1
|
Uemichi K, Shirai T, Takemasa T. Combined effects of functional overload and denervation on skeletal muscle mass and its regulatory proteins in mice. Physiol Rep 2023; 11:e15689. [PMID: 37161590 PMCID: PMC10169777 DOI: 10.14814/phy2.15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
Skeletal muscle is a highly pliable tissue and various adaptations such as muscle hypertrophy or atrophy are induced by overloading or disuse, respectively. However, the combined effect of overloading and disuse on the quantitative adaptation of skeletal muscle is unknown. Thus, the aim of this study was to investigate the effects of the combined stimuli of overloading and disuse on mouse skeletal muscle mass and the expression of regulatory factors for muscle protein anabolism or catabolism. Male mice from the Institute Cancer Research were subjected to denervation concomitant with unilateral functional overload or functional overload concomitant with unilateral denervation. Disuse and functional overload were induced by sciatic nerve transection (denervation) and synergist ablation, respectively, and the plantaris muscle was harvested 14 days after the operation. Our results showed that denervation attenuated functional overload-induced muscle hypertrophy and functional overload partially ameliorated the denervation-induced muscle atrophy. P70S6K phosphorylation, an indicator of mechanistic target of rapamycin complex 1 (mTORC1) activation, was not increased by unilateral functional overload in denervated muscles or by unilateral denervation in functional overloaded muscles. Denervation did not affect the increase of LC3-II, a marker of autophagy activation, and ubiquitinated protein expression upon unilateral functional overload. Also, functional overload did not affect ubiquitinated protein expression during unilateral denervation. Thus, our findings suggest that functional overload-induced muscle hypertrophy or denervation-induced muscle atrophy was attenuated by the combined stimuli of overload and denervation.
Collapse
Affiliation(s)
- Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takanaga Shirai
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Ferrigno A, Cagna M, Bosco O, Trucchi M, Berardo C, Nicoletti F, Vairetti M, Di Pasqua LG. MPEP Attenuates Intrahepatic Fat Accumulation in Obese Mice. Int J Mol Sci 2023; 24:ijms24076076. [PMID: 37047048 PMCID: PMC10094379 DOI: 10.3390/ijms24076076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1β and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Marta Cagna
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Oriana Bosco
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Michelangelo Trucchi
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Clarissa Berardo
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
3
|
Uemichi K, Shirai T, Matsuno R, Iwata T, Tanimura R, Takemasa T. The role of the mechanistic target of rapamycin complex 1 in the regulation of mitochondrial adaptation during skeletal muscle atrophy under denervation or calorie restriction in mice. Appl Physiol Nutr Metab 2023; 48:241-255. [PMID: 36786420 DOI: 10.1139/apnm-2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a protein complex that regulates skeletal muscle protein synthesis and hypertrophy. mTORC1-mediated signaling activities are activated during denervation-induced skeletal muscle atrophy and suppressed during calorie restriction-induced atrophy. Mitochondria control the qualitative plasticity of skeletal muscles primarily through biogenesis, fusion, and fission. We recently showed that mTORC1 activation contributes toward mitochondrial homeostasis. In this study, we examined the role of mTORC1 in mitochondrial adaptation during denervation- or calorie restriction-induced skeletal muscle atrophy. Seven-week-old Institute of Cancer Research mice were subjected to 14 days of denervation or calorie restriction combined with the administration of the mTORC1 inhibitor-"rapamycin". Our results showed that although mTORC1 inhibition did not alter mitochondrial biogenesis, content and enzyme activity, it suppressed the activation of dynamin-related protein 1 (DRP1), a mitochondrial fission-related protein in denervated muscle, and reduced DRP1 expression in calorie-restricted muscle. Furthermore, calorie restriction-induced mitochondrial fragmentation was partially suppressed by mTORC1 inhibition. Taken together, our results indicate that mTORC1 activation upon denervation and inhibition upon calorie restriction contributes to qualitative changes in muscle plasticity by at least partially regulating the mitochondrial fission response.
