden
| | - Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.,Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Gunnar Johannsen
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Catalin Koro Arvidsson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Piotr M Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Clinical Science, Broegelmann Laboratory, University of Bergen, Bergen, Norway
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
3
|
Schluessel S, Hartmann ES, Koehler MI, Beck F, Redeker JI, Saller MM, Akova E, Krebs S, Holzapfel BM, Mayer-Wagner S. Dental and Orthopaedic Implant Loosening: Overlap in Gene Expression Regulation. Front Immunol 2022; 13:820843. [PMID: 35222398 PMCID: PMC8874814 DOI: 10.3389/fimmu.2022.820843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Objectives Endoprosthetic loosening still plays a major role in orthopaedic and dental surgery and includes various cellular immune processes within peri-implant tissues. Although the dental and orthopaedic processes vary in certain parts, the clinical question arises whether there are common immune regulators of implant loosening. Analyzing the key gene expressions common to both processes reveals the mechanisms of osteoclastogenesis within periprosthetic tissues of orthopaedic and dental origin. Methods Donor peripheral blood mononuclear cells (PBMCs) and intraoperatively obtained periprosthetic fibroblast-like cells (PPFs) were (co-)cultured with [± macrophage-colony stimulating factor (MCSF) and Receptor Activator of NF-κB ligand (RANKL)] in transwell and monolayer culture systems and examined for osteoclastogenic regulations [MCSF, RANKL, osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)] as well as the ability of bone resorption. Sequencing analysis compared dental and orthopaedic (co-)cultures. Results Monolayer co-cultures of both origins expressed high levels of OPG, resulting in inhibition of osteolysis shown by resorption assay on dentin. The high OPG-expression, low RANKL/OPG ratios and a resulting inhibition of osteolysis were displayed by dental and orthopaedic PPFs in monolayer even in the presence of MCSF and RANKL, acting as osteoprotective and immunoregulatory cells. The osteoprotective function was only observed in monolayer cultures of dental and orthopaedic periprosthetic cells and downregulated in the transwell system. In transwell co-cultures of PBMCs/PPFs profound changes of gene expression, with a significant decrease of OPG (20-fold dental versus 100 fold orthopaedic), were identified. Within transwell cultures, which offer more in vivo like conditions, RANKL/OPG ratios displayed similar high levels to the original periprosthetic tissue. For dental and orthopaedic implant loosening, overlapping findings in principal component and heatmap analysis were identified. Conclusions Thus, periprosthetic osteoclastogenesis may be a correlating immune process in orthopaedic and dental implant failure leading to comparable reactions with regard to osteoclast formation. The transwell cultures system may provide an in vivo like model for the exploration of orthopaedic and dental implant loosening.
Collapse
Affiliation(s)
- Sabine Schluessel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Eliza S. Hartmann
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Miriam I. Koehler
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Felicitas Beck
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Julia I. Redeker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maximilian M. Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elif Akova
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- *Correspondence: Susanne Mayer-Wagner,
| |
Collapse
|
4
|
Lira-Junior R, Holmström SB, Clark R, Zwicker S, Majster M, Johannsen G, Axtelius B, Åkerman S, Svensson M, Klinge B, Boström EA. S100A12 Expression Is Modulated During Monocyte Differentiation and Reflects Periodontitis Severity. Front Immunol 2020; 11:86. [PMID: 32082330 PMCID: PMC7005221 DOI: 10.3389/fimmu.2020.00086] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
S100A12 is a calcium-binding protein of the S100 subfamily of myeloid-related proteins that acts as an alarmin to induce a pro-inflammatory innate immune response. It has been linked to several chronic inflammatory diseases, however its role in the common oral immunopathology periodontitis is largely unknown. Previous in vitro monoculture experiments indicate that S100A12 production decreases during monocyte differentiation stages, while the regulation within tissue is poorly defined. This study evaluated S100A12 expression in monocyte subsets, during monocyte-to-macrophage differentiation and following polarization, both in monoculture and in a tissue context, utilizing a three-dimensional co-culture oral tissue model. Further, we explored the involvement of S100A12 in periodontitis by analyzing its expression in peripheral circulation and gingival tissue, as well as in saliva. We found that S100A12 expression was higher in classical than in non-classical monocytes. S100A12 expression and protein secretion declined significantly during monocyte-to-macrophage differentiation, while polarization of monocyte-derived macrophages had no effect on either. Peripheral monocytes from periodontitis patients had higher S100A12 expression than monocytes from controls, a difference particularly observed in the intermediate and non-classical monocyte subsets. Further, monocytes from periodontitis patients displayed an increased secretion of S100A12 compared with monocytes from controls. In oral tissue cultures, monocyte differentiation resulted in increased S100A12 secretion over time, which further increased after inflammatory stimuli. Likewise, S100A12 expression was higher in gingival tissue from periodontitis patients where monocyte-derived cells exhibited higher expression of S100A12 in comparison to non-periodontitis tissue. In line with our findings, patients with severe periodontitis had significantly higher levels of S100A12 in saliva compared to non-periodontitis patients, and the levels correlated to clinical periodontal parameters. Taken together, S100A12 is predominantly secreted by monocytes rather than by monocyte-derived cells. Moreover, S100A12 is increased in inflamed tissue cultures, potentially as a result of enhanced production by monocyte-derived cells. This study implicates the involvement of S100A12 in periodontitis pathogenesis, as evidenced by increased S100A12 expression in inflamed gingival tissue, which may be due to altered circulatory monocytes in periodontitis.
