1
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Kinases leave their mark on caspase substrates. Biochem J 2021; 478:3179-3184. [PMID: 34492095 DOI: 10.1042/bcj20210399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al. examines how phosphorylation within caspase cleavage sites impacts the efficiency of substrate cleavage. The results demonstrate that while phosphorylation in close proximity to the scissile bond is generally inhibitory, it does not necessarily abrogate substrate cleavage, but instead attenuates the rate. In some cases, this inhibition can be overcome by additional favorable substrate features. These findings suggest potential nuanced physiological roles for phosphorylation of caspase substrates with exciting implications for targeting caspases with chemical probes and therapeutics.
Collapse
|
3
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
4
|
Shi H, Wang J, Liu F, Hu X, Lu Y, Yan S, Dai D, Yang X, Zhu Z, Guo Q. Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra). J Proteomics 2020; 229:103866. [PMID: 32736137 DOI: 10.1016/j.jprot.2020.103866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Hibernation is an energy-saving and adaptive strategy adopted by leech, an important medicinal resource in Asia, to survive low temperature. Reversible protein phosphorylation (RPP) plays a key role in the regulation of mammalian hibernation processes but has never been documented in freshwater invertebrate such as leech. In this study, we detected the effects of hibernation on the proteome and phosphoproteome of the leech Whitmania pigra. A total of 2184 proteins and 2598 sites were quantified. Deep-hibernation resulted in 85 up-regulated and 107 down-regulated proteins and 318 up-regulated and 204 down-regulated phosphosites using a 1.5-fold threshold (P<0.05). Proteins involved in protein digestion and absorption, amino acid metabolism and N-glycan biosynthesis were significantly down-regulated during deep-hibernation. However, proteins involved in maintaining cell structure stability in hibernating animals were up-regulated. Differentially phosphorylated proteins provided the first global picture of a shift in energy metabolism, protein synthesis, cytoprotection and signaling during deep hibernation. Furthermore, AMP-activated protein kinase and protein kinase C play major roles in the regulation of these functional processes. These data significantly improve our understanding of the regulatory mechanisms of leech hibernation processes and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals. SIGNIFICANCE: The leech Whitmania pigra as an important medicinal resource in Asia is an excellent model freshwater invertebrate for studies of environmentally-induced hibernation. The present study provides the first quantitative proteomics and phosphoproteomic analysis of leech hibernation using isobaric tag based TMT labeling and high-resolution mass spectrometry. These data significantly improve our understanding of the regulatory mechanisms when ectotherm animals face environmental stress and provides substantial candidate phosphorylated proteins that could be important for functionally adapt in freshwater animals.
Collapse
Affiliation(s)
- Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangjing Hu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Yiming Lu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Shimeng Yan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Daoxin Dai
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Xibin Yang
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 2018; 117:82-113. [PMID: 29859868 DOI: 10.1016/j.nbd.2018.05.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
