1
|
Jujic A, Matthes F, Vanherle L, Petzka H, Orho-Melander M, Nilsson PM, Magnusson M, Meissner A. Plasma S1P (Sphingosine-1-Phosphate) Links to Hypertension and Biomarkers of Inflammation and Cardiovascular Disease: Findings From a Translational Investigation. Hypertension 2021; 78:195-209. [PMID: 33993723 DOI: 10.1161/hypertensionaha.120.17379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amra Jujic
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Lund University Diabetes Centre (A.J.), Lund University, Malmö, Sweden
| | - Frank Matthes
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Lotte Vanherle
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| | - Henning Petzka
- Department of Mathematics, Lund Technical University, Sweden (H.P.)
| | - Marju Orho-Melander
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Internal Medicine, Clinical Research Unit, Malmö, Sweden (P.M.N.)
| | - Martin Magnusson
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine (A.J., F.M., L.V., M.M., A.M.), Lund University, Malmö, Sweden
- Hypertension in Africa Research Team, North West University Potchefstroom, South Africa (M.M.)
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden (M.M.)
| | - Anja Meissner
- Department of Clinical Sciences (A.J., M.O.-M., P.M.N., M.M.), Lund University, Malmö, Sweden
- Department of Experimental Medical Sciences (F.M., L.V., A.M.), Lund University, Malmö, Sweden
| |
Collapse
|
2
|
Klomp JE, Shaaya M, Matsche J, Rebiai R, Aaron JS, Collins KB, Huyot V, Gonzalez AM, Muller WA, Chew TL, Malik AB, Karginov AV. Time-Variant SRC Kinase Activation Determines Endothelial Permeability Response. Cell Chem Biol 2019; 26:1081-1094.e6. [PMID: 31130521 DOI: 10.1016/j.chembiol.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.
Collapse
Affiliation(s)
- Jennifer E Klomp
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Mark Shaaya
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jacob Matsche
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jesse S Aaron
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kerrie B Collins
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Vincent Huyot
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Annette M Gonzalez
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - William A Muller
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Teng-Leong Chew
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Andrei V Karginov
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Hsia K, Yang MJ, Chen WM, Yao CL, Lin CH, Loong CC, Huang YL, Lin YT, Lander AD, Lee H, Lu JH. Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. Acta Biomater 2017; 51:341-350. [PMID: 28110073 DOI: 10.1016/j.actbio.2017.01.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) has been known to promote endothelial cell (EC) proliferation and protect Syndecan-1 (SDC1) from shedding, thereby maintaining this antithrombotic signal. In the present study, we investigated the effect of S1P in the construction of a functional tissue-engineered blood vessel by using human endothelial cells and decellularized human umbilical vein (DHUV) scaffolds. Both human umbilical vein endothelial cells (HUVEC) and human cord blood derived endothelial progenitor cells (EPC) were seeded onto the scaffold with or without the S1P treatment. The efficacy of re-cellularization was determined by using the fluorescent marker CellTracker CMFDA and anti-CD31 immunostaining. The antithrombotic effect of S1P was examined by the anti-aggregation tests measuring platelet adherence and clotting time. Finally, we altered the expression of SDC1, a major glycocalyx protein on the endothelial cell surface, using MMP-7 digestion to explore its role using platelet adhesion tests in vitro. The result showed that S1P enhanced the attachment of HUVEC and EPC. Based on the anti-aggregation tests, S1P-treated HUVEC recellularized vessels when grafted showed reduced thrombus formation compared to controls. Our results also identified reduced SDC1 shedding from HUVEC responsible for inhibition of platelet adherence. However, no significant antithrombogenic effect of S1P was observed on EPC. In conclusion, S1P is an effective agent capable of decreasing thrombotic risk in engineered blood vessel grafts. STATEMENT OF SIGNIFICANCE Sphingosine-1phosphate (S1P) is a low molecular-weight phospholipid mediator that regulates diverse biological activities of endothelial cell, including survival, proliferation, cell barrier integrity, and also influences the development of the vascular system. Based on these characters, we the first time to use it as an additive during the process of a small caliber blood vessel construction by decellularized human umbilical vein and endothelial cell/endothelial progenitor. We further explored the function and mechanism of S1P in promoting revascularization and protection against thrombosis in this tissue engineered vascular grafts. The results showed that S1P could not only accelerate the generation but also reduce thrombus formation of small caliber blood vessel.