Collapse
Affiliation(s)
- Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takanaga Shirai
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryunosuke Matsuno
- School of Physical Education, Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan.,Terumo Corporation, Tokyo, Japan
| | - Tomohiro Iwata
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Riku Tanimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Coapplication of Magnesium Supplementation and Vibration Modulate Macrophage Polarization to Attenuate Sarcopenic Muscle Atrophy through PI3K/Akt/mTOR Signaling Pathway. Int J Mol Sci 2022; 23:ijms232112944. [PMID: 36361730 PMCID: PMC9654727 DOI: 10.3390/ijms232112944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related geriatric syndrome characterized by the gradual loss of muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to be beneficial to structural and functional outcomes of skeletal muscles, while magnesium (Mg) is a cofactor associated with better indices of skeletal muscle mass and strength. We hypothesized that LMHFV, Mg and their combinations could suppress inflammation and sarcopenic atrophy, promote myogenesis via PI3k/Akt/mTOR pathway in senescence-accelerated mouse P8 (SAMP8) mice and C2C12 myoblasts. Results showed that Mg treatment and LMHFV could significantly decrease inflammatory expression (C/EBPα and LYVE1) and modulate a CD206-positive M2 macrophage population at month four. Mg treatment also showed significant inhibitory effects on FOXO3, MuRF1 and MAFbx mRNA expression. Coapplication showed a synergistic effect on suppression of type I fiber atrophy, with significantly higher IGF-1, MyoD, MyoG mRNA (p < 0.05) and pAkt protein expression (p < 0.0001) during sarcopenia. In vitro inhibition of PI3K/Akt and mTOR abolished the enhancement effects on myotube formation and inhibited MRF mRNA and p85, Akt, pAkt and mTOR protein expressions. The present study demonstrated that the PI3K/Akt/mTOR pathway is the predominant regulatory mechanism through which LMHFV and Mg enhanced muscle regeneration and suppressed atrogene upregulation.
Collapse
|
5
|
Huot JR, Thompson B, McMullen C, Marino JS, Arthur ST. GSI Treatment Preserves Protein Synthesis in C2C12 Myotubes. Cells 2021; 10:cells10071786. [PMID: 34359954 PMCID: PMC8307118 DOI: 10.3390/cells10071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that inhibiting Notch signaling through γ-secretase inhibitor (GSI) treatment increases myogenesis, AKT/mTOR signaling, and muscle protein synthesis (MPS) in C2C12 myotubes. The purpose of this study was to determine if GSI-mediated effects on myogenesis and MPS are dependent on AKT/mTOR signaling. C2C12 cells were assessed for indices of myotube formation, anabolic signaling, and MPS following GSI treatment in combination with rapamycin and API-1, inhibitors of mTOR and AKT, respectively. GSI treatment increased several indices of myotube fusion and MPS in C2C12 myotubes. GSI-mediated effects on myotube formation and fusion were completely negated by treatment with rapamycin and API-1. Meanwhile, GSI treatment was able to rescue MPS in C2C12 myotubes exposed to rapamycin or rapamycin combined with API-1. Examination of protein expression revealed that GSI treatment was able to rescue pGSK3β Ser9 despite AKT inhibition by API-1. These findings demonstrate that GSI treatment is able to rescue MPS independent of AKT/mTOR signaling, possibly via GSK3β modulation.