The organophosphate (OP) pesticide chlorpyrifos (CPF), used in agricultural settings, induces developmental and neurological impairments. Recent studies using in vitro cell culture models have reported CPF exposure to have a positive association with mitochondria-mediated oxidative stress response and dopaminergic cell death; however, the mechanism by which mitochondrial reactive oxygen species (ROS) contribute to dopaminergic cell death remains unclear. Therefore, we hypothesized that STAT1, a transcription factor, causes apoptotic dopaminergic cell death via mitochondria-mediated oxidative stress mechanisms. Here we show that exposure of dopaminergic neuronal cells such as N27 cells (immortalized murine mesencephalic dopaminergic cells) to CPF resulted in a dose-dependent increase in apoptotic cell death as measured by MTS assay and DNA fragmentation. Similar effects were observed in CPF-treated human dopaminergic neuronal cells (LUHMES cells), with an associated increase in mitochondrial dysfunction. Moreover, CPF (10 μM) induced time-dependent increase in STAT1 activation coincided with the collapse of mitochondrial transmembrane potential, increase in ROS generation, proteolytic cleavage of protein kinase C delta (PKCδ), inhibition of the mitochondrial basal oxygen consumption rate (OCR), with a concomitant reduction in ATP-linked OCR and reserve capacity, increase in Bax/Bcl-2 ratio and enhancement of autophagy. Additionally, by chromatin immunoprecipitation (ChIP), we demonstrated that STAT1 bound to a putative regulatory sequence in the NOX1 and Bax promoter regions in response to CPF in N27 cells. Interestingly, overexpression of non-phosphorylatable STAT1 mutants (STAT1Y701F and STAT1S727A) but not STAT1 WT construct attenuated the cleavage of PKCδ and ultimately cell death in CPF-treated cells. Furthermore, small interfering RNA knockdown demonstrated STAT1 to be a critical regulator of autophagy and mitochondria-mediated proapoptotic cell signaling events after CPF treatment in N27 cells. Finally, oral administration of CPF (5 mg/kg) in postnatal rats (PNDs 27-61) induced motor deficits, and nigrostriatal dopaminergic neurodegeneration with a concomitant induction of STAT1-dependent proapoptotic cell signaling events. Conversely, co-treatment with mitoapocynin (a mitochondrially-targeted antioxidant) and CPF rescued motor deficits, and restored dopaminergic neuronal survival via abrogation of STAT1-dependent proapoptotic cell signaling events. Taken together, our study identifies a novel mechanism by which STAT1 regulates mitochondria-mediated oxidative stress response, PKCδ activation and autophagy. In this context, the phosphorylation of Tyrosine 701 and Serine 727 in STAT1 was found to be essential for PKCδ cleavage. By attenuating mitochondrial-derived ROS, mitoapocynin may have therapeutic applications for reversing CPF-induced dopaminergic neurotoxicity and associated neurobehavioral deficits as well as neurodegenerative diseases.
Collapse
|
6
|
Chen CL, Wang SH, Chan PC, Shen MR, Chen HC. Phosphorylation of E-cadherin at threonine 790 by protein kinase Cδ reduces β-catenin binding and suppresses the function of E-cadherin. Oncotarget 2018; 7:37260-37276. [PMID: 27203386 PMCID: PMC5095074 DOI: 10.18632/oncotarget.9403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
Proper control of cell-cell adhesion is crucial for embryogenesis and tissue homeostasis. In this study, we show that protein kinase C (PKC)δ, a member of the novel PKC subfamily, localizes at cell-cell contacts of epithelial cells through its C2-like domain in an F-actin-dependent manner. Upon hepatocyte growth factor stimulation, PKCδ is phosphorylated and activated by Src, which then phosphorylates E-cadherin at Thr790. Phosphorylation of E-cadherin at Thr790 diminishes its interaction with β-catenin and impairs the homophilic interaction between the ectodomains of E-cadherin. The suppression of PKCδ by its dominant-negative mutants or specific short-hairpin RNA inhibits the disruption of cell-cell adhesions induced by hepatocyte growth factor. Elevated PKCδ expression in cancer cells is correlated with increased phosphorylation of E-cadherin at Thr790, reduced binding of E-cadherin to β-catenin, and poor homophilic interaction between E-cadherin. Analysis of surgical specimens confirmed that PKCδ is overexpressed in cervical cancer tissues, accompanied by increased phosphorylation of E-cadherin at Thr790. Together, our findings unveil a negative role for PKCδ in cell-cell adhesion through phosphorylation of E-cadherin.