Collapse
|
4
|
Attiori Essis S, Laurier-Laurin ME, Pépin É, Cyr M, Massicotte G. GluN2B-containing NMDA receptors are upregulated in plasma membranes by the sphingosine-1-phosphate analog FTY720P. Brain Res 2015; 1624:349-358. [PMID: 26260438 DOI: 10.1016/j.brainres.2015.07.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a ceramide derivative serving not only as a regulator of immune properties but also as a modulator of brain functions. To better understand the mechanism underlying the effects of S1P on brain functions, we investigated the potential impact of S1P receptor (S1PR) activation on NMDA receptor subunits. We used acute rat hippocampal slices as a model system, and determined the effects of the active phosphorylated S1P analog, fingolimod (FTY720P) on various NMDA receptors. Treatment with FTY720P significantly increased phosphorylation of GluN2B-containing NMDA receptors at Tyr1472. This effect appears rather specific, as treatment with FTY720P did not modify GluN2B-Tyr1336, GluN2B-Ser1480, GluN2A-Tyr1325 or GluN1-Ser897 phosphorylation. Pre-treatment of hippocampal slices with the compounds W146 and PP1 indicated that FTY720P-induced GluN2B phosphorylation at Tyr1472 epitopes was dependent on activation of S1PR subunit 1 (S1PR1) and Src/Fyn kinase, respectively. Cell surface biotinylation experiments indicated that FTY720P-induced GluN2B phosphorylation at Tyr1472 was also associated with increased levels of GluN1 and GluN2B subunits on membrane surface, whereas no change was observed for GluN2A subunits. We finally demonstrate that FTY720P is inclined to favor Tau and Fyn accumulation on plasma membranes. These results suggest that activation of S1PR1 by FTY720P enhances GluN2B receptor phosphorylation in rat hippocampal slices, resulting in increased levels of GluN1 and GluN2B receptor subunits in neuronal membranes through a mechanism probably involving Fyn and Tau.
Collapse
Affiliation(s)
- Suzanne Attiori Essis
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | - Marie-Elaine Laurier-Laurin
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | - Élise Pépin
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | - Michel Cyr
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
| | - Guy Massicotte
- Département de biologie médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7.
| |
Collapse
|
5
|
Huang YL, Chang CL, Tang CH, Lin YC, Ju TK, Huang WP, Lee H. Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells. Cell Signal 2013; 26:611-8. [PMID: 24333325 DOI: 10.1016/j.cellsig.2013.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that binds to a family of G protein-coupled receptors (GPCRs), termed S1P1-S1P5. Our previous study has reported that S1P induces autophagy in human prostate cancer PC-3 cell. In addition, S1P-induced autophagy plays a prosurvival role in PC-3 cells. Accumulating evidence has shown that the autophagy responses triggered by ER stress signaling have cytoprotective effects. Thus, we attempted to investigate whether S1P-induced autophagy is a result of triggering ER stress in PC-3 cells. By monitoring XBP-1 mRNA splicing, a characteristic of ER stress, we demonstrate that S1P triggers ER stress in a concentration-dependent and time-dependent manner. Moreover, DiH S1P, a membrane-nonpermeable S1P analog without intracellular effects also enhances ER stress. Meanwhile, we also show that S1P5 is required for S1P-induced ER stress by using RNA interference experiments. Furthermore, signaling analyses revealed that PI3K, PLC, and ROS production were involved in S1P's effects on ER stress induction. On the other hand, knockdown of XBP-1 abolished S1P-induced autophagy. In summary, our results demonstrate for the first time that the extracellular S1P-triggered ER stress is responsible for autophagy induction in PC-3 cells.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, ROC; Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Lun Chang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yueh-Chien Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsai-Kai Ju
- Instrumentation Center, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Pang Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC.
| | - Hsinyu Lee
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC; Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan, ROC; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Morozov VI, Sakuta GA, Kalinski MI. Sphingosine-1-phosphate: distribution, metabolism and role in the regulation of cellular functions. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:5-21. [PMID: 23534286 DOI: 10.15407/ubj85.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of sphingosine-1-phosphate (S1P) in regulation of cellular functions and cell protection is reviewed. S1P, along with other sphingolipid metabolites, is believed to act as an intracellular second messenger and as an extracellular mediator molecule. S1P chemistry, production and metabolism are described. Cellular receptors for S1P and their tissue specificity are described. Platelets and erythrocytes have a crucial significance in blood transport of S1P. Hypoxic conditions induce an increase in S1P, which initiates a set of cytoprotective events via its cellular receptors. S1P involvement in regulation of cell migration, myogenesis, control of skeletal muscle function is described. It is shown that S1P balance disturbances may mediate pathological state. S1P system implication in regulation of the most important cellular functions allows considering it as a prospective remedial target.