Collapse
Affiliation(s)
- Joshua R. Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian Thompson
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Charlotte McMullen
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Correspondence: ; Tel.: +1-(704)-687-0856
| |
Collapse
|
6
|
Wu T, Yao Y, Sun R, Wang H, Zhang J, Yin X, Zhou Q, Huangfu C. Arterial instillation of rapamycin in treatment of rabbit hepatic xenograft tumors and its effects on VEGF, iNOS, HIF-1α, Bcl-2, Bax expression and microvessel density. Sci Prog 2021; 104:368504211026417. [PMID: 34392719 PMCID: PMC10364938 DOI: 10.1177/00368504211026417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma is one of the leading causes of malignant tumor related death word wide with poor prognosis. Chemotherapy and TACE are main treatment methods for advanced stage cases. Rapamycin, a macrolide compound that initially used to coat coronary stents, can inhibit the growth of a variety of cancer cells especially hepatocellular carcinoma. Twenty-four healthy adult New Zealand white rabbits underwent CT-guided puncture to prepare a model of VX2 liver xenograft tumor. The rabbits were randomly divided into four groups with six in each group and received the following treatments: APR-TACE1: arterial perfusion of high-dose rapamycin combined with TACE; APR-TACE2: arterial perfusion of low-dose rapamycin combined with TACE; TACE: TACE alone; and IVR-TACE: intravenous injection of rapamycin combined with TACE. Two weeks after TACE treatment, the rabbits received CT scan and DSA angiography examination, and then killed by air embolism. The non-necrotic region and surrounding tissues were obtained from the peripheral tumor for iNOS, HIF-1α, VEGF, Bcl-2, and Bax protein expression analysis. Protein expression of iNOS, HIF-1α, VEGF, and Bcl-2 in APR-TACE1 were significantly lower than those in groups APR-TACE2, TACE, and IVR-TACE (p < 0.05). iNOS, HIF-1α, and VEGF in APR-TACE2 were lower than those in TACE (p < 0.05). iNOS and VEGF in APR-TACE2 were significantly lower than those in IVR-TACE (p < 0.05). iNOS in IVR-TACE was significantly lower than that in TACE (p < 0.05). The expression levels of Bcl-2 and Bax were statistically significant between APR-TACE2 and TACE (p < 0.05). The MVD of the tumor tissue in APR-TACE1 was lower than that of groups APR-TACE2, TACE, IVR-TACE with statistical difference (p < 0.05). However, MVD of APR-TACE2 was lower than that of groups TACE, IVR-TACE with significant statistical difference (p < 0.05). Arterial instillation of rapamycin+TACE in treatment of rabbit hepatic xenograft tumors can reduce tumor neovascularization and inhibit iNOS, HIF-1α, VEGF, Bcl-2, and Bax protein expression.
Collapse
Affiliation(s)
- Tao Wu
- Department of Radiology Intervention, The First affiliated Hospital of Henan University of Traditional Chinese Medicine (TMC), Zhengzhou, Henan, P.R. China
- Department of Radiology Intervention, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Yihui Yao
- Department of Radiology Intervention, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Ruimin Sun
- Department of Radiology Intervention, The First affiliated Hospital of Henan University of Traditional Chinese Medicine (TMC), Zhengzhou, Henan, P.R. China
| | - Huili Wang
- Department of Radiology Intervention, The First affiliated Hospital of Henan University of Traditional Chinese Medicine (TMC), Zhengzhou, Henan, P.R. China
| | - Junna Zhang
- Department of Pathology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Xiaoxiang Yin
- Department of Radiology Intervention, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Qing Zhou
- Department of Radiology Intervention, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Chaoshen Huangfu
- College of Basic Medicine, Henan University, Kaifeng, Henan, P.R. China
| |
Collapse
|
7
|
Dadon-Freiberg M, Chapnik N, Froy O. REV-ERBα activates the mTOR signalling pathway and promotes myotubes differentiation. Biol Cell 2020; 112:213-221. [PMID: 32306421 DOI: 10.1111/boc.201900091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND INFORMATION Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell and whole-body energy homoeostasis. REV-ERBα is a nuclear receptor that plays an important role in metabolism. While mTORC1 activation is necessary for muscle differentiation, the role of REV-ERBα is less clear. RESULTS We studied the effect of REV-ERBα overexpression and silencing as well as mTORC1 activation and inhibition on the differentiation of C2C12 myoblasts to myotubes. mTOR, myogenin and REV-ERBα were induced during differentiation of myoblasts into myotubes. REV-ERBα was found to activate mTORC1 during the differentiation process even in the absence of the differentiation medium. This activation was presumably through the downregulation of the expression of TSC1, an mTORC1 inhibitor. CONCLUSION Herein we show that REV-ERBα promotes myoblasts differentiation via the activation of the mTORC1 signalling pathway. SIGNIFICANCE REV-ERBα modulation can activate mTORC1 signalling and promote myoblasts differentiation.