Collapse
Affiliation(s)
- Chien-Lin Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Hui Wang
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Chao Chan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, National Cheng Kung University, Tainan 704, Taiwan.,Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.,Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan.,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Lawana V, Singh N, Sarkar S, Charli A, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Involvement of c-Abl Kinase in Microglial Activation of NLRP3 Inflammasome and Impairment in Autolysosomal System. J Neuroimmune Pharmacol 2017; 12:624-660. [PMID: 28466394 DOI: 10.1007/s11481-017-9746-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
Abstract
A growing body of evidence suggests that excessive microglial activation and pesticide exposure may be linked to the etiology of PD; however, the mechanisms involved remain elusive. Emerging evidence indicates that intracellular inflammasome complex namely NLRP3 complex is involved in the recognition and execution of host inflammatory response. Thus, in the present study, we investigated the hypothesis that NLRP3 inflammasome activation is linked to rotenone (ROT)-induced microglial activation which is dependent upon a priming stimulus by a pathogen-associated molecular pattern (PAMP) or damage associated molecular pattern (DAMP), respectively. Herein using both BV2 cells and primary microglial cells, we show that LPS priming and subsequent ROT stimulation enhanced NLRP3 inflammasome activation, c-Abl and PKCδ activation, mitochondrial dysfunction, NF-κB activation, and autophagic markers, while TFEB levels were decreased dramatically. Mechanistic studies revealed c-Abl acts as a proximal signal that exacerbated the activation of the afore mentioned markers. Intriguingly, siRNA-mediated depletion or pharmacological inhibition of c-Abl via dasatinib abrogated LPS and ROT-induced microglial activation response via attenuation of NLRP3 inflammasome activation, mitochondrial oxidative stress, and ALS dysfunction. Moreover, mitoTEMPO, a mitochondrial antioxidant, attenuated NLRP3 inflammasome activation effects via blockade of c-Abl and PKCδ activation. In LPS treated mice, dasatinib attenuated NLRP3 inflammasome activation, c-Abl and PKCδ activation; and sickness behavior. Together our findings identify an exaggerated ROS/c-Abl/NLRP3 signaling axis in the heightened microglial activation response evidenced in LPS-primed ROT-stimulated microglial cells and suggest that targeting c-Abl-regulated NLRP3 inflammasome signaling offers a novel therapeutic strategy for PD treatment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vivek Lawana
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Neeraj Singh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Adhithiya Charli
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA. .,Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, 2016 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
Assad Kahn S, Costa SL, Gholamin S, Nitta RT, Dubois LG, Fève M, Zeniou M, Coelho PLC, El-Habr E, Cadusseau J, Varlet P, Mitra SS, Devaux B, Kilhoffer MC, Cheshier SH, Moura-Neto V, Haiech J, Junier MP, Chneiweiss H. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol Med 2016; 8:511-26. [PMID: 27138566 PMCID: PMC5130115 DOI: 10.15252/emmm.201505421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
A variety of drugs targeting monoamine receptors are routinely used in human pharmacology. We assessed the effect of these drugs on the viability of tumor-initiating cells isolated from patients with glioblastoma. Among the drugs targeting monoamine receptors, we identified prazosin, an α1- and α2B-adrenergic receptor antagonist, as the most potent inducer of patient-derived glioblastoma-initiating cell death. Prazosin triggered apoptosis of glioblastoma-initiating cells and of their differentiated progeny, inhibited glioblastoma growth in orthotopic xenografts of patient-derived glioblastoma-initiating cells, and increased survival of glioblastoma-bearing mice. We found that prazosin acted in glioblastoma-initiating cells independently from adrenergic receptors. Its off-target activity occurred via a PKCδ-dependent inhibition of the AKT pathway, which resulted in caspase-3 activation. Blockade of PKCδ activation prevented all molecular changes observed in prazosin-treated glioblastoma-initiating cells, as well as prazosin-induced apoptosis. Based on these data, we conclude that prazosin, an FDA-approved drug for the control of hypertension, inhibits glioblastoma growth through a PKCδ-dependent mechanism. These findings open up promising prospects for the use of prazosin as an adjuvant therapy for glioblastoma patients.
Collapse
Affiliation(s)
- Suzana Assad Kahn
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Silvia Lima Costa
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Sharareh Gholamin
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Ryan T Nitta
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Luiz Gustavo Dubois
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Marie Fève
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Paulo Lucas Cerqueira Coelho
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France Neurochemistry and Cell Biology Laboratory Universidade Federal da Bahia, Salvador-Bahia, Brazil
| | - Elias El-Habr
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Josette Cadusseau
- UMR INSERM 955-Team 10, Faculté des Sciences et Technologies UPEC, Créteil, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, Paris, France Paris Descartes University, Paris, France
| | - Siddhartha S Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | - Bertrand Devaux
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Paris Descartes University, Paris, France Department of Neurosurgery, Sainte-Anne Hospital, Paris, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Samuel H Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| | | | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Medalis, Faculté de Pharmacie, Université de Strasbourg/CNRS UMR7200, Illkirch, France
| | - Marie-Pierre Junier
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| | - Hervé Chneiweiss
- INSERM, UMR-S 1130, Neuroscience Paris Seine-IBPS, Paris, France CNRS, UMR 8246, Neuroscience Paris Seine-IBPS, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR-S 8246, Neuroscience Paris Seine-IBPS, Paris, France
| |
Collapse
|
9
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
10
|
Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromolecular Med 2014; 16:217-30. [DOI: 10.1007/s12017-014-8294-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/03/2014] [Indexed: 01/05/2023]
|
11
|
Abstract
Protein kinase C (PKC) isoforms have emerged as important regulators of cardiac contraction, hypertrophy, and signaling pathways that influence ischemic/reperfusion injury. This review focuses on newer concepts regarding PKC isoform-specific activation mechanisms and actions that have implications for the development of PKC-targeted therapeutics.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA.
