1
|
3',4'-Dihydroxyflavonol Modulates the Cell Cycle in Cancer Cells: Implication as a Potential Combination Drug in Osteosarcoma. Pharmaceuticals (Basel) 2021; 14:ph14070640. [PMID: 34358066 PMCID: PMC8308859 DOI: 10.3390/ph14070640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
New agents are demanded to increase the therapeutic options for osteosarcoma (OS). Although OS is the most common bone cancer in children and adolescents, it is considered a rare disorder. Therefore, finding adjuvant drugs has potential to advance therapy for this disease. In this study, 3′,4′-dihydroxyflavonol (DiOHF) was investigated to assess the effects in OS cellular models in combination with doxorubicin (Dox). MG-63 and U2OS human OS cells were exposed to DiOHF and Dox and tested for cell viability and growth. To elucidate the inhibitory effects of DiOHF, additional studies were conducted to assess apoptosis and cell cycle distribution, gene expression quantification of cell cycle regulators, and cytokinesis-block cytome assay to determine nuclear division rate. DiOHF decreased OS cell growth and viability in a concentration-dependent manner. Its combination with Dox enabled Dox dose reduction in both cell lines, with synergistic interactions in U2OS cells. Although no significant apoptotic effects were detected at low concentrations, cytostatic effects were demonstrated in both cell lines. Incubation with DiOHF altered cell cycle dynamics and resulted in differential cyclin and cyclin-dependent kinase expression. Overall, this study presents an antiproliferative action of DiOHF in OS combination therapy via modulation of the cell cycle and nuclear division.
Collapse
|
2
|
Liu P, Shi L, Ding Y, Luan J, Shan X, Li Q, Zhang S. MicroRNA-766 Promotes The Proliferation, Migration And Invasion, And Inhibits The Apoptosis Of Cutaneous Squamous Cell Carcinoma Cells By Targeting PDCD5. Onco Targets Ther 2020; 13:4099-4110. [PMID: 32494163 PMCID: PMC7231789 DOI: 10.2147/ott.s222821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose This study aimed to investigate the regulatory role and mechanism of microRNA-766 (miR-766) on cutaneous squamous cell carcinoma (CSCC) cells. Methods The expression of miR-766 and programmed cell death 5 (PDCD5) was detected in CSCC tissues and CSCC cell lines (A431, SCL-1 and DJM-1 cells) by qRT-RCR. The proliferation, colony-forming ability, apoptosis, migration and invasion of A431 and SCL-1 cells was measured by MTT, colony formation, flow cytometry, wound healing and transwell assay, respectively. The interaction between miR-766 and PDCD5 was detected by dual-luciferase reporter gene assay. The expression of matrix metalloproteinase 2 (MMP-2), MMP-9 and PDCD5 was measured by Western blot. In addition, A431 cells were subcutaneously injected into mice, and the tumor volume and weight were measured. Results MiR-766 was upregulated, and PDCD5 was downregulated in CSCC tissues and cells. MiR-766 significantly promoted the proliferation, migration and invasion, and inhibited the apoptosis of A431 and SCL-1 cells. MiR-766 also significantly increased the expression of MMP-2 and MMP-9 in A431 and SCL-1 cells. PDCD5 was a target gene of miR-766. PDCD5 significantly reversed the tumor-promoting effect of miR-766 on A431 and SCL-1 cells. In addition, miR-766 inhibitor inhibited the tumor growth in mice. Conclusion MiR-766 inhibitor inhibited the proliferation, migration and invasion, and promoted the apoptosis of CSCC cells via downregulating PDCD5.