Collapse
Affiliation(s)
- Maayan Dadon-Freiberg
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
8
|
UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sci 2019; 233:116699. [PMID: 31356902 DOI: 10.1016/j.lfs.2019.116699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023]
Abstract
AIMS Skeletal muscle wasting is associated with many chronic diseases. Effective prevention and treatment of muscle wasting remain as a challenging task due to incomplete understanding of mechanisms by which muscle mass is maintained and regulated. This study investigated the functional role of Ubiquitin C-terminal hydrolase L1 (UCHL1) in skeletal muscle. MAIN METHODS Mice with skeletal muscle specific gene knockout of UCHL1 and C2C12 myoblast cells with UCHL1 knockdown were used. Muscle fiber types and size were measured using tissue or cell staining. The mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 activities were assessed with the phosphorylation of their downstream targets. KEY FINDINGS In mouse skeletal muscle, UCHL1 was primarily expressed in slow twitch muscle fibers. Mice with skeletal muscle specific knockout (skmKO) of UCHL1 exhibited enlarged muscle fiber sizes in slow twitch soleus but not fast twitch extensor digitorum longus (EDL) muscle. Meanwhile, UCHL1 skmKO enhanced mTORC1 activity and reduced mTORC2 activity in soleus but not in EDL. Consistently, in C2C12 cells, UCHL1 knockdown increased the myotube size, enhanced mTORC1 activity, and reduced mTORC2 activities as compared with control cells. UCHL1 knockdown did not change the major proteins of mTOR complex but decreased the protein turnover of PRAS40, an inhibitory factor of mTORC1. SIGNIFICANCE These data revealed a novel function of UCHL1 in regulation of mTORC1 activity and skeletal muscle growth in slow twitch skeletal muscle. Given the upregulation of UCHL1 in denervation and spinal muscle atrophy, our finding advances understanding of regulators that are involved in muscle wasting.
Collapse
|
9
|
Batool A, Majeed ST, Aashaq S, Majeed R, Shah G, Nazir N, Andrabi KI. Eukaryotic Initiation Factor 4E (eIF4E) sequestration mediates 4E-BP1 response to rapamycin. Int J Biol Macromol 2019; 125:651-659. [DOI: 10.1016/j.ijbiomac.2018.12.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
10
|
Dugdale HF, Hughes DC, Allan R, Deane CS, Coxon CR, Morton JP, Stewart CE, Sharples AP. The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction. Mol Cell Biochem 2017; 444:109-123. [PMID: 29189984 PMCID: PMC6002440 DOI: 10.1007/s11010-017-3236-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/24/2017] [Indexed: 12/01/2022]
Abstract
Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 µM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction.
Collapse
Affiliation(s)
- Hannah F Dugdale
- Stem Cells, Ageing and Molecular Physiology Research (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - Robert Allan
- Centre for Applied Sport and Exercise Sciences, University of Central Lancashire, Preston, UK
| | - Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Christopher R Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - James P Morton
- Stem Cells, Ageing and Molecular Physiology Research (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Research (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Adam P Sharples
- Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, The Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Staffordshire, ST4 7QB, UK. .,Stem Cells, Ageing and Molecular Physiology Research (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
11
|
The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading. Biochem J 2017; 474:3109-3120. [PMID: 28733330 PMCID: PMC5577505 DOI: 10.1042/bcj20170354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5′ untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading.
Collapse
|
12
|
Reappraisal to the study of 4E-BP1 as an mTOR substrate – A normative critique. Eur J Cell Biol 2017; 96:325-336. [DOI: 10.1016/j.ejcb.2017.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
|
13
|
IGF-II-mediated downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α in myoblast cells involves PI3K/Akt/FoxO1 signaling pathway. Mol Cell Biochem 2017; 432:199-208. [PMID: 28374141 DOI: 10.1007/s11010-017-3010-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.