Collapse
Affiliation(s)
- V I Morozov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | |
Collapse
|
7
|
Privratsky JR, Paddock CM, Florey O, Newman DK, Muller WA, Newman PJ. Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity. J Cell Sci 2011; 124:1477-85. [PMID: 21486942 DOI: 10.1242/jcs.082271] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PECAM-1 (CD31) is a cellular adhesion and signaling receptor that is highly expressed at endothelial cell-cell junctions in confluent vascular beds. Previous studies have implicated PECAM-1 in the maintenance of vascular barrier integrity; however, the mechanisms behind PECAM-1-mediated barrier protection are still poorly understood. The goal of the present study, therefore, was to examine the pertinent biological properties of PECAM-1 (i.e. adhesion and/or signaling) that allow it to support barrier integrity. We found that, compared with PECAM-1-deficient endothelial cells, PECAM-1-expressing endothelial cell monolayers exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity following thrombin-induced perturbation of the endothelial cell monolayer. The majority of PECAM-1-mediated barrier protection was found to be due to the ability of PECAM-1 to interact homophilically and become localized to cell-cell junctions, because a homophilic binding-crippled mutant form of PECAM-1 was unable to support efficient barrier function when re-expressed in cells. By contrast, cells expressing PECAM-1 variants lacking residues known to be involved in PECAM-1-mediated signal transduction exhibited normal to near-normal barrier integrity. Taken together, these studies suggest that PECAM-1-PECAM-1 homophilic interactions are more important than its signaling function for maintaining the integrity of endothelial cell junctions.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Inhibition of platelet responsiveness is important to control pathologic thrombus formation. Platelet-endothelial cell adhesion molecule-1 (PECAM-1) and the Src family kinase Lyn inhibit platelet activation by the glycoprotein VI (GPVI) collagen receptor; however, it is not known whether PECAM-1 and Lyn function in the same or different inhibitory pathways. In these studies, we found that, relative to wild-type platelets, platelets derived from PECAM-1-deficient, Lyn-deficient, or PECAM-1/Lyn double-deficient mice were equally hyperresponsive to stimulation with a GPVI-specific agonist, indicating that PECAM-1 and Lyn participate in the same inhibitory pathway. Lyn was required for PECAM-1 tyrosine phosphorylation and subsequent binding of the Src homology 2 domain-containing phosphatase-2, SHP-2. These results support a model in which PECAM-1/SHP-2 complexes, formed in a Lyn-dependent manner, suppress GPVI signaling.
Collapse
|
9
|
Privratsky JR, Newman DK, Newman PJ. PECAM-1: conflicts of interest in inflammation. Life Sci 2010; 87:69-82. [PMID: 20541560 DOI: 10.1016/j.lfs.2010.06.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/21/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a cell adhesion and signaling receptor that is expressed on hematopoietic and endothelial cells. PECAM-1 is vital to the regulation of inflammatory responses, as it has been shown to serve a variety of pro-inflammatory and anti-inflammatory functions. Pro-inflammatory functions of PECAM-1 include the facilitation of leukocyte transendothelial migration and the transduction of mechanical signals in endothelial cells emanating from fluid shear stress. Anti-inflammatory functions include the dampening of leukocyte activation, suppression of pro-inflammatory cytokine production, and the maintenance of vascular barrier integrity. Although PECAM-1 has been well-characterized and studied, the mechanisms through which PECAM-1 regulates these seemingly opposing functions, and how they influence each other, are still not completely understood. The purpose of this review, therefore, is to provide an overview of the pro- and anti-inflammatory functions of PECAM-1 with special attention paid to mechanistic insights that have thus far been revealed in the literature in hopes of gaining a clearer picture of how these opposing functions might be integrated in a temporal and spatial manner on the whole organism level. A better understanding of how inflammatory responses are regulated should enable the development of new therapeutics that can be used in the treatment of acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
10
|