| |
Collapse
|
12
|
Okuwa H, Kanno T, Fujita Y, Gotoh A, Tabata C, Fukuoka K, Nakano T, Nishizaki T. Sphingosine suppresses mesothelioma cell proliferation by inhibiting PKC-δ and inducing cell cycle arrest at the G(0)/G(1) phase. Cell Physiol Biochem 2012; 30:995-1004. [PMID: 23221613 DOI: 10.1159/000341476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIMS Sphingosine regulates cellular differentiation, cell growth, and apoptosis. The present study aimed at understanding sphingosine-regulated mesothelioma cell proliferation. METHODS Human malignant mesothelioma cells such as NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H cells were cultured. The siRNA to silence the protein kinase C (PKC)-δ-targeted gene was constructed and transfected into cells. MTT assay, cell cycle analysis using a flow cytometry, and cell-free PKC-δ assay were carried out. RESULTS For all the cell types sphingosine inhibited cell growth in a concentration (1-100 µM)-dependent manner. The sphingosine effect was not prevented by rottlerin, an inhibitor of protein kinase C-δ (PKC-δ); conversely, rottlerin further enhanced the sphingosine effect or rottlerin suppressed mesothelioma cell growth without sphingosine. In the cell-free PKC assay, sphingosine attenuated PKC-δ activity. Knocking-down PKC-δ induced cell cycle arrest at the G0/G1 phase and inhibited cell growth. CONCLUSION The results of the present study show that sphingosine suppressed mesothelioma cell proliferation by inhibiting PKC-δ, to induce cell cycle arrest at the G0/G1 phase.
Collapse
Affiliation(s)
- Hisaya Okuwa
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Oxidative Stress, DNA Damage, and c-Abl Signaling: At the Crossroad in Neurodegenerative Diseases? Int J Cell Biol 2012; 2012:683097. [PMID: 22761618 PMCID: PMC3385657 DOI: 10.1155/2012/683097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022] Open
Abstract
The c-Abl tyrosine kinase is implicated in diverse cellular activities including growth factor signaling, cell adhesion, oxidative stress, and DNA damage response. Studies in mouse models have shown that the kinases of the c-Abl family play a role in the development of the central nervous system. Recent reports show that aberrant c-Abl activation causes neuroinflammation and neuronal loss in the forebrain of transgenic adult mice. In line with these observations, an increased c-Abl activation is reported in human neurodegenerative pathologies, such as Parkinson's, and Alzheimer's diseases. This suggests that aberrant nonspecific posttranslational modifications induced by c-Abl may contribute to fuel the recurrent phenotypes/features linked to neurodegenerative disorders, such as an impaired mitochondrial function, oxidative stress, and accumulation of protein aggregates. Herein, we review some reports on c-Abl function in neuronal cells and we propose that modulation of different aspects of c-Abl signaling may contribute to mediate the molecular events at the interface between stress signaling, metabolic regulation, and DNA damage. Finally, we propose that this may have an impact in the development of new therapeutic strategies.