Collapse
|
14
|
Le Plénier S, Goron A, Sotiropoulos A, Archambault E, Guihenneuc C, Walrand S, Salles J, Jourdan M, Neveux N, Cynober L, Moinard C. Citrulline directly modulates muscle protein synthesis via the PI3K/MAPK/4E-BP1 pathway in a malnourished state: evidence from in vivo, ex vivo, and in vitro studies. Am J Physiol Endocrinol Metab 2017; 312:E27-E36. [PMID: 27827806 DOI: 10.1152/ajpendo.00203.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated (P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.
Collapse
Affiliation(s)
- Servane Le Plénier
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France;
| | - Arthur Goron
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Athanassia Sotiropoulos
- Centre National de la Recherche Scientifique UMR 8104, Institut Cochin, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Eliane Archambault
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Chantal Guihenneuc
- Laboratoire d'épidémiologie environnementale, EA 4064, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Stéphane Walrand
- Unité de Nutrition humaine, UMR 1019, Institut National de la Recherche Agronomique/Université d'Auvergne, Centre de Recherche en Nutrition Humaine, Auvergne, Clermont-Ferrand, France; and
| | - Jérome Salles
- Unité de Nutrition humaine, UMR 1019, Institut National de la Recherche Agronomique/Université d'Auvergne, Centre de Recherche en Nutrition Humaine, Auvergne, Clermont-Ferrand, France; and
| | - Marion Jourdan
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Nathalie Neveux
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Luc Cynober
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
- Service de Biochimie interhospitalier Cochin et Hôtel-Dieu, GH Hôpitaux universitaire Paris Centre, AP-HP, Paris, France
| | - Christophe Moinard
- Laboratoire de Biologie de la Nutrition, EA4466, Faculté de Pharmacie, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
15
|
Yoshida K, Imamura CK, Hara K, Mochizuki M, Tanigawara Y. Effect of everolimus on the glucose metabolic pathway in mouse skeletal muscle cells (C2C12). Metabolomics 2017; 13:98. [PMID: 28781589 PMCID: PMC5501892 DOI: 10.1007/s11306-017-1236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus. OBJECTIVES We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway. METHODS Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways. RESULTS Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5'-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism. CONCLUSIONS The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Kayoko Yoshida
- Division for Evaluation and Analysis of Drug Information, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo Japan
| | - Chiyo K. Imamura
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Kanako Hara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Mayumi Mochizuki
- Division for Evaluation and Analysis of Drug Information, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo Japan
| | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| |
Collapse
|
16
|
Pollard HJ, Willett M, Morley SJ. mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for cell cycle exit and myogenic differentiation. Cell Cycle 2015; 13:2517-25. [PMID: 25486193 PMCID: PMC4614745 DOI: 10.4161/15384101.2014.941747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Previously we have shown that the mTORC1 signaling inhibitor, RAD001, decreased protein synthesis rates, delayed C2C12 myoblast differentiation, decreased p70S6K activity but did not affect the hypermodification of 4E-BP1. Here we have further investigated the modification of 4E-BP1 during the early phase of differentiation as cells exit the cell cycle, using inhibitors to target mTOR kinase and siRNAs to ablate the expression of raptor and rictor. As predicted, inhibition of mTOR kinase activity prevented p70S6K, 4E-BP1 phosphorylation and was associated with an inhibition of myogenic differentiation. Surprisingly, extensive depletion of raptor did not affect p70S6K or 4E-BP1 phosphorylation, but promoted an increase in mTORC2 activity (as evidenced by increased Akt Ser473 phosphorylation). These data suggest that an mTOR kinase-dependent, but raptor-independent regulation of downstream signaling is important for myogenic differentiation.