Collapse
Affiliation(s)
- Ronaldo Lira-Junior
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sofia Björnfot Holmström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Reuben Clark
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stephanie Zwicker
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mirjam Majster
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Gunnar Johannsen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Björn Axtelius
- Department of Oral Diagnostics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Sigvard Åkerman
- Department of Orofacial Pain and Jaw Function, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Björn Klinge
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Elisabeth A Boström
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
5
|
Soldner ELB, Hartz AMS, Akanuma SI, Pekcec A, Doods H, Kryscio RJ, Hosoya KI, Bauer B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J 2019; 33:13966-13981. [PMID: 31638830 DOI: 10.1096/fj.201901460rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.
Collapse
Affiliation(s)
- Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shin-Ichi Akanuma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Epilepsy Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
A Castiblanco G, Yucel-Lindberg T, Roos S, Twetman S. Effect of Lactobacillus reuteri on Cell Viability and PGE 2 Production in Human Gingival Fibroblasts. Probiotics Antimicrob Proteins 2018; 9:278-283. [PMID: 28028690 DOI: 10.1007/s12602-016-9246-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts (HGF) and its production of prostaglandin E2 (PGE2), when exposed to supernatants of two mixed Lactobacillus reuteri strains (ATCC PTA 5289 and DSM 17938). The experiments were conducted in the presence and absence of the pro-inflammatory cytokine IL-1β. L. reuteri strains were grown and the bacterial supernatant was collected. The cell-free supernatant was diluted to concentrations equivalent to the ones produced by 0.5 to 5.0 × 107 CFU/mL bacteria. Cell viability was assessed with the MTT colorimetric assay and the amount of PGE2 in the cell culture medium was determined using the monoclonal enzyme immune assay kits. Our findings showed that none of the L. reuteri supernatants were cytotoxic or affected the viability of HGF. The most concentrated bacterial supernatant stimulated the production of PGE2 by the gingival cells in a significant way in the presence of IL-1β (p < 0.05), suggesting that bacterial products secreted from L. reuteri might play a role in the resolution of inflammation in HGF. Thus, our findings justify further investigations on the influence of probiotic bacteria on gingival inflammatory reactions.
Collapse
Affiliation(s)
- Gina A Castiblanco
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, DK-2200, Copenhagen N, Denmark.
| | - Tulay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, SE-141 52, Huddinge, Sweden
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Almas Allé 8, Box 7025, SE-750 07, Uppsala, Sweden
| | - Svante Twetman
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
7
|
Haleagrahara N, Hodgson K, Miranda-Hernandez S, Hughes S, Kulur AB, Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology 2018; 26:1219-1232. [PMID: 29616452 DOI: 10.1007/s10787-018-0464-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of synovial tissues in joints, leading to progressive destruction of cartilage and joints. The disease-modifying anti-rheumatic drugs currently in use have side-effects. Thus, there is an urgent need for safe anti-inflammatory therapies for RA. This study aimed to evaluate the therapeutic effect of the flavonoid quercetin on arthritis in mice immunized with type II collagen (CII). An arthritis model was established in C57/BL6 mice by intradermal administration of chicken CII mixed with Freund's complete adjuvant. Quercetin (30 mg/kg orally) and methotrexate (0.75 mg intraperitoneally twice a week) were administered to investigate their protective effects against collagen-induced arthritis (CIA). Levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and the matrix metalloproteinases (MMP), 3, and 9 were detected to assess the anti-inflammatory effect of quercetin. The mRNA expression of MMP3, MMP9, CCL2, and TNF-α was also measured by quantitative real-time PCR. Quercetin significantly alleviated joint inflammation by reducing the levels of circulating cytokines and MMPs. There was a significant decrease in the expression of TNFα and MMP genes in the ankle joints of arthritic mice. A significant reduction in the levels of knee-joint inflammatory mediators were observed with combined quercetin and methotrexate treatment. Thus, quercetin has the potential to prevent joint inflammation and could be used as an adjunct therapy for RA patients who have an inadequate response to anti-rheumatic monotherapy.
Collapse
Affiliation(s)
- Nagaraja Haleagrahara
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD, 4811, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| | - Kelly Hodgson
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD, 4811, Australia
| | - Socorro Miranda-Hernandez
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD, 4811, Australia
| | - Samuel Hughes
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD, 4811, Australia
| | - Anupama Bangra Kulur
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD, 4811, Australia
| | - Natkunam Ketheesan
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
8
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
9
|
Björnfot Holmström S, Clark R, Zwicker S, Bureik D, Kvedaraite E, Bernasconi E, Nguyen Hoang AT, Johannsen G, Marsland BJ, Boström EA, Svensson M. Gingival Tissue Inflammation Promotes Increased Matrix Metalloproteinase-12 Production by CD200Rlow Monocyte-Derived Cells in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:4023-4035. [DOI: 10.4049/jimmunol.1700672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022]
|
10
|
Vitt A, Slizen V, Boström EA, Yucel-Lindberg T, Kats A, Sugars RV, Gustafsson A, Buhlin K. Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts. Acta Odontol Scand 2017; 75:524-529. [PMID: 28701056 DOI: 10.1080/00016357.2017.1350993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Polyhexamethylene guanidine phosphate (PHMG-P) was compared to chlorhexidine (CHX) in order to determine potential cytotoxic and immune-modulatory effects on human gingival fibroblasts. MATERIALS AND METHODS Cytotoxic effects of PHMG-P and CHX on human gingival fibroblasts were assessed using cell viability assay at various time points and concentrations. The effects of PHMG-P and CHX on the secretion of prostaglandin (PG) E2, interleukin (IL)-6, IL-8 and matrix metalloproteinase (MMP)-1 by non-stimulated or IL-1β stimulated fibroblasts were evaluated by enzyme-linked immunosorbent assays. RESULTS PHMG-P concentration 0.00009% led to the total loss of fibroblast viability within 24 h, whereas inhibition of fibroblast viability by CHX occurred at significantly higher concentrations of 0.0009% (p < .001). Short-term exposure to 0.005% PHMG-P led to loss of fibroblast viability after 5 min, whilst cells exposed to 0.005% CHX survived 30 min of treatment (p < .001). IL-1β stimulation induced an inflammatory response with a significant increase in the secretion of PGE2, IL-6, IL-8 and MMP-1. Treatment of IL-1β stimulated fibroblasts in combination with PHMG-P or CHX at concentrations of 0.000045 or 0.0.00009% resulted in significantly decreased PGE2, IL-6, IL-8 and MMP-1 levels. PHMG-P or CHX alone did not affect the baseline secretion of PGE2, IL-6, IL-8 or MMP-1 by gingival fibroblasts. CONCLUSIONS Cytotoxic effects on gingival fibroblasts were triggered by both PHMG-P and CHX at concentrations below those used in clinical practice. The tested antiseptics did not cause inflammation and reduced IL-1β-induced secretion of inflammatory mediators and collagenase by gingival fibroblasts, which suggests anti-inflammatory properties.