Collapse
|
14
|
Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A. Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCδ-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model. Neurotoxicology 2011; 32:567-77. [PMID: 21801747 DOI: 10.1016/j.neuro.2011.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/17/2011] [Accepted: 06/23/2011] [Indexed: 12/31/2022]
Abstract
Oxidative stress and apoptosis are two key pathophysiological mechanisms underlying dopaminergic degeneration in Parkinson's disease (PD). Recently, we identified that proteolytic activation of protein kinase C-delta (PKCδ), a member of the novel PKC family, contributes to oxidative stress-induced dopaminergic degeneration and that phosphorylation of tyrosine residue 311 (tyr311) on PKCδ is a key event preceding the PKCδ proteolytic activation during oxidative damage. Herein, we report that a non-receptor tyrosine kinase Fyn is significantly expressed in a dopaminergic neuronal N27 cell model. Exposure of N27 cells to the dopaminergic toxicant dieldrin (60 μM) rapidly activated Fyn kinase, PKCδ-tyr311 phosphorylation and proteolytic cleavage. Fyn kinase activation precedes the caspase-3-mediated proteolytic activation of PKCδ. Pre-treatment with p60-tyrosine-specific kinase inhibitor (TSKI) almost completely attenuated dieldrin-induced phosphorylation of PKCδ-tyr311 and its proteolytic activation. Additionally, TSKI almost completely blocked dieldrin-induced apoptotic cell death. To further confirm Fyn's role in the pro-apoptotic function of PKCδ, we adopted the RNAi approach. siRNA-mediated knockdown of Fyn kinase also effectively attenuated dieldrin-induced phosphorylation of PKCδ-tyr311, caspase-3-mediated PKCδ proteolytic cleavage, and DNA fragmentation, suggesting that Fyn kinase regulates the pro-apoptotic function of PKCδ. Collectively, these results demonstrate for the first time that Fyn kinase is a pro-apoptotic kinase that regulates upstream signaling of the PKCδ-mediated apoptotic cell death pathway in neurotoxicity models of pesticide exposure.
Collapse
Affiliation(s)
- Hariharan Saminathan
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
15
|
Breitkopf SB, Oppermann FS, Kéri G, Grammel M, Daub H. Proteomics Analysis of Cellular Imatinib Targets and their Candidate Downstream Effectors. J Proteome Res 2010; 9:6033-43. [DOI: 10.1021/pr1008527] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Susanne B. Breitkopf
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Vichem Chemie Ltd., Herman Ottó u. 15., Budapest, 1022, Hungary, Pathobiochemistry Research Group of the Hungarian Academy of Science, Semmelweis University, Puskin u. 9., Budapest, 1088, Hungary, and Kinaxo Biotechnologies GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Felix S. Oppermann
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Vichem Chemie Ltd., Herman Ottó u. 15., Budapest, 1022, Hungary, Pathobiochemistry Research Group of the Hungarian Academy of Science, Semmelweis University, Puskin u. 9., Budapest, 1088, Hungary, and Kinaxo Biotechnologies GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - György Kéri
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Vichem Chemie Ltd., Herman Ottó u. 15., Budapest, 1022, Hungary, Pathobiochemistry Research Group of the Hungarian Academy of Science, Semmelweis University, Puskin u. 9., Budapest, 1088, Hungary, and Kinaxo Biotechnologies GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Markus Grammel
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Vichem Chemie Ltd., Herman Ottó u. 15., Budapest, 1022, Hungary, Pathobiochemistry Research Group of the Hungarian Academy of Science, Semmelweis University, Puskin u. 9., Budapest, 1088, Hungary, and Kinaxo Biotechnologies GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Henrik Daub
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Vichem Chemie Ltd., Herman Ottó u. 15., Budapest, 1022, Hungary, Pathobiochemistry Research Group of the Hungarian Academy of Science, Semmelweis University, Puskin u. 9., Budapest, 1088, Hungary, and Kinaxo Biotechnologies GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
16
|
Freeley M, Kelleher D, Long A. Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. Cell Signal 2010; 23:753-62. [PMID: 20946954 DOI: 10.1016/j.cellsig.2010.10.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023]
Abstract
Protein Kinase C (PKC) is a family of serine/threonine kinases whose function is influenced by phosphorylation. In particular, three conserved phosphorylation sites known as the activation-loop, the turn-motif and the hydrophobic-motif play important roles in controlling the catalytic activity, stability and intracellular localisation of the enzyme. Prevailing models of PKC phosphorylation suggest that phosphorylation of these sites occurs shortly following synthesis and that these modifications are required for the processing of newly-transcribed PKC to the mature (but still inactive) form; phosphorylation is therefore a priming event that enables catalytic activation in response to lipid second messengers. However, many studies have also demonstrated inducible phosphorylation of PKC isoforms at these sites following stimulation, highlighting that our understanding of PKC phosphorylation and its impact on enzymatic function is incomplete. Furthermore, inducible phosphorylation at these sites is often interpreted as catalytic activation, which could be misleading for some isoforms. Recent studies that include systems-wide phosphoproteomic profiling of cells has revealed a host of additional (and in many cases non-conserved) phosphorylation sites on PKC family members that influence their function. Many of these may in fact be more suitable than previously described sites as surrogate markers of catalytic activation. Here we discuss the role of phosphorylation in controlling PKC function and outline our current understanding of the mechanisms that regulate these phosphorylation sites.