Collapse
Affiliation(s)
- Hilary J Pollard
- a Department of Biochemistry, School of Life Sciences ; University of Sussex ; Brighton , UK
| | | | | |
Collapse
|
17
|
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14:511-23. [PMID: 25866088 PMCID: PMC4531066 DOI: 10.1111/acel.12342] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio-economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin-like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| | - David C. Hughes
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
- Department of Neurobiology, Physiology and Behavior; University of California; Davis California CA 95616 USA
| | - Colleen S. Deane
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research; School of Medicine; University of Nottingham; Royal Derby Hospital; Derby DE22 3DT UK
- School of Health and Social Care; Bournemouth University; Bournemouth BH12 5BB UK
| | - Amarjit Saini
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER); Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Claire E. Stewart
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| |
Collapse
|
18
|
Iadevaia V, Cowan JL, Coldwell MJ. mTORCing about myogenic differentiation. Cell Cycle 2015; 14:3-4. [PMID: 25551658 DOI: 10.4161/15384101.2014.988107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Valentina Iadevaia
- a Centre for Biological Sciences ; University of Southampton, Highfield Campus ; Southampton , UK
| | | | | |
Collapse
|
19
|
Yeh TS, Hsu CC, Yang SC, Hsu MC, Liu JF. Angelica Sinensis promotes myotube hypertrophy through the PI3K/Akt/mTOR pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:144. [PMID: 24884709 PMCID: PMC4229743 DOI: 10.1186/1472-6882-14-144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/25/2014] [Indexed: 01/02/2023]
Abstract
Background Angelica Sinensis (AS), a folk medicine, has long been used in ergogenic aids for athletes, but there is little scientific evidence supporting its effects. We investigated whether AS induces hypertrophy in myotubes through the phosphatidylinositol 3-kinase (PI3K)/Akt (also termed PKB)/mammalian target of the rapamycin (mTOR) pathway. Methods An in vitro experiment investigating the induction of hypertrophy in myotubes was conducted. To investigate whether AS promoted the hypertrophy of myotubes, an established in vitro model of myotube hypertrophy with and without AS was used and examined using microscopic images. The role of the PI3K/Akt/mTOR signaling pathway in AS-induced myotube hypertrophy was evaluated. Two inhibitors, wortmannin (an inhibitor of PI3K) and rapamycin (an inhibitor of mTOR), were used. Result The results revealed that the myotube diameters in the AS-treated group were significantly larger than those in the untreated control group (P < 0.05). Wortmannin and rapamycin inhibited AS-induced hypertrophy. Furthermore, AS increased Akt and mTOR phosphorylation through the PI3K pathway and induced myotube hypertrophy. Conclusion The results confirmed that AS induces hypertrophy in myotubes through the PI3K/Akt/mTOR pathway.
Collapse
|
20
|
Galicia-Vázquez G, Di Marco S, Lian XJ, Ma JF, Gallouzi IE, Pelletier J. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation. PLoS One 2014; 9:e87237. [PMID: 24466343 PMCID: PMC3900710 DOI: 10.1371/journal.pone.0087237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.
Collapse
Affiliation(s)
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Xian J. Lian
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jennifer F. Ma
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Imed E. Gallouzi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
21
|
Dual inhibition by S6K1 and Elf4E is essential for controlling cellular growth and invasion in bladder cancer. Urol Oncol 2014; 32:51.e27-35. [DOI: 10.1016/j.urolonc.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
|
22
|
Irazoqui AP, Boland RL, Buitrago CG. WITHDRAWN: VDR involvement in 1a,25-dihydroxyvitamin D3-action on cellular cycle in C2C12 skeletal muscle cells. J Steroid Biochem Mol Biol 2013:S0960-0760(13)00214-8. [PMID: 24184698 DOI: 10.1016/j.jsbmb.2013.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ana P Irazoqui
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
23
|
Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 2013; 70:4117-30. [PMID: 23552962 PMCID: PMC11113627 DOI: 10.1007/s00018-013-1330-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.