Stamer WD, Read AT, Sumida GM, Ethier CR. Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes. Exp Eye Res 2009; 89:980-8. [PMID: 19715693 DOI: 10.1016/j.exer.2009.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
Previous work has shown that sphingosine 1-phosphate (S1P) decreases outflow facility in perfused porcine eyes while dramatically increasing giant vacuole density in the inner wall of the aqueous plexus, with no obvious changes in the trabecular meshwork (TM). Due to known effects of S1P on cell-cell junction assembly in vascular endothelia, we hypothesized that S1P would decrease outflow facility in human eyes by increasing the complexity of cell-cell junctions in Schlemm's canal (SC) inner wall endothelia. Perfusion of enucleated post mortem human eyes at 8 mmHg constant pressure in the presence or absence of 5 microM S1P showed that S1P decreased outflow facility by 36 +/- 20% (n = 10 pairs; p = 0.0004); an effect likely mediated by activation of S1P(1) and/or S1P(3) receptor subtypes, which were found to be the principal S1P receptors expressed by both TM and SC cells by RT-PCR, confocal immunofluorescence microscopy and western blot analyses. Examination of SC's inner wall using confocal microscopy revealed no consistent differences in VE-cadherin, beta-catenin, phosphotyrosine or filamentous actin abundance/distribution between S1P-treated eyes and controls. Moreover, morphological inspection of conventional outflow tissues by light and scanning electron microscopy showed no significant differences between S1P-treated and control eyes, particularly in giant vacuole density. Thus, unlike the situation in porcine eyes, we did not observe changes in inner wall morphology in human eyes treated with S1P, despite a significant and immediate decrease in outflow facility in both species. Regardless, S1P receptor antagonists represent novel therapeutic prospects for ocular hypertension in humans.
Collapse
Affiliation(s)
- W Daniel Stamer
- Department of Ophthalmology and Vision Science, The University of Arizona, 655 North Alvernon Way, Suite 108, Tucson, AZ 85711, USA.
| | | | | | | |
Collapse
|
11
|
Huang YL, Lin HS, Chen SU, Lee H. Tyrosine sulphation of sphingosine 1-phosphate 1 (S1P1) is required for S1P-mediated cell migration in primary cultures of human umbilical vein endothelial cells. J Biochem 2009; 146:815-20. [PMID: 19692429 DOI: 10.1093/jb/mvp131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a lysophospholipid mediator, regulates diverse functions of many types of cells by binding to specific G protein-coupled receptors termed S1P(1)-S1P(5). In T-cells, tyrosine sulphation of S1P(1) is required for high-affinity binding of S1P and fully functional signalling. In this study, we showed that tyrosine sulphation of S1P(1) is necessary for S1P-induced Src phosphorylation and migration in human umbilical vein endothelial cells (HUVECs). Both substitution of phenylalanine (F) for tyrosine (Y) in S1P(1) and inhibition of tyrosine sulphation blocked c-Src phosphorylation and migration in HUVECs. In addition, overexpression of mutant (F19, 22F) S1P(1), lacking tyrosine sulphation sites, suppressed native S1P(1) effects on migration, actin rearrangement and lamellipodia formation. Therefore, tyrosine sulphation of S1P(1) is required for its optimal transduction of signals from S1P in HUVECs.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Department of Life Science, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
12
|
Okajima F, Sato K, Kimura T. Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. Endocr J 2009; 56:317-34. [PMID: 18753704 DOI: 10.1507/endocrj.k08e-228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma high-density lipoprotein (HDL) is a potent anti-atherogenic factor, a critical role of which is thought to be reverse cholesterol transport through the lipoprotein-associated apolipoprotein A-I (apoA-I). HDL also carries a potent bioactive lipid mediator, sphingosine 1-phophate (S1P), which exerts diverse physiological and pathophysiological actions in a variety of biological systems, including the cardiovascular system. In addition, HDL-associated apoA-I is known to stimulate intracellular signaling pathways unrelated to transporter activity. Mounting evidence indicates that multiple antiatherogenic or anti-inflammatory actions of HDL independent of cholesterol metabolism are mediated by the lipoprotein-associated S1P through S1P receptors and by apoA-I through scavenger receptor class B type I.
Collapse
Affiliation(s)
- Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|