Collapse
Affiliation(s)
- Pengyu Liu
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Liang Shi
- Department of Plastic Hand Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Yan Ding
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Jiaxi Luan
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Xiaojun Shan
- Department of Thyroid and Breast Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Qinghua Li
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| | - Shuhua Zhang
- Department of Hepatobiliary Surgery, Oilfields General Hospital in Daqing, Daqing City, Heilongjiang Province 163000, People's Republic of China
| |
Collapse
|
3
|
Fathizadeh H, Mirzaei H, Asemi Z. Melatonin: an anti-tumor agent for osteosarcoma. Cancer Cell Int 2019; 19:319. [PMID: 31798348 PMCID: PMC6884844 DOI: 10.1186/s12935-019-1044-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common bone tumors which consisted of malignant mesenchymal cells generating osteoid and immature bone. It has been showed that osteosarcoma is common in children and adolescents and shows high mortality rate. A variety of therapeutic approaches (i.e., resection surgery, combined with chemotherapy and radiotherapy) have been used as conventional treatments in patients with osteosarcoma. Despite several attempts to improve therapeutic response, the rate of survival for osteosarcoma has not changed during the past 3 decades. Therefore, the discovery and developing new effective therapeutic platforms are required. Along to the established anti-cancer agents, some physiological regulators such melatonin, have been emerged as new anti-cancer agents. Melatonin is an indolamine hormone which is secreted from the pineal glands during the night and acts as physiological regulator. Given that melatonin shows a wide spectrum anti-tumor impacts. Besides different biologic activities of melatonin (e.g., immunomodulation and antioxidant properties), melatonin has a crucial role in the formation of bones, and its deficiency could be directly related to bone cancers. Several in vitro and in vivo experiments evaluated the effects of melatonin on osteosarcoma and other types of bone cancer. Taken together, the results of these studies indicated that melatonin could be introduced as new therapeutic candidate or as adjuvant in combination with other anti-tumor agents in the treatment of osteosarcoma. Herein, we summarized the anti-tumor effects of melatonin for osteosarcoma cancer as well as its mechanism of action.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- 1Department of Microbiology, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- 2Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- 2Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
4
|
Gao F, Zhao M, Huang S, Zhang W, Ma Z. Clinicopathological Significance of Decreased Expression of the Tumor Inhibitor Gene PDCD5 in Osteoclastoma. Genet Test Mol Biomarkers 2019; 23:807-814. [PMID: 31638427 DOI: 10.1089/gtmb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The gene programmed cell death 5 (PDCD5) has recently been characterized as a tumor suppressor gene and is believed to be an important prognostic cancer marker; it is frequently involved in neoplastic transformation and apoptosis of tumor cells. Several studies have demonstrated a decrease or loss of expression of PDCD5 in certain tumors. However, the relevance of PDCD5 expression in human osteoclastoma and its clinicopathological significance have not been extensively studied. Methods: The aim of this study was to explore the relative transcriptional and translational expression levels of PDCD5 in 79 osteoclastoma samples using multi-modal methods of analysis. Results: Our findings showed that 52% (15/29) of osteoclastoma cases exhibited reduced PDCD5 expression at the transcriptional level, and 56% (44/79) exhibited lower PDCD5 expression at the protein level, when compared with nontumor tissue. In addition, the statistical significance of the altered PDCD5 protein expression was examined using the Campanacci grading system for osteoclastoma. More importantly, the decreased expression at the translational level was observed to have a negative association with the Ki-67 staining index. Conclusion: Based on these findings, abnormal PDCD5 expression might be an important biomarker in human osteoclastoma and may contribute to tumor progression and malignant cell proliferation.
Collapse
Affiliation(s)
- Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shanying Huang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Bone Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhe Ma
- Department of Ultrasound, Shandong University Qilu Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Wanlin W, Chun M, Juan X. [rhPDCD5 suppresses pro-inflammatory cytokine secretion and proliferation and induces apoptosis of activated lymphocytes from rats with collagen-induced arthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:627-632. [PMID: 31270039 DOI: 10.12122/j.issn.1673-4254.2019.06.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of recombinant human PDCD5 (rhPDCD5) treatment in a rat model of bovine II collagen (CII)-induced arthritis (CIA) on inflammatory cytokine secretion, proliferation and apoptosis of activated lymphocytes and explore the mechanisms of rhPDCD5-induced immunosuppression on activated lymphocytes. METHODS Female Wistar rats were randomly divided into normal control group, CIA+ ovalbumin (OVA) group, CIA+ rhTNFR: Fc group, and CIA+rhPDCD5 group. The rats in the latter 3 groups received intraperitoneal injections of OVA (14 mg/kg), rhTNFR: Fc (3.5 mg/kg) or rhPDCD5 (14 mg/kg) from day 2 to day 26 following CII injection. On day 28, the spleens of the rats were harvested for preparing single cell suspensions of splenocytes, which were activated by CII (20μg/mL) or anti-CD3 (1μg/mL)+ anti-CD28 (2μg/mL) for 48 h and 72 h. The production of interferon-γ(IFN-γ) and interleukin-17A (IL-17A) by the activated lymphocytes was determined by ELISA of the culture supernatants. The proliferation and apoptosis of the activated lymphocytes were assessed using [3H]-thymidine incorporation assay and flow cytometry, respectively. RESULTS Compared with those in CIA + OVA group, IFN-γand IL-17A secretions by the activated lymphocytes from rhPDCD5-treated CIA rats significantly decreased. RhPDCD5 treatment of the CIA rats obviously suppressed the proliferation and promoted apoptosis of the lymphocytes activated by CII or by anti-CD3 + anti-CD28. CONCLUSIONS rhPDCD5 reduces pro-inflammatory cytokine secretion, inhibits the proliferation and promotes activation-induced cell death of activated CD4 + lymphocytes to produce immunosuppression in rat models of CIA.