Collapse
Affiliation(s)
- Anton Vitt
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
- Department of Therapeutic Dentistry, Belarusian State Medical University, Minsk, Belarus
| | - Veronica Slizen
- Department of Microbiology, Virology and Immunology, Belarusian State Medical University, Minsk, Belarus
| | - Elisabeth A. Boström
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Rachael V. Sugars
- Department of Dental Medicine, Division of Oral Facial Diagnostics and Surgery, Karolinska Institutet, Huddinge, Sweden
| | - Anders Gustafsson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Kåre Buhlin
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Tuure L, Hämäläinen M, Whittle BJ, Moilanen E. Microsomal Prostaglandin E Synthase-1 Expression in Inflammatory Conditions Is Downregulated by Dexamethasone: Seminal Role of the Regulatory Phosphatase MKP-1. Front Pharmacol 2017; 8:646. [PMID: 28983247 PMCID: PMC5613146 DOI: 10.3389/fphar.2017.00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme situated downstream of cyclo-oxygenase-2, promoting the excessive PGE2 production in inflammation. Dexamethasone is known to suppress mPGES-1 but the mechanisms regulating mPGES-1 expression remain poorly known. MKP-1 is a phosphatase controlling the proinflammatory MAP kinase pathways p38 and JNK, thus limiting the inflammatory responses. We have now investigated the role of MKP-1 and MAP kinases p38 and JNK in the regulation of mPGES-1 expression by dexamethasone. Dexamethasone increased MKP-1 and decreased mPGES-1 expression in J774 macrophages and in peritoneal macrophages from wild-type but not from MKP-1 deficient mice. Dexamethasone also reduced p38 and JNK phosphorylation along with enhancement of MKP-1, while inhibition of JNK reduced mPGES-1 expression. These findings were also translated to in vivo conditions as dexamethasone downregulated mPGES-1 expression in paw inflammation in wild-type but not in MKP-1 deficient mice. In conclusion, dexamethasone was found to downregulate mPGES-1 expression through enhanced MKP-1 expression and reduced JNK phosphorylation in inflammatory conditions. The results extend the understanding on the regulation of mPGES-1 expression and highlight the potential of MKP-1 as an anti-inflammatory drug target.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Brendan J Whittle
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland.,William Harvey Research Institute, Barts and the London School of MedicineLondon, United Kingdom
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| |
Collapse
|
12
|
Investigations of a Possible Chemical Effect of Salvadora persica Chewing Sticks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2576548. [PMID: 28484501 PMCID: PMC5412162 DOI: 10.1155/2017/2576548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/28/2017] [Indexed: 01/20/2023]
Abstract
Salvadora persica is commonly used chewing sticks in many parts of the world as an oral hygiene tool. This study measured the amount of benzyl isothiocyanate (BITC) released into the mouth and assessed its retention time in saliva. The study also tested if the released amount of BITC could potentially be antibacterial or cytotoxic. Twelve subjects brushed their teeth with fresh Miswak once, twice, and four times. The amount of BITC in the saliva and in the used brushes was quantified using gas chromatography-mass spectrometry. The antibacterial effect of BITC and Miswak essential oil (MEO) was tested against Haemophilus influenzae, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. The cytotoxic effect on gingival fibroblasts and keratinocytes was tested using MTT. The highest amount of the active compounds was detected in saliva after using the Miswak tip for once and immediately. It significantly decreased when the Miswak tip was used more than once and thus after 10 min. The growth of the tested bacteria was inhibited by MEO and BITC in a dose dependent manner, P. gingivalis being the most sensitive. MTT assay showed that BITC and MEO were cytotoxic towards gingival fibroblasts while oral keratinocytes showed resistance. This study suggests that the Miswak tip should be cut before each use to ensure the maximum effect.