Collapse
Affiliation(s)
- Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | |
Collapse
|
17
|
Chen CL, Chan PC, Wang SH, Pan YR, Chen HC. Elevated expression of protein kinase C delta induces cell scattering upon serum deprivation. J Cell Sci 2010; 123:2901-13. [PMID: 20682636 DOI: 10.1242/jcs.069765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tumor metastasis might be evoked in response to microenvironmental stress, such as a shortage of oxygen. Although the cellular response to hypoxia has been well established, we know little about how tumors adapt themselves to deprivation of growth factor. Protein kinase Cdelta (PKCdelta), a stress-sensitive protein kinase, has been implicated in tumor progression. In this study, we demonstrate that elevated expression of PKCdelta in Madin-Darby canine kidney cells induces a scatter response upon serum starvation, a condition that mimics growth-factor deprivation. Serum starvation stimulates the catalytic activity and Y311 phosphorylation of PKCdelta through reactive oxygen species (ROS) and the Src family kinases. Mutation of PKCdelta at Y311 and Y322, both of which are phosphorylation sites for Src, impairs its activation and ability to promote cell scattering upon serum deprivation. Once activated by ROS, PKCdelta itself activates ROS production at least partially through NADPH oxidase. In addition, the c-Jun N-terminal kinase is identified as a crucial downstream mediator of ROS and PKCdelta for induction of cell scattering upon serum deprivation. We demonstrate that the C1B domain of PKCdelta is essential not only for its localization at the Golgi complex, but also for its activation and ability to induce cell scattering upon serum deprivation. Finally, depletion of PKCdelta in human bladder carcinoma T24 cells restores their cell-cell contacts, which thereby reverses a scattered growth pattern to an epithelial-like growth pattern. Collectively, our results suggest that elevated expression of PKCdelta might facilitate the scattering of cells in order to escape stress induced by growth-factor deprivation.
Collapse
Affiliation(s)
- Chien-Lin Chen
- Department of Life Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Karmacharya MB, Jang JI, Lee YJ, Lee YS, Soh JW. Mutation of the hydrophobic motif in a phosphorylation-deficient mutant renders protein kinase C delta more apoptotically active. Arch Biochem Biophys 2010; 493:242-8. [DOI: 10.1016/j.abb.2009.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/06/2009] [Accepted: 11/07/2009] [Indexed: 11/26/2022]
|
19
|
Kato K, Yamanouchi D, Esbona K, Kamiya K, Zhang F, Kent KC, Liu B. Caspase-mediated protein kinase C-delta cleavage is necessary for apoptosis of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2009; 297:H2253-61. [PMID: 19837952 DOI: 10.1152/ajpheart.00274.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptotic death of vascular smooth muscle cells (SMCs) is a prominent feature of blood vessel remodeling and various vascular diseases. We have previously shown that protein kinase C-delta (PKC-delta) plays a critical role in SMC apoptosis. In this study, we tested the importance of PKC-delta proteolytic cleavage and tyrosine phosphorylation within the apoptosis pathway. Using hydrogen peroxide as a paradigm for oxidative stress, we showed that proteolytic cleavage of PKC-delta occurred in SMCs that underwent apoptosis, while tyrosine phosphorylation was detected only in necrotic cells. Furthermore, using a peptide (z-DIPD-fmk) that mimics the caspase-3 binding motif within the linker region of PKC-delta, we were able to prevent the cleavage of PKC-delta, as well as apoptosis. Inhibition of PKC-delta with rottlerin or small-interfering RNA diminished caspase-3 cleavage, caspase-3 activity, cleavage of poly (ADP-ribose) polymerase, cleavage of PKC-delta, and DNA fragmentation, confirming the previously reported role of PKC-delta in initiation of apoptosis. In contrast, z-DIPD-fmk markedly diminished caspase-3 activity, cleavage of PKC-delta, and DNA fragmentation without affecting cleavage of caspase-3 and poly (ADP-ribose) polymerase. Taken together, our data suggest that caspase-3-mediated PKC-delta cleavage underlies SMC apoptosis induced by oxidative stress, and that PKC-delta acts both upstream and downstream of caspase-3.