Collapse
Affiliation(s)
- Nadège Zanou
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, 55 av. Hippocrate, B1.55.12, 1200, Brussels, Belgium,
| | | |
Collapse
|
24
|
mRNA encoding WAVE-Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem J 2013; 452:45-55. [PMID: 23452202 DOI: 10.1042/bj20121803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation. Furthermore, we demonstrate that steady-state levels of ArpC2 and Rac1 proteins increase at the leading edge during cell spreading, suggesting that localized protein synthesis has a pivotal role in controlling cell spreading and migration.
Collapse
|
25
|
Garcia LA, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 133:1-11. [PMID: 22982629 PMCID: PMC3513642 DOI: 10.1016/j.jsbmb.2012.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-D's effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C(2)C(12) myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for Western blots and proteome profiler arrays. The addition of 1,25-D3 to C(2)C(12) myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogs to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGF's to promote angiogenesis.
Collapse
Affiliation(s)
- Leah A. Garcia
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
| | - Monica G. Ferrini
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Keith C. Norris
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jorge N. Artaza
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding author and reprint requests to: Jorge N. Artaza, MS., Ph.D., Department of Internal Medicine, Charles R. Drew University of Medicine & Science; 1731 East 120th Street, Los Angeles, California, 90059, USA. Phone: 323-563-4915; FAX: 323-563-9352;
| |
Collapse
|
26
|
Yang H, Li F, Kong X, Yuan X, Wang W, Huang R, Li T, Geng M, Wu G, Yin Y. Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine 2012; 60:646-52. [DOI: 10.1016/j.cyto.2012.07.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 07/13/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
27
|
Nawroth R, Stellwagen F, Schulz WA, Stoehr R, Hartmann A, Krause BJ, Gschwend JE, Retz M. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One 2011; 6:e27509. [PMID: 22110663 PMCID: PMC3216974 DOI: 10.1371/journal.pone.0027509] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/18/2011] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and the mitogen activated protein kinase (MAPK) signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC). However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.
Collapse
Affiliation(s)
- Roman Nawroth
- Department of Urology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Translation initiation factors and active sites of protein synthesis co-localize at the leading edge of migrating fibroblasts. Biochem J 2011; 438:217-27. [PMID: 21539520 DOI: 10.1042/bj20110435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored. To help understand the role for the compartmentalization and localized protein synthesis in cell migration, we have used scanning confocal microscopy, immunofluorescence and a novel ribopuromycylation method to visualize translating ribosomes. In the present study we show that eIFs (eukaryotic initiation factors) localize to the leading edge of migrating MRC5 fibroblasts in a process dependent on TGN (trans-Golgi network) to plasma membrane vesicle transport. We show that eIF4E and eIF4GI are associated with the Golgi apparatus and membrane microdomains, and that a proportion of these proteins co-localize to sites of active translation at the leading edge of migrating cells.
Collapse
|
29
|
Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 2011; 152:2976-86. [PMID: 21673099 PMCID: PMC3138228 DOI: 10.1210/en.2011-0159] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle wasting is an important public health problem associated with aging, chronic disease, cancer, kidney dialysis, and HIV/AIDS. 1,25-Dihydroxyvitamin D (1,25-D3), the active form of vitamin D, is widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance and for its calcemic effects on target organs, such as intestine, kidney, and parathyroid glands. Emerging evidence has shown that vitamin D administration improves muscle performance and reduces falls in vitamin D-deficient older adults. However, little is known of the underlying mechanism or the role 1,25-D3 plays in promoting myogenic differentiation at the cellular and/or molecular level. In this study, we examined the effect of 1,25-D3 on myoblast cell proliferation, progression, and differentiation into myotubes. C(2)C(12) myoblasts were treated with 1,25-D3 or placebo for 1, 3, 4, 7, and 10 d. Vitamin D receptor expression was analyzed by quantitative RT-PCR, Western blottings and immunofluorescence. Expression of muscle lineage, pro- and antimyogenic, and proliferation markers was assessed by immunocytochemistry, PCR arrays, quantitative RT-PCR, and Western blottings. Addition of 1,25-D3 to C(2)C(12) myoblasts 1) increased expression and nuclear translocation of the vitamin D receptor, 2) decreased cell proliferation, 3) decreased IGF-I expression, and 4) promoted myogenic differentiation by increasing IGF-II and follistatin expression and decreasing the expression of myostatin, the only known negative regulator of muscle mass, without changing growth differentiation factor 11 expression. This study identifies key vitamin D-related molecular pathways for muscle regulation and supports the rationale for vitamin D intervention studies in select muscle disorder conditions.