Collapse
|
13
|
Essential Oils from Ugandan Medicinal Plants: In Vitro Cytotoxicity and Effects on IL-1 β-Induced Proinflammatory Mediators by Human Gingival Fibroblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5357689. [PMID: 27807462 PMCID: PMC5078667 DOI: 10.1155/2016/5357689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
The study investigated cytotoxicity of essential oils from four medicinal plants (Bidens pilosa, Ocimum gratissimum, Cymbopogon nardus, and Zanthoxylum chalybeum) on human gingival fibroblasts and their effects on proinflammatory mediators' secretion. Cytotoxicity of essential oils was investigated using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Effects of essential oils at subcytotoxicity concentrations on interleukin- (IL-) 6, IL-8, and prostaglandin E2 (PGE2) secretions by gingival fibroblasts treated with IL-1β (300 pg/mL) were evaluated by ELISA and EIA. IC50 values of the essential oils ranged from 26 μg/mL to 50 μg/mL. Baseline and IL-1β-induced secretion of PGE2 was inhibited by treatment with essential oil from O. gratissimum. Essential oils from B. pilosa and C. nardus had synergistic effects with IL-1β on PGE2 seceretion. In conclusion, the study suggests that essential oil from O. gratissimum decreases gingival fibroblasts secretion of PGE2, while essential oils from B. pilosa and C. nardus increase PGE2 secretion. Essential oil from Z. chalybeum was the most cytotoxic, while oil from C. nardus was the least cytotoxic. Although the clinical significance of these findings remains to be determined, it may be suggested that essential oil from O. gratissimum, applied at subcytotoxicity concentrations, could reduce the participation of gingival fibroblasts in the gingival inflammation and tissue destruction associated with periodontitis.
Collapse
|
14
|
Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases. Sci Rep 2015; 5:18475. [PMID: 26686060 PMCID: PMC4685297 DOI: 10.1038/srep18475] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases.
Collapse
|
15
|
Franková J, Pivodová V, Růžička F, Tománková K, Šafářová K, Vrbková J, Ulrichová J. Comparing biocompatibility of gingival fibroblasts and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 2013; 101:2915-24. [DOI: 10.1002/jbm.a.34598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Franková
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| | - Veronika Pivodová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| | - Filip Růžička
- Department of Microbiology; Faculty of Medicine; Masaryk University and St. Anne's University Hospital; Brno; Czech Republic
| | - Kateřina Tománková
- Department of Medical Biophysics; Faculty of Medicine and Dentistry; Institute of Translation Medicine; Palacký University Olomouc; Olomouc; Czech Republic
| | - Klára Šafářová
- Regional Centre of Advanced Technologies and Materials; Faculty of Science; Palacký University Olomouc; Olomouc; Czech Republic
| | - Jana Vrbková
- Department of Mathematical Analysis and Applications of Mathematics; Faculty of Science; Palacký University Olomouc; Olomouc; Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry; Faculty of Medicine and Dentistry; Palacký University Olomouc; Olomouc; Czech Republic
| |
Collapse
|
16
|
Kats A, Båge T, Georgsson P, Jönsson J, Quezada HC, Gustafsson A, Jansson L, Lindberg C, Näsström K, Yucel-Lindberg T. Inhibition of microsomal prostaglandin E synthase-1 by aminothiazoles decreases prostaglandin E2 synthesis in vitro and ameliorates experimental periodontitis in vivo. FASEB J 2013; 27:2328-41. [PMID: 23447581 PMCID: PMC3659347 DOI: 10.1096/fj.12-214445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The potent inflammatory mediator prostaglandin E2 (PGE2) is implicated in the pathogenesis of several chronic inflammatory conditions, including periodontitis. The inducible enzyme microsomal prostaglandin E synthase-1 (mPGES-1), catalyzing the terminal step of PGE2 biosynthesis, is an attractive target for selective PGE2 inhibition. To identify mPGES-1 inhibitors, we investigated the effect of aminothiazoles on inflammation-induced PGE2 synthesis in vitro, using human gingival fibroblasts stimulated with the cytokine IL-1β and a cell-free mPGES-1 activity assay, as well as on inflammation-induced bone resorption in vivo, using ligature-induced experimental periodontitis in Sprague-Dawley rats. Aminothiazoles 4-([4-(2-naphthyl)-1,3-thiazol-2-yl]amino)phenol (TH-848) and 4-(3-fluoro-4-methoxyphenyl)-N-(4-phenoxyphenyl)-1,3-thiazol-2-amine (TH-644) reduced IL-1β-induced PGE2 production in fibroblasts (IC50 1.1 and 1.5 μM, respectively) as well as recombinant mPGES-1 activity, without affecting activity or expression of the upstream enzyme cyclooxygenase-2. In ligature-induced experimental periodontitis, alveolar bone loss, assessed by X-ray imaging, was reduced by 46% by local treatment with TH-848, compared to vehicle, without any systemic effects on PGE2, 6-keto PGF1α, LTB4 or cytokine levels. In summary, these results demonstrate that the aminothiazoles represent novel mPGES-1 inhibitors for inhibition of PGE2 production and reduction of bone resorption in experimental periodontitis, and may be used as potential anti-inflammatory drugs for treatment of chronic inflammatory diseases, including periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Römer P, Köstler J, Koretsi V, Proff P. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells. Clin Oral Investig 2013; 17:2041-8. [PMID: 23392729 DOI: 10.1007/s00784-013-0928-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE This study aims to demonstrate in vitro the synergistic effect of orthodontic forces and periodontal pathogens on cyclooxygenase-2 regulation and the subsequent receptor activator of nuclear factor kappa-B ligand (RANKL) production from periodontal ligament (PDL) cells. MATERIALS AND METHODS In comparison to a control group, three experimental groups were formed from human primary PDL cells stressed with compressive forces, bacterial endotoxins, or a combination of both. Gene expression of cyclooxygenase-2 and RANKL was analysed with RT real-time PCR. The prostaglandin E2 production was determined with ELISA. A co-culture of PDL cells and an osteoclast-progenitor cell line was used in order to demonstrate the osteoclast formation effect caused by the simultaneous combined stress. RESULTS The simultaneous combined stress resulted in a 56-fold up-regulation of cyclooxygenase-2 gene expression with a subsequent noticeable rise in the prostaglandin E2 in the culture medium. The RANKL/osteoprotegerin gene expression ratio was 50-fold up-regulated and the osteoclast formation assay revealed 153.5 ± 15.7 tartrate-resistant acid phosphatase (TRAP)-positive cells per well compared with 42.3 ± 3.8 TRAP-positive cells per well of the control group. CONCLUSION The synergistic action of periodontal pathogens and orthodontic forces leads to an increased expression of cyclooxygenase-2 from PDL cells that intensify the RANKL production which in turn induces osteoclast differentiation and subsequent osteoclastogenesis. CLINICAL RELEVANCE The present study puts an emphasis on the detrimental effect of orthodontic forces on patients with an active periodontal disease by underlining the significance of cyclooxygenase-2 activity and RANKL binding on the osteoclastogenesis process.
