1
|
Massoud G, Spann M, Vaught KC, Das S, Dow M, Cochran R, Baker V, Segars J, Singh B. Biomarkers Assessing the Role of Cumulus Cells on IVF Outcomes: A Systematic Review. J Assist Reprod Genet 2024; 41:253-275. [PMID: 37947940 PMCID: PMC10894783 DOI: 10.1007/s10815-023-02984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE Although significant improvements in assisted reproductive technology (ART) outcomes have been accomplished, a critical question remains: which embryo is most likely to result in a pregnancy? Embryo selection is currently based on morphological and genetic criteria; however, these criteria do not fully predict good-quality embryos and additional objective criteria are needed. The cumulus cells are critical for oocyte and embryo development. This systematic review assessed biomarkers in cumulus-oocyte complexes and their association with successful IVF outcomes. METHODS A comprehensive search was conducted using PubMed, Embase, Scopus, and Web of Science from inception until November 2022. Only English-language publications were included. Inclusion criteria consisted of papers that evaluated genetic biomarkers associated with the cumulus cells (CCs) in humans and the following three outcomes of interest: oocyte quality, embryo quality, and clinical outcomes, including fertilization, implantation, pregnancy, and live birth rates. RESULTS The search revealed 446 studies of which 42 met eligibility criteria. Nineteen studies correlated genetic and biochemical biomarkers in CCs with oocyte quality. A positive correlation was reported between oocyte quality and increased mRNA expression in CCs of genes encoding for calcium homeostasis (CAMK1D), glucose metabolism (PFKP), extracellular matrix (HAS2, VCAN), TGF-β family (GDF9, BMP15), and prostaglandin synthesis (PTGS2). Nineteen studies correlated genetic and biochemical biomarkers in CCs with embryo quality. A positive correlation was reported between embryo quality and increased mRNA expression in CCs of genes encoding for extracellular matrix (HAS2), prostaglandin synthesis (PTGS2), steroidogenesis (GREM1), and decreased expression of gene encoding for hormone receptor (AMHR2). Twenty-two studies assessed genetic and biochemical biomarkers in CCs with clinical outcomes. Increased expression of genes encoding for extracellular matrix (VCAN), and TGF-β family (GDF9, BMP15) were positively correlated with pregnancy rate. CONCLUSION Genetic biomarkers from cumulus cells were associated with oocyte quality (CAMK1D, PFKP, HAS2, VCAN, GDF-9, BMP-15, PTGS2), embryo quality (GREM1, PTGS2, HAS2), and pregnancy rate (GDF9, BMP15, VCAN). These results might help guide future studies directed at tests of cumulus cells to devise objective criteria to predict IVF outcomes.
Collapse
Affiliation(s)
- Gaelle Massoud
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Marcus Spann
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamaria Cayton Vaught
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Samarjit Das
- Department of Pathology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark Dow
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Cochran
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Valerie Baker
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Zhu D, Zhao D, Wang N, Cai F, Jiang M, Zheng Z. Current status and prospects of GREM1 research in cancer (Review). Mol Clin Oncol 2023; 19:69. [PMID: 37614374 PMCID: PMC10442762 DOI: 10.3892/mco.2023.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 08/25/2023] Open
Abstract
GREM1 is a secreted protein that antagonizes bone morphogenetic proteins (BMPs) and participates in critical biological processes, including embryonic development, organogenesis and tissue differentiation. Gremlin 1 (GREM1) is also an inhibitor of TGF-β and a ligand for vascular endothelial growth factor receptor 2. In addition, GREM1 can induce cells, participate in the process of epithelial-mesenchymal transition, and then participate in tumor development. GREM1 has a variety of biological functions and can participate in the malignant progression of a variety of tumors through the BMP signaling pathway. GREM1 also can inhibit TGF-β in some tumors, thereby inhibiting tumors, and its involvement in tumor development varies in different types of cancer. The present review examines the role and function of GREM1 in tumors. GREM1 is expressed in a variety of tumor types. GREM1 expression can affect the epithelial-mesenchymal transformation of tumor cells. GREM1 has been studied in breast and colon cancer, and its potential role is to promote cancer. However, in pancreatic cancer, which was found to act differently from other cancer types, overexpression of GREM1 inhibits tumor metastasis. The present review suggests that GREM1 can be a diagnostic and prognostic indicator. In future studies, the study of GREM1 based on single-cell sequencing technology will further clarify its role and function in tumors.