Collapse
Affiliation(s)
- Leah A Garcia
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, California 90059, USA
| | | | | | | | | |
Collapse
|
30
|
Xiang X, Zhao J, Xu G, Li Y, Zhang W. mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:501-10. [PMID: 21642276 DOI: 10.1093/abbs/gmr041] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase, belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells. mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.
Collapse
Affiliation(s)
- Xinxin Xiang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
Markworth JF, Cameron-Smith D. Prostaglandin F2α stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am J Physiol Cell Physiol 2010; 300:C671-82. [PMID: 21191105 DOI: 10.1152/ajpcell.00549.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Sciences, Deakin Univ., 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | | |
Collapse
|
32
|
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells. PLoS One 2010; 5:e11201. [PMID: 20574513 PMCID: PMC2888570 DOI: 10.1371/journal.pone.0011201] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. PRINCIPAL FINDINGS We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts. We found that GU-rich (GRE) and AU-rich (ARE) elements are over-represented in the 3'UTRs of short-lived mRNAs and that these mRNAs tend to encode factors involved in cell cycle and transcription regulation. Stabilizing elements were also identified. By comparing mRNA decay rates in C2C12 cells with those previously measured for pluripotent and differentiating embryonic stem (ES) cells, we identified several groups of transcripts that exhibit cell-type specific decay rates. Further, whereas in C2C12 cells the impact of GREs on mRNA decay appears to be greater than that of AREs, AREs are more significant in ES cells, supporting the idea that cis elements make a cell-specific contribution to mRNA stability. GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. We therefore utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts. These mRNAs also showed dramatic enrichment of GREs in their 3'UTRs and encode proteins linked with cell cycle, and intracellular transport. Interestingly several CUGBP1 substrate mRNAs, including those encoding the myogenic transcription factors Myod1 and Myog, are also bound by the stabilizing factor HuR in C2C12 cells. Finally, we show that several CUGBP1-associated mRNAs containing 3'UTR GREs, including Myod1, are stabilized in cells depleted of CUGBP1, consistent with the role of CUGBP1 as a destabilizing factor. CONCLUSIONS Taken together, our results systematically establish cis-acting determinants of mRNA decay rates in C2C12 myoblast cells and demonstrate that CUGBP1 associates with GREs to regulate decay of a wide range of mRNAs including several that are critical for muscle development.
Collapse
|
33
|
Localization of ribosomes and translation initiation factors to talin/beta3-integrin-enriched adhesion complexes in spreading and migrating mammalian cells. Biol Cell 2010; 102:265-76. [PMID: 19929852 DOI: 10.1042/bc20090141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION The spatial localization of translation can facilitate the enrichment of proteins at their sites of function while also ensuring that proteins are expressed in the proximity of their cognate binding partners. RESULTS Using human embryonic lung fibroblasts and employing confocal imaging and biochemical fractionation techniques, we show that ribosomes, translation initiation factors and specific RNA-binding proteins localize to nascent focal complexes along the distal edge of migrating lamellipodia. 40S ribosomal subunits appear to associate preferentially with beta3 integrin in focal adhesions at the leading edges of spreading cells, with this association strongly augmented by a synergistic effect of cell engagement with a mixture of extracellular matrix proteins. However, both ribosome and initiation factor localizations do not require de novo protein synthesis. CONCLUSIONS Taken together, these findings demonstrate that repression, complex post-transcriptional regulation and modulation of mRNA stability could potentially be taking place along the distal edge of migrating lamellipodia.
Collapse
|