Collapse
Affiliation(s)
- Kaori Kato
- Department of Surgery, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The complex process of apoptosis is orchestrated by caspases, a family of cysteine proteases with unique substrate specificities. Accumulating evidence suggests that cell death pathways are finely tuned by multiple signaling events, including direct phosphorylation of caspases, whereas kinases are often substrates of active caspases. Importantly, caspase-mediated cleavage of kinases can terminate prosurvival signaling or generate proapoptotic peptide fragments that help to execute the death program and facilitate packaging of the dying cells. Here, we review caspases as kinase substrates and kinases as caspase substrates and discuss how the balance between cell survival and cell death can be shifted through crosstalk between these two enzyme families.
Collapse
Affiliation(s)
- Manabu Kurokawa
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
21
|
Phosphorylation of the MET receptor on juxtamembrane tyrosine residue 1001 inhibits its caspase-dependent cleavage. Cell Signal 2009; 21:1455-63. [DOI: 10.1016/j.cellsig.2009.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 01/29/2023]
|
22
|
Day TW, Wu CH, Safa AR. Etoposide induces protein kinase Cdelta- and caspase-3-dependent apoptosis in neuroblastoma cancer cells. Mol Pharmacol 2009; 76:632-40. [PMID: 19549763 DOI: 10.1124/mol.109.054999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this report, we reveal that etoposide inhibits the proliferation of SK-N-AS neuroblastoma cancer cells and promotes protein kinase Cdelta (PKCdelta)- and caspase-dependent apoptosis. Etoposide induces the caspase-3-dependent cleavage of PKCdelta to its active p40 fragment, and active PKCdelta triggers the processing of caspase-3 by a positive-feedback mechanism. Treatment of cells with the caspase-3-specific inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone or caspase-3-specific small interacting RNA (siRNA) prevented the etoposide-induced activation of caspase-8 and inhibited apoptosis. The silencing of the caspase-2 or caspase-8 genes using siRNAs did not affect the etoposide-induced processing of caspase-3, indicating that these caspases lie downstream of caspase-3 in this signaling pathway. Furthermore, the etoposide-induced processing of caspase-2 required the expression of caspase-8, and the etoposide-mediated processing of caspase-8 required the expression of caspase-2, indicating that these two caspases activate each other after etoposide treatment. We also observed that etoposide-mediated apoptosis was decreased by treating the cells with the caspase-6-specific inhibitor benzyloxycarbonyl-Val-Glu(OMe)-Ile-Asp-(OMe)-fluoromethyl ketone and that caspase-6 was activated by a caspase-8-dependent mechanism. Finally, we show that rottlerin blocks etoposide-induced apoptosis by inhibiting the PKCdelta-mediated activation of caspase-3 and by degrading caspase-2, which prevents caspase-8 activation. Our results add important insights into how etoposide mediates apoptotic signaling and how targeting these pathways may lead to the development of novel therapeutics for the treatment of neuroblastomas.