Collapse
Affiliation(s)
- Piero Römer
- Department of Orthodontics, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany,
| | | | | | | |
Collapse
|
18
|
Koontongkaew S, Meesuk L, Aupaphong V, Ayudhaya TDN, Poachanukoon O. Inhibitory effect of Zingiber cassumunar extracts on lipopolysaccharide-induced cyclooxygenase-2 and matrix metalloproteinase expression in human gingival fibroblasts. J Periodontal Res 2012; 48:507-16. [PMID: 23278498 DOI: 10.1111/jre.12033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Lipopolysaccharides (LPS) induce the production of proinflammatory mediators such as prostaglandins and matrix metalloproteinases (MMPs) in human gingival fibroblasts (HGFs). Zingiber cassumunar is a medicinal plant that possesses anti-inflammatory properties. The aim of this study was to determine the effects of the Z. cassumunar extract on the expression of cyclooxygenase (COX)-1, COX-2 and MMP-2 in HGFs challenged with LPS. MATERIAL AND METHODS HGFs were treated with LPS in the presence or absence of Z. cassumunar extracts. The levels of expression of COX-1, COX-2 and MMP-2 mRNAs and of COX-1, COX-2 and MMP-2 proteins were detected by reverse transcription-polymerase chain reaction and western blotting, respectively. MMP-2 activities in cell-culture supernatants were determined using gelatin zymography. MAPK activation was evaluated by western blotting. RESULTS LPS treatment of HGFs resulted in the activation of ERK1/2, p38 and JNK. Z. cassumunar extracts significantly inhibited the phosphorylation of ERK1/2 and JNK in HGFs stimulated with LPS. A lesser inhibitory effect was observed for the phosphorylation of p38. RT-PCR and western blot analyses showed that Z. cassumunar extracts inhibited the LPS-induced expression of COX-2 mRNA and COX-2 protein, respectively, but not of COX-1 mRNA or COX-1 protein. Pretreatment of HGFs with Z. cassumunar also attenuated the induction of MMP-2 with LPS. CONCLUSION Our results indicate that Z. cassumunar extracts inhibit COX-2 and MMP-2 production by LPS-activated human gingival fibroblasts through blocking the proinflammatory signaling pathway involving ERK1/2, JNK and p38.
Collapse
Affiliation(s)
- S Koontongkaew
- Oral Biology Laboratory, Faculty of Dentistry, Thammasat University, Klong Luang, Prathumthani, Thailand.
| | | | | | | | | |
Collapse
|
19
|
Rummel C, Matsumura K, Luheshi GN. Circulating IL-6 contributes to peripheral LPS-induced mPGES-1 expression in the rat brain. Brain Res Bull 2011; 86:319-25. [DOI: 10.1016/j.brainresbull.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/24/2011] [Accepted: 09/10/2011] [Indexed: 02/06/2023]
|
20
|
Båge T, Kats A, Lopez BS, Morgan G, Nilsson G, Burt I, Korotkova M, Corbett L, Knox AJ, Pino L, Jakobsson PJ, Modéer T, Yucel-Lindberg T. Expression of prostaglandin E synthases in periodontitis immunolocalization and cellular regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1676-88. [PMID: 21435451 PMCID: PMC3078457 DOI: 10.1016/j.ajpath.2010.12.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 12/17/2022]
Abstract
The inflammatory mediator prostaglandin E(2) (PGE(2)) is implicated in the pathogenesis of chronic inflammatory diseases including periodontitis; it is synthesized by cyclooxygenases (COX) and the prostaglandin E synthases mPGES-1, mPGES-2, and cPGES. The distribution of PGES in gingival tissue of patients with periodontitis and the contribution of these enzymes to inflammation-induced PGE(2) synthesis in different cell types was investigated. In gingival biopsies, positive staining for PGES was observed in fibroblasts and endothelial, smooth muscle, epithelial, and immune cells. To further explore the contribution of PGES to inflammation-induced PGE(2) production, in vitro cell culture experiments were performed using fibroblasts and endothelial, smooth muscle, and mast cells. All cell types expressed PGES and COX-2, resulting in basal levels of PGE(2) synthesis. In response to tumor necrosis factor (TNF-α), IL-1β, and cocultured lymphocytes, however, mPGES-1 and COX-2 protein expression increased in fibroblasts and smooth muscle cells, accompanied by increased PGE(2), whereas mPGES-2 and cPGES were unaffected. In endothelial cells, TNF-α increased PGE(2) production only via COX-2 expression, whereas in mast cells the cytokines did not affect PGE(2) enzyme expression or PGE(2) production. Furthermore, PGE(2) production was diminished in gingival fibroblasts derived from mPGES-1 knockout mice, compared with wild-type fibroblasts. These results suggest that fibroblasts and smooth muscle cells are important sources of mPGES-1, which may contribute to increased PGE(2) production in the inflammatory condition periodontitis.