Collapse
Affiliation(s)
- Wang Wanlin
- Zaoyang First People's Hospital, Hubei University of Arts and Science, Xiangyang 441200, China.,Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Mao Chun
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Xiao Juan
- Laboratory of Molecular Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| |
Collapse
|
6
|
Li P, Fei H, Wang L, Xu H, Zhang H, Zheng L. PDCD5 regulates cell proliferation, cell cycle progression and apoptosis. Oncol Lett 2017; 15:1177-1183. [PMID: 29403562 DOI: 10.3892/ol.2017.7401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PDCD)5 is cloned from human leukemia cell line TF-1. PDCD5 is one of the members of the programmed cell death protein family that is frequently involved in tumor growth and apoptosis. To investigate the molecular and cellular functions of PDCD5, the present study established a PDCD5 stably overexpressing A431 cell line and examined the role of PDCD5 in cell proliferation, cell cycle progression and apoptosis. The data demonstrated that overexpression of PDCD5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis in A431 cells. The expression profiles of certain key regulators of these cellular events were further investigated, including P53, B cell lymphoma (BCL)-2, BCL-2 associated X protein (BAX) and caspase (CASP)3. The data demonstrated that at the transcript and protein levels, P53, BAX and CASP3 were all upregulated in the PDCD5 stably overexpressing A431 cells whereas BCL-2 was downregulated, indicating that PDCD5 acts as an important upstream regulator of P53, BCL-2, BAX and CASP3. The data suggest that PDCD5 regulates cell proliferation, cell cycle progression and apoptosis in A431 cells. PDCD5 may be a novel tumor suppressor gene, and may be potentially used for cancer treatment in the future.
Collapse
Affiliation(s)
- Penghui Li
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxin Fei
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Wang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Huiyu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haiyan Zhang
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
7
|
Zhang ZR, Gao MX, Yang K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med 2017; 14:805-812. [PMID: 28673003 DOI: 10.3892/etm.2017.4547] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed tumor of the bones in children and young adults. Even with conventional therapies the 5-year survival rate is ~65% in patients with OS. Considering the side effects and aggressiveness of malignant bone tumors, research is focussing on multi-targeted strategies in treatment. Cucurbitacin B, a triterpenoid compound has been demonstrated to induce apoptosis in various cancer cell types. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling cascades and mitogen activated protein kinases (MAPK) signalling cascades are critical regulators of tumorigenesis. The present study assessed the influence of cucurbitacin B on the viability and expression of MAPKs and proteins of the JAK2/STAT3 cascades in human OS cells (U-2 OS). Cucurbitacin B (20-100 µM) significantly reduced cell viability (P<0.05) and induced apoptosis, as assessed by MTT and Annexin V/propidium iodide staining, along with inhibiting cell migration. Gelatin zymography revealed supressed activities of matrix metalloproteinase (MMP-)2 and 9. Furthermore, cucurbitacin B effectively upregulated the apoptotic pathway and caused the effective inhibition of MAPK signalling and JAK2/STAT3 cascades. Multifold suppression of vascular endothelial growth factor by cucurbitacin B was also observed, indicating inhibition of angiogenesis. Thus, by downregulating major pathways-MAPK and JAK2/STAT3 and MMPs, cucurbitacin B has potent anti-proliferative and anti-metastatic effects that require further investigation with regards to cancer treatment.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- Department of Orthopedics, Zhumadian Central Hospital, Zhumadian, Henan 463600, P.R. China
| | - Ming-Xia Gao
- Department of Health Management, Dongying People's Hospital, Dongying, Shandong 257000, P.R. China
| | - Kai Yang
- Department of Joint Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
8
|
Diao X, Wang J, Zhu H, He B. Overexpression of programmed cell death 5 in a mouse model of ovalbumin-induced allergic asthma. BMC Pulm Med 2016; 16:149. [PMID: 27846830 PMCID: PMC5109699 DOI: 10.1186/s12890-016-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Programmed cell death 5 (PDCD5) was first identified as an apoptosis-promoting protein and involved in some autoimmune diseases and inflammatory processes. Our previous study demonstrated greater expression of serum PDCD5 in asthmatic patients than controls. This study aimed to further explore the significance of PDCD5 in mice with induced allergic asthma. Methods We divided 16 female mice into 2 groups: control (n = 8) and allergen (ovalbumin, OVA)-challenged mice (n = 8). The modified ovalbumin inhalation method was used to generate the allergic asthma mouse model, and the impact of OVA was assessed by histology of lung tissue and morphometry. The number of cells in bronchoalveolar lavage fluid (BALF) was detected. Pulmonary function was measured by pressure sensors. PDCD5 and active caspase-3 levels were detected. Results The expression of PDCD5 was higher with OVA challenge than for controls (p < 0.05). PDCD5 level was correlated with number of inflammatory cells in BALF and lung function. Moreover, active caspase-3 level was increased in the OVA-challenged mice (p < 0.001) and correlated with PDCD5 level (p = 0.000). Conclusions These data demonstrate an association between level of PDCD5 and asthma severity and indicate that PDCD5 may play a role in allergic asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12890-016-0317-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolin Diao