Collapse
Affiliation(s)
- Dantong Zhu
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Dong Zhao
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Naixue Wang
- Department of Oncology, General Hospital of Northern Theater Command, Jinzhou Medical University, Shenyang, Liaoning 121017, P.R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Mingzhe Jiang
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Zhendong Zheng
- Department of Medical Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
3
|
Kaur G, Wang X, Li X, Ong H, He X, Cai C. Overexpression of GREM1 Improves the Survival Capacity of Aged Cardiac Mesenchymal Progenitor Cells via Upregulation of the ERK/NRF2-Associated Antioxidant Signal Pathway. Cells 2023; 12:1203. [PMID: 37190112 PMCID: PMC10136744 DOI: 10.3390/cells12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Ischemic heart disease is the leading cause of mortality in the United States. Progenitor cell therapy can restore myocardial structure and function. However, its efficacy is severely limited by cell aging and senescence. Gremlin-1 (GREM1), a member of the bone morphogenetic protein antagonist family, has been implicated in cell proliferation and survival. However, GREM1's role in cell aging and senescence has never been investigated in human cardiac mesenchymal progenitor cells (hMPCs). Therefore, this study assessed the hypothesis that overexpression of GREM1 rejuvenates the cardiac regenerative potential of aging hMPCs to a youthful stage and therefore allows better capacity for myocardial repair. We recently reported that a subpopulation of hMPCs with low mitochondrial membrane potential can be sorted from right atrial appendage-derived cells in patients with cardiomyopathy and exhibit cardiac reparative capacity in a mouse model of myocardial infarction. In this study, lentiviral particles were used to overexpress GREM1 in these hMPCs. Protein and mRNA expression were assessed through Western blot and RT-qPCR. FACS analysis for Annexin V/PI staining and lactate dehydrogenase assay were used to assess cell survival. It was observed that cell aging and cell senescence led to a decrease in GREM1 expression. In addition, overexpression of GREM1 led to a decrease in expression of senescence genes. Overexpression of GREM1 led to no significant change in cell proliferation. However, GREM1 appeared to have an anti-apoptotic effect, with an increase in survival and decrease in cytotoxicity evident in GREM1-overexpressing hMPCs. Overexpressing GREM1 also induced cytoprotective properties by decreasing reactive oxidative species and mitochondrial membrane potential. This result was associated with increased expression of antioxidant proteins, such as SOD1 and catalase, and activation of the ERK/NRF2 survival signal pathway. Inhibition of ERK led to a decrease in GREM1-mediated rejuvenation in terms of cell survival, which suggests that an ERK-dependent pathway may be involved. Taken altogether, these results indicate that overexpression of GREM1 can allow aging hMPCs to adopt a more robust phenotype with improved survival capacity, which is associated with an activated ERK/NRF2 antioxidant signal pathway.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoliang Wang
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Division of Surgical Sciences, Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Xiuchun Li
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Hannah Ong
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Xiangfei He
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| | - Chuanxi Cai
- Department of Molecular and Cellular Physiology, Department of Medicine, Albany Medical College, Albany, NY 12208, USA; (G.K.); (X.W.); (X.L.)
- Division of Surgical Sciences, Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.O.); (X.H.)
| |
Collapse
|
4
|
Shi X, Wang J, Zhang X, Yang S, Luo W, Wang S, Huang J, Chen M, Cheng Y, Chao J. GREM1/PPP2R3A expression in heterogeneous fibroblasts initiates pulmonary fibrosis. Cell Biosci 2022; 12:123. [PMID: 35933397 PMCID: PMC9356444 DOI: 10.1186/s13578-022-00860-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Background Fibroblasts have important roles in the synthesis and remodeling of extracellular matrix (ECM) proteins during pulmonary fibrosis. However, the spatiotemporal distribution of heterogeneous fibroblasts during disease progression remains unknown. Results In the current study, silica was used to generate a mouse model of pathological changes in the lung, and single-cell sequencing, spatial transcriptome sequencing and an analysis of markers of cell subtypes were performed to identify fibroblast subtypes. A group of heterogeneous fibroblasts that play an important role at the early pathological stage were identified, characterized based on the expression of inflammatory and proliferation genes (termed inflammatory-proliferative fibroblasts) and found to be concentrated in the lesion area. The expression of GREM1/protein phosphatase 2 regulatory subunit B''alpha (PPP2R3A) in inflammatory-proliferative fibroblasts was found to initiate early pulmonary pathological changes by increasing the viability, proliferation and migration of cells. Conclusions Inflammatory-proliferative fibroblasts play a key role in the early pathological changes that occur in silicosis, and during this process, GREM1 is the driving factor that targets PPP2R3A and initiates the inflammatory response, which is followed by irreversible fibrosis induced by SiO2. The GREM1/PPP2R3A pathway may be a potential target in the early treatment of silicosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00860-0.