Collapse
Affiliation(s)
- Tove Båge
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kats
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Blanca Silva Lopez
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gareth Morgan
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Clinical Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden
| | - Idil Burt
- Department of Orthodontics, Eastman Institute, Stockholm, Sweden
| | | | - Lisa Corbett
- Division of Respiratory Medicine, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Alan J. Knox
- Division of Respiratory Medicine, City Hospital, University of Nottingham, Nottingham, United Kingdom
| | - Leonardo Pino
- Örebro City Council, Postgraduate Dental Education Center, Örebro, Sweden
| | | | - Thomas Modéer
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Pediatric Dentistry, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Båge T, Lindberg J, Lundeberg J, Modéer T, Yucel-Lindberg T. Signal pathways JNK and NF-kappaB, identified by global gene expression profiling, are involved in regulation of TNFalpha-induced mPGES-1 and COX-2 expression in gingival fibroblasts. BMC Genomics 2010; 11:241. [PMID: 20398340 PMCID: PMC2873473 DOI: 10.1186/1471-2164-11-241] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/15/2010] [Indexed: 01/17/2023] Open
Abstract
Background Prostaglandin E2 (PGE2) is involved in several chronic inflammatory diseases including periodontitis, which causes loss of the gingival tissue and alveolar bone supporting the teeth. We have previously shown that tumor necrosis factor α (TNFα) induces PGE2 synthesis in gingival fibroblasts. In this study we aimed to investigate the global gene expression profile of TNFα-stimulated primary human gingival fibroblasts, focusing on signal pathways related to the PGE2-synthesizing enzymes prostaglandin E synthases (PGES), as well as the upstream enzyme cyclooxygenase-2 (COX-2) and PGE2 production. Results Microarray and western blot analyses showed that the mRNA and protein expression of the inflammatory induced microsomal prostaglandin E synthase-1 (mPGES-1) was up-regulated by the cytokine TNFα, accompanied by enhanced expression of COX-2 and increased production of PGE2. In contrast, the expression of the isoenzymes microsomal prostaglandin E synthase-2 (mPGES-2) and cytosolic prostaglandin E synthase (cPGES) was unaffected by TNFα treatment. Using oligonucleotide microarray analysis in a time-course factorial design including time points 1, 3 and 6 h, differentially expressed genes in response to TNFα treatment were identified. Enrichment analysis of microarray data indicated two positively regulated signal transduction pathways: c-Jun N-terminal kinase (JNK) and Nuclear Factor-κB (NF-κB). To evaluate their involvement in the regulation of mPGES-1 and COX-2 expression, we used specific inhibitors as well as phosphorylation analysis. Phosphorylation analysis of JNK (T183/Y185) and NF-κB p65 (S536) showed increased phosphorylation in response to TNFα treatment, which was decreased by specific inhibitors of JNK (SP600125) and NF-κB (Bay 11-7082, Ro 106-9920). Inhibitors of JNK and NF-κB also decreased the TNFα-stimulated up-regulation of mPGES-1 and COX-2 as well as PGE2 production. Conclusion In the global gene expression profile, the enrichment analysis of microarray data identified the two signal transduction pathways JNK and NF-κB as positively regulated by the cytokine TNFα. Inhibition of these TNFα-activated signal pathways reduced the expression of mPGES-1 and COX-2 as well as their end product PGE2 in gingival fibroblasts. The involvement of the signal pathways JNK and NF-κB in the regulation of PGE2 induced by TNFα may suggest these two pathways as possible attractive targets in the chronic inflammatory disease periodontitis.
Collapse
Affiliation(s)
- Tove Båge
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
22
|
van Erk MJ, Wopereis S, Rubingh C, van Vliet T, Verheij E, Cnubben NHP, Pedersen TL, Newman JW, Smilde AK, van der Greef J, Hendriks HFJ, van Ommen B. Insight in modulation of inflammation in response to diclofenac intervention: a human intervention study. BMC Med Genomics 2010; 3:5. [PMID: 20178593 PMCID: PMC2837611 DOI: 10.1186/1755-8794-3-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 02/23/2010] [Indexed: 01/08/2023] Open
Abstract
Background Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately describe the complexity of metabolic responses to mild anti-inflammatory therapy. Methods To address this limitation, we used an integrative omics approach to characterize modulation of inflammation in overweight men during an intervention with the non-steroidal anti-inflammatory drug diclofenac. Measured parameters included 80 plasma proteins, >300 plasma metabolites (lipids, free fatty acids, oxylipids and polar compounds) and an array of peripheral blood mononuclear cells (PBMC) gene expression products. These measures were submitted to multivariate and correlation analysis and were used for construction of biological response networks. Results A panel of genes, proteins and metabolites, including PGE2 and TNF-alpha, were identified that describe a diclofenac-response network (68 genes in PBMC, 1 plasma protein and 4 plasma metabolites). Novel candidate markers of inflammatory modulation included PBMC expression of annexin A1 and caspase 8, and the arachidonic acid metabolite 5,6-DHET. Conclusion In this study the integrated analysis of a wide range of parameters allowed the development of a network of markers responding to inflammatory modulation, thereby providing insight into the complex process of inflammation and ways to assess changes in inflammatory status associated with obesity. Trial registration The study is registered as NCT00221052 in clinicaltrials.gov database.