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Juan Wang
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Hong Zhu
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
9
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
10
|
Gao M, Gao W, Wang Z, Liu Y, Li Y, Wei C, Sun Y, Guo C, Zhang L, Wei Z, Wang X. The reduced PDCD5 protein is correlated with the degree of tumor differentiation in endometrioid endometrial carcinoma. SPRINGERPLUS 2016; 5:988. [PMID: 27398268 PMCID: PMC4937001 DOI: 10.1186/s40064-016-2698-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022]
Abstract
Endometrial cancer is one of the most common malignancies in the female genital tract. Programmed cell death 5 (PDCD5) is a newly identified apoptosis related gene and plays an important role in the development of some human tumors. However, the expression and clinical significance of PDCD5 in endometrial cancer have not been fully elucidated. Here, we evaluated the expression of PDCD5 in endometrioid endometrial carcinoma and control endometrium by qRT-PCR, western blot and immunohistochemistry, and analyzed the associations of PDCD5 expression with clinicopathological parameters of patients. In addition, we detected the expression of PDCD5 in control endometrial glandular epithelial cells and endometrioid endometrial carcinoma-derived cell line KLE by immunocytochemistry. The results showed that PDCD5 protein mainly expressed in the cytoplasm of glandular epithelial cells and endometrial carcinoma cells, and there was a low level of PDCD5 expression in the nuclei of the above cells. Furthermore, PDCD5 protein level was significantly lower in endometrial carcinoma samples than that in control endometrium. The decreased PDCD5 expression was correlated with the tumor differentiation degree. It is clear that PDCD5 protein expression was lower in middle and low differentiated endometrial carcinoma compared with control endometrium and high differentiated endometrial carcinoma. However, there were no significant differences of PDCD5 expression between the proliferative phase and the secretory phase of control endometrium, as well as between high differentiated endometrial carcinoma and controls. The results were verified in control glandular epithelial cells and KLE cells by immunocytochemistry. Therefore, PDCD5 may play a key role in the pathogenesis of endometrial cancer and may be a novel target for diagnosis and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Meng Gao
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Wei Gao
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China.,Department of Clinical Laboratory Services, Linyi People's Hospital, Linyi, Shandong People's Republic of China
| | - Zhanying Wang
- Department of Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong People's Republic of China
| | - Yanping Liu
- Department of Gynecology and Obstetrics, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Yue Li
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chao Wei
- Department of Pathology, The Fourth Hospital of Jinan City, Jinan, Shandong People's Republic of China
| | - Yingshuo Sun
- Department of Gynecology and Obstetrics, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Chun Guo
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Lining Zhang
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Zengtao Wei
- Department of Gynecology and Obstetrics, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| | - Xiaoyan Wang
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan, 250012 Shandong People's Republic of China
| |
Collapse
|
11
|
Xing YN, Zhang JY, Xu HM. The roles of serum CXCL16 in circulating Tregs and gastrointestinal stromal tumor cells. Onco Targets Ther 2016; 9:3939-49. [PMID: 27418838 PMCID: PMC4935088 DOI: 10.2147/ott.s105245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) are the most common sarcomas of the digestive system. Abnormal expression of CXCL16 and its sole receptor, CXCR6, has been demonstrated in many cancers. However, no studies have shown the relationship between CXCL16 or CXCR6 expression and GIST. In this study, we detected CXCL16 and CXCR6 expression in GIST patient samples by using immunohistochemistry analysis and Western blot analysis. Serum CXCL16 level was determined by using enzyme-linked immunosorbent assay. Circulating Tregs were isolated by using flow cytometry. MTT assay, cell cycle assay, and transwell assay were used to test the effects of recombinant CXCL16 on Tregs and GIST cells in vitro. The levels of CXCL16 and CXCR6 protein were higher in cancer tissues than in normal tissues. Serum