Collapse
|
5
|
Protective role of microRNA-23a/b-3p inhibition against osteoarthritis through Gremlin1-depenent activation of TGF-β/smad signaling in chondrocytesa. Inflammopharmacology 2022; 30:843-853. [PMID: 35441352 DOI: 10.1007/s10787-022-00923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/08/2022] [Indexed: 01/15/2023]
Abstract
The changed biomechanical environment of chondrocytes elicited by altered extracellular matrix is reported to accelerate the progression of OA. MicroRNAs (miRNAs or miRs) have emerged as major regulators in chondrocyte function. Hence, we explored effect of miR-23a/b-3p on OA in regulating chondrocyte growth. The medial meniscus and anterior cruciate ligaments of right knee was removed to induce a mouse model of OA. miR-23a/b-3p and Gremlin1 (Grem1) expressions in OA were determined by RT-qPCR. Dual luciferase reporter gene assay was conducted to assess their relationship in the context of OA. Loss- and gain-of-function assays were adopted to clarify their effects on OA by determining the release of pro-inflammatory proteins and the apoptosis of chondrocytes. RT-qPCR determined increased miR-23a/b-3p expression and decreased Grem1 expression in the setting OA. Inhibiting miR-23a/b-3p or overexpressing Grem1 activated transforming growth factor-β/solvated metal atom dispersed 3 (TGF-β/Smad) signaling to prevent OA development. Silencing Grem1 ablated suppressive effects of miR-23a/b-3p inhibitor on the release of pro-inflammatory proteins and the apoptosis of chondrocytes. To conclude, inhibition of miR-23a/b-3p delays OA progression through Grem1-mediated activation of TGF-β/Smad signaling, contributing to deepen understanding of the pathogenesis of OA.
Collapse
|
6
|
|
7
|
Qin N, Tyasi TL, Sun X, Chen X, Zhu H, Zhao J, Xu R. Determination of the roles of GREM1 gene in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical follicles. Theriogenology 2020; 151:28-40. [PMID: 32251937 DOI: 10.1016/j.theriogenology.2020.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Gremlin genes are known members of the DAN family of bone morphogenetic protein (BMP) antagonists, but their functions and regulatory mechanisms in ovarian follicular development of chicken remain unknown. The current study was designed to investigate the mRNA expression patterns of gremlin1 gene (GREM1) and its protein location in the follicles sampled, and to explore the biological effect of GREM1 on the prehierarchical follicular development. This work revealed that chicken GREM1 mRNA exhibits a constant expression level across all the prehierarchical follicles (PFs) from 1-4 mm to 7-8 mm in diameter, and the preovulatory follicles (from F6 to F1) by using RT-qPCR (P > 0.05). The GREM1 protein is predominantly expressed in the oocytes and granulosa cells (GCs) of the PFs by immunohistochemistry. Furthermore, our data demonstrated that siRNA-mediated knockdown of GREM1 in the GCs resulted in a significant reduction in cell proliferation (P < 0.001); conversely, overexpression of GREM1 in the GCs led to a remarkable increase in cell proliferation (P < 0.001). Interestingly, the expression levels of proliferating cell nuclear antigen (PCNA) and cyclin D2 (CCND2) mRNA and proteins were notably increased when GREM1 expression was upregulated in the GCs (P < 0.01), however, the expression levels of CYP11A1 and StAR were markedly downregulated (P < 0.01). The current results showed that GREM1 gene plays a stimulatory role in GC proliferation during growth and development of the prehierarchical follicles in vitro but an inhibitory role in GC differentiation and steroidogenesis of the hen ovary follicles.