Collapse
Affiliation(s)
- Marjan J van Erk
- TNO Quality of Life, PO Box 360, 3700 AJ Zeist, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guerrero MD, Aquino M, Bruno I, Riccio R, Terencio MC, Payá M. Anti-inflammatory and analgesic activity of a novel inhibitor of microsomal prostaglandin E synthase-1 expression. Eur J Pharmacol 2009; 620:112-9. [DOI: 10.1016/j.ejphar.2009.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 07/17/2009] [Accepted: 08/04/2009] [Indexed: 12/27/2022]
|
24
|
Shimpo H, Sakai T, Kondo S, Mishima S, Yoda M, Hiraiwa H, Ishiguro N. Regulation of prostaglandin E(2) synthesis in cells derived from chondrocytes of patients with osteoarthritis. J Orthop Sci 2009; 14:611-7. [PMID: 19802674 DOI: 10.1007/s00776-009-1370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 05/21/2009] [Indexed: 01/30/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disorder that causes pain and degeneration of the joint over a chronic time course. Chondrocytes in OA play important roles in maintaining the homeostasis of the joint while they produce many cytokines and pathological mediators, including interleukin-1beta (IL-1beta), cyclooxygenases (COX), and prostaglandin E(2) (PGE(2)). To elucidate the mechanisms of pain due to OA, the pathway of PGE(2) synthesis was analyzed using cells derived from chondrocytes obtained from patients with OA. METHODS Chondrocytes were isolated from cartilage samples obtained at the time of joint replacement surgery from patients with OA. The chondrocytes at the second passage were cultured with or without IL-1beta, dexamethasone (DEX), or COX inhibitors such as NS-398, meloxicam, and indomethacin. Reverse transcription-polymerase chain reaction and Western blotting analysis were performed to study the levels of mRNA and protein, respectively. An enzyme-linked immunosorbent assay was performed to investigate the translocation of nuclear factor-kappaB (NF-kappaB) to the nucleus, and Western blotting analysis was performed to study the phosphorylation of mitogen-activated protein kinases. RESULTS IL-1beta markedly enhanced the expression of COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) at both the mRNA and protein levels. The up-regulation was suppressed by DEX or COX inhibitors. IL-1beta strongly increased the translocation of NF-kappaB to the nucleus and the phosphorylation of extracellular-signal-regulated kinase, p38, and c-Jun amino-terminal kinase; but the up-regulation was not inhibited by DEX or COX inhibitors. Interestingly, in a dose-dependent manner, PGE(2) recovered mPGES-1 expression from suppression by DEX, whereas it did not restore the expression of COX-2 in the presence of DEX and IL-1beta. CONCLUSIONS These results suggested that in cells derived from OA chondrocytes different mechanisms of regulation exist between mPGES-1 and COX-2, and the expression of mPGES-1 was, at least partially, regulated through the autocrine positive feedback by PGE(2).
Collapse
Affiliation(s)
- Hisashi Shimpo
- Department of Orthopedic Surgery, Tokoname Municipal Hospital, Tokoname, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Sandee D, Sivanuntakorn S, Vichai V, Kramyu J, Kirtikara K. Up-regulation of microsomal prostaglandin E synthase-1 in COX-1 and COX-2 knock-out mouse fibroblast cell lines. Prostaglandins Other Lipid Mediat 2008; 88:111-6. [PMID: 19114118 DOI: 10.1016/j.prostaglandins.2008.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 10/17/2008] [Accepted: 12/02/2008] [Indexed: 12/31/2022]
Abstract
In this paper we investigated the possible involvement of prostaglandin E synthases (PGESs) in compensatory mechanism. Our findings showed that microsomal (m)PGES-1 expression was significantly up-regulated in COX knock-out (K/O) cells whereas the expression of cytosolic PGES was not changed indicating that the induction of mPGES-1 may, at least in part, contribute to the substantial increase of PGE(2) production in COX K/O cell lines. The selective up-regulation of mPGES-1 in COX-2 K/O cells suggests that mPGES-1 may be metabolically coupled with COX-1 for PGE(2) formation. Addition of arachidonic acid caused significant induction of mPGES-1 and COX-2 in WT cells, whereas COX-1 and cPGES were not affected. Our earlier and the current studies demonstrate the coregulation of cPLA(2), COX, and mPGES-1, in PGE(2) synthesis pathway, and that these enzymes contribute to the elevation of PGE(2) level when one COX isoform is absent.
Collapse
Affiliation(s)
- Duanpen Sandee
- The National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani 12120, Thailand.