Collapse
Affiliation(s)
- Travis W Day
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
23
|
Modulation of p53 by mitogen-activated protein kinase pathways and protein kinase C δ during avian reovirus S1133-induced apoptosis. Virology 2009; 385:323-34. [DOI: 10.1016/j.virol.2008.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 01/08/2023]
|
24
|
Abstract
Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
25
|
Lomonaco SL, Kahana S, Blass M, Brody Y, Okhrimenko H, Xiang C, Finniss S, Blumberg PM, Lee HK, Brodie C. Phosphorylation of protein kinase Cdelta on distinct tyrosine residues induces sustained activation of Erk1/2 via down-regulation of MKP-1: role in the apoptotic effect of etoposide. J Biol Chem 2008; 283:17731-9. [PMID: 18434324 DOI: 10.1074/jbc.m801727200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the important role of protein kinase Cdelta (PKCdelta) in the apoptotic effect of etoposide in glioma cells is incompletely understood. Here, we examined the role of PKCdelta in the activation of Erk1/2 by etoposide. We found that etoposide induced persistent activation of Erk1/2 and nuclear translocation of phospho-Erk1/2. MEK1 inhibitors decreased the apoptotic effect of etoposide, whereas inhibitors of p38 and JNK did not. The activation of Erk1/2 by etoposide was downstream of PKCdelta since the phosphorylation of Erk1/2 was inhibited by a PKCdelta-KD mutant and PKCdelta small interfering RNA. We recently reported that phosphorylation of PKCdelta on tyrosines 64 and 187 was essential for the apoptotic effect of etoposide. Using PKCdeltatyrosine mutants, we found that the phosphorylation of PKCdeltaon these tyrosine residues, but not on tyrosine 155, was also essential for the activation of Erk1/2 by etoposide. In contrast, nuclear translocation of PKCdelta was independent of its tyrosine phosphorylation and not necessary for the phosphorylation of Erk1/2. Etoposide induced down-regulation of kinase phosphatase-1 (MKP-1), which correlated with persistent phosphorylation of Erk1/2 and was dependent on the tyrosine phosphorylation of PKCdelta. Moreover, silencing of MKP-1 increased the phosphorylation of Erk1/2 and the apoptotic effect of etoposide. Etoposide induced polyubiquitylation and degradation of MKP-1 that was dependent on PKCdelta and on its tyrosine phosphorylation. These results indicate that distinct phosphorylation of PKCdeltaon tyrosines 64 and 187 specifically activates the Erk1/2 pathway by the down-regulation of MKP-1, resulting in the persistent phosphorylation of Erk1/2 and cell apoptosis.
Collapse
Affiliation(s)
- Stephanie L Lomonaco
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rybin VO, Guo J, Gertsberg Z, Feinmark SJ, Steinberg SF. Phorbol 12-myristate 13-acetate-dependent protein kinase C delta-Tyr311 phosphorylation in cardiomyocyte caveolae. J Biol Chem 2008; 283:17777-88. [PMID: 18387943 DOI: 10.1074/jbc.m800333200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase Cdelta (PKCdelta) activation is generally attributed to lipid cofactor-dependent allosteric activation mechanisms at membranes. However, recent studies indicate that PKCdelta also is dynamically regulated through tyrosine phosphorylation in H(2)O(2)- and phorbol 12-myristate 13-acetate (PMA)-treated cardiomyocytes. H(2)O(2) activates Src and related Src-family kinases (SFKs), which function as dual PKCdelta-Tyr(311) and -Tyr(332) kinases in vitro and contribute to H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation in cardiomyocytes and in mouse embryo fibroblasts. H(2)O(2)-dependent PKCdelta-Tyr(311)/Tyr(332) phosphorylation is defective in SYF cells (deficient in SFKs) and restored by Src re-expression. PMA also promotes PKCdelta-Tyr(311) phosphorylation, but this is not associated with SFK activation or PKCdelta-Tyr(332) phosphorylation. Rather, PMA increases PKCdelta-Tyr(311) phosphorylation by delivering PKCdelta to SFK-enriched caveolae. Cyclodextrin treatment disrupts caveolae and blocks PMA-dependent PKCdelta-Tyr(311) phosphorylation, without blocking H(2)O(2)-dependent PKCdelta-Tyr(311) phosphorylation. The enzyme that acts as a PKCdelta-Tyr(311) kinase without increasing PKCdelta phosphorylation at Tyr(332) in PMA-treated cardiomyocytes is uncertain. Although in vitro kinase assays implicate c-Abl as a selective PKCdelta-Tyr(311) kinase, PMA-dependent PKCdelta-Tyr(311) phosphorylation persists in cardiomyocytes treated with the c-Abl inhibitor ST1571 and c-Abl is not detected in caveolae; these results effectively exclude a c-Abl-dependent process. Finally, we show that 1,2-dioleoyl-sn-glycerol mimics the effect of PMA to drive PKCdelta to caveolae and increase PKCdelta-Tyr(311) phosphorylation, whereas G protein-coupled receptor agonists such as norepinephrine and endothelin-1 do not. These results suggest that norepinephrine and endothelin-1 increase 1,2-dioleoyl-sn-glycerol accumulation and activate PKCdelta exclusively in non-caveolae membranes. Collectively, these results identify stimulus-specific PKCdelta localization and tyrosine phosphorylation mechanisms that could be targeted for therapeutic advantage.
Collapse
Affiliation(s)
- Vitalyi O Rybin
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|