Collapse
Affiliation(s)
- Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Thobela Louis Tyasi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Mostowska A, Hozyasz KK, Wójcicki P, Żukowski K, Dąbrowska A, Lasota A, Zadurska M, Radomska A, Dunin-Wilczyńska I, Jagodziński PP. Association between polymorphisms at theGREM1locus and the risk of nonsyndromic cleft lip with or without cleft palate in the Polish population. ACTA ACUST UNITED AC 2015; 103:847-56. [DOI: 10.1002/bdra.23391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - Kamil K. Hozyasz
- Department of Paediatrics; Institute of Mother and Child; Warsaw Poland
| | - Piotr Wójcicki
- University Clinic of Medical Academy in Wroclaw and Department of Plastic Surgery Specialist Medical Center in Polanica Zdroj; Poland
| | - Kacper Żukowski
- Department of Animal Genetics and Breeding; National Research Institute of Animal Production; Balice Poland
| | - Anna Dąbrowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - Agnieszka Lasota
- Department of Jaw Orthopaedics; Medical University of Lublin; Lublin Poland
| | - Małgorzata Zadurska
- Department of Orthodontics; Institute of Dentistry, The Medical University of Warsaw; Poland
| | - Agnieszka Radomska
- Department of Orthodontics; Institute of Dentistry, The Medical University of Warsaw; Poland
| | | | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
9
|
Yang K, Lu W, Jia J, Zhang J, Zhao M, Wang S, Jiang H, Xu L, Wang J. Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels. Am J Physiol Cell Physiol 2015; 308:C869-78. [PMID: 25740156 PMCID: PMC4451349 DOI: 10.1152/ajpcell.00349.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/20/2015] [Indexed: 02/08/2023]
Abstract
Abnormally elevated bone morphogenetic protein 4 (BMP4) expression and mediated signaling play a critical role in the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH). In this study, we investigated the expression level and functional significance of four reported naturally occurring BMP4 antagonists, noggin, follistatin, gremlin1, and matrix gla protein (MGP), in the lung and distal pulmonary arterial smooth muscle cell (PASMC). A 21-day chronic hypoxic (10% O2) exposure rat model was utilized, which has been previously shown to successfully establish experimental CHPH. Among the four antagonists, noggin, but not the other three, was selectively downregulated by hypoxic exposure in both the lung tissue and PASMC, in correlation with markedly elevated BMP4 expression, suggesting that the loss of noggin might account for the hypoxia-triggered BMP4 signaling transduction. Then, by using treatment of extrogenous recombinant noggin protein, we further found that noggin significantly normalized 1) BMP4-induced phosphorylation of cellular p38 and ERK1/2; 2) BMP4-induced phosphorylation of cellular JAK2 and STAT3; 3) hypoxia-induced PASMC proliferation; 4) hypoxia-induced store-operated calcium entry (SOCE), and 5) hypoxia-increased expression of transient receptor potential cation channels (TRPC1 and TRPC6) in PASMC. In combination, these data strongly indicated that the hypoxia-suppressed noggin accounts, at least partially, for hypoxia-induced excessive PASMC proliferation, while restoration of noggin may be an effective way to inhibit cell proliferation by suppressing SOCE and TRPC expression.
Collapse
Affiliation(s)
- Kai Yang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wenju Lu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Jia
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingming Zhao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Sabrina Wang
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Lei Xu
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jian Wang
- Guangzhou Institute of Respiratory Disease, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
10
|
Brazil DP, Church RH, Surae S, Godson C, Martin F. BMP signalling: agony and antagony in the family. Trends Cell Biol 2015; 25:249-64. [DOI: 10.1016/j.tcb.2014.12.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023]
|
11
|
Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 2015; 466:55-68. [DOI: 10.1042/bj20140771] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gremlin1 has a distinct preference for which bone morphogenetic protein it binds to in kidney epithelial cells. Grem1–BMP-2 complexes are favoured over other BMPs, and this may play an important role in fibrotic kidney disease.
Collapse
|
12
|
Chen MH, Yeh YC, Shyr YM, Jan YH, Chao Y, Li CP, Wang SE, Tzeng CH, Chang PMH, Liu CY, Chen MH, Hsiao M, Huang CYF. Expression of gremlin 1 correlates with increased angiogenesis and progression-free survival in patients with pancreatic neuroendocrine tumors. J Gastroenterol 2013; 48:101-8. [PMID: 22706573 DOI: 10.1007/s00535-012-0614-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 05/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gremlin 1 (GREM1) is a bone morphogenetic protein antagonist and a novel proangiogenic factor. Our aim was to evaluate the prognostic value of GREM1 expression and GREM1-related factors in tumor-associated angiogenesis in pancreatic neuroendocrine tumors (NETs). METHODS The immunohistochemical expression of GREM1 and microvessel density (MVD) were examined in 35 patients with pancreatic NETs and then compared with other clinicopathologic characteristics, including the World Health Organization classification. RESULTS The presence of expression of GREM1 (p = 0.016) and high MVD (p = 0.020) were significant and favorable prognostic factors. Moreover, GREM1 expression was significantly associated with high MVD (p = 0.011). MVD was significantly higher in well-differentiated NETs than in well-differentiated or poorly differentiated neuroendocrine carcinomas (p < 0.001). CONCLUSIONS GREM1 expression was correlated with tumor-associated angiogenesis and was found to be a novel prognostic marker in pancreatic NETS. Our data support a tumor suppressor role of GREM1 in pancreatic NETs.
Collapse
Affiliation(s)
- Ming-Huang Chen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong St., Taipei, 112, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|