| | | | | | | | | |
Collapse
|
26
|
de Oliveira ACP, Candelario-Jalil E, Bhatia HS, Lieb K, Hüll M, Fiebich BL. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia 2008; 56:844-55. [PMID: 18383341 DOI: 10.1002/glia.20658] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prostaglandin E2 (PGE2) is among the most important mediators involved in neuroinflammatory processes. The final step of its synthesis is regulated by enzymes termed prostaglandin E2 synthases (PGES). Three PGES are known, cytosolic (c)PGES, membrane-associated (m)PGES-1 and mPGES-2. The expression of mPGES-1 is induced by inflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha. Although some roles of mPGES-1 have already been suggested, its function in the CNS and the signaling pathways involved in its upregulation are poorly understood. In this study, we examined the regulation of mPGES-1 in primary rat microglia and the signaling pathways involved in its expression. Whereas the expression of cPGES and mPGES-2 was not stimulated by LPS, low doses of LPS (0.1-1 ng/mL) sufficiently stimulated mPGES-1 mRNA expression. A corresponding protein synthesis, however, was obtained only with higher doses (10-100 ng/mL). The LPS-induced increase of mPGES-1 was inhibited by different signaling pathway inhibitors, such as SP600125, LY294002, GF109203X, and SC-514, suggesting the involvement of c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI-3K)/Akt, protein kinase C (PKC) pathways, and the nuclear factor (NF)-kappaB, respectively. In contrast to other reports, LPS-induced mPGES-1 synthesis was not invariably coupled to the synthesis of COX-2, since inhibition of PI-3K with LY294002 decreased mPGES-1 but increased COX-2 levels. This detailed view of the intracellular signaling pathways involved in mPGES-1 expression in activated microglia opens a new avenue in the search for novel potential therapeutic targets to reduce neuroinflammation, and demonstrates that mPGES-1 expression is not strictly coupled to the expression of COX-2.
Collapse
|
27
|
Jüngel A, Distler O, Schulze-Horsel U, Huber LC, Ha HR, Simmen B, Kalden JR, Pisetsky DS, Gay S, Distler JHW. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. ACTA ACUST UNITED AC 2007; 56:3564-74. [PMID: 17968936 DOI: 10.1002/art.22980] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Microparticles are small vesicles that are released from activated or dying cells and that occur abundantly in the synovial fluid of patients with rheumatoid arthritis (RA). The goal of these studies was to elucidate the mechanisms by which microparticles activate synovial fibroblasts to express a proinflammatory phenotype. METHODS Microparticles from monocytes and T cells were isolated by differential centrifugation. Synovial fibroblasts were cocultured with increasing numbers of microparticles. Gene expression was analyzed by real-time polymerase chain reaction and confirmed by Western blotting and enzyme immunoassay. Arachidonic acid labeled with tritium was used to study the transport of biologically active lipids by microparticles. The roles of NF-kappaB and activator protein 1 (AP-1) signaling were analyzed with electrophoretic mobility shift assay and transfection with small interfering RNA and IkappaB expression vectors. RESULTS Microparticles strongly induced the synthesis of cyclooxygenase 2 (COX-2), microsomal prostaglandin E synthase 1 (mPGES-1), and prostaglandin E(2) (PGE(2)). In contrast, no up-regulation of COX-1, mPGES-2, cytosolic PGES, or phospholipase A(2) was observed. The induction of PGE(2) was blocked by selective inhibition of COX-2. Microparticles activated NF-kappaB, AP-1, p38, and JNK signaling in synovial fibroblasts. Inhibition of NF-kappaB, AP-1, and JNK signaling reduced the stimulatory effects. Arachidonic acid was transported from leukocytes to fibroblasts by microparticles. Arachidonic acid derived from microparticles was converted to PGE(2) by synovial fibroblasts. CONCLUSION These results demonstrate that microparticles up-regulate the production of PGE(2) in synovial fibroblasts by inducing COX-2 and mPGES-1. These data provide evidence for a novel mechanism by which microparticles may contribute to inflammation and pain in RA.
Collapse
Affiliation(s)
- Astrid Jüngel
- Zurich Center of Integrative Human Physiology, and University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Båge T, Modéer T, Kawakami T, Quezada HC, Yucel-Lindberg T. Regulation of prostaglandin E synthases: Effects of siRNA-mediated inhibition of microsomal prostaglandin E synthase-1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1589-98. [PMID: 17707523 DOI: 10.1016/j.bbamcr.2007.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 06/29/2007] [Accepted: 07/16/2007] [Indexed: 01/30/2023]
Abstract
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.
Collapse
Affiliation(s)
- Tove Båge
- Department of Pediatric Dentistry, Institute of Odontology, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Lalier L, Cartron PF, Pedelaborde F, Olivier C, Loussouarn D, Martin SA, Meflah K, Menanteau J, Vallette FM. Increase in PGE2 biosynthesis induces a Bax dependent apoptosis correlated to patients’ survival in glioblastoma multiforme. Oncogene 2007; 26:4999-5009. [PMID: 17369862 DOI: 10.1038/sj.onc.1210303] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prostaglandin E(2) plays multiple roles both in the physiology and the physiopathology of human brain, which are not completely understood. We have identified in a subset of human glioblastoma multiforme (GBM) tumors, the most common form of adult brain cancer, an increased expression of mPGES-1, the enzyme which catalyses the isomerization of PGH(2) into PGE(2) downstream of cyclooxygenase 2 (COX-2). The sensitivity of primary cultures of GBM to apoptosis was augmented by the overexpression of mPGES-1, whereas the knockdown of its expression by shRNA decreased the apoptotic threshold in vitro and stimulated tumor growth in vivo. Adding extracellular PGE(2) in the culture medium failed to reproduce mPGES-1 effect on the cell viability in vitro. However, the intracellular injection of PGE(2) induced a dose-dependent apoptosis in GBM cultures, which was dependent on the presence of Bax, a pro-apoptotic protein. We show that PGE(2) physically associates with Bax, triggering its apoptotic-like change in conformation and its subsequent association with mitochondria. Our results raise questions about the role of PGE(2) in the control of apoptosis and in its potential impact in central nervous system pathologies.
Collapse
Affiliation(s)
- L Lalier
- INSERM U 601-Equipe 4, 9 Quai MONCOUSU, Cedex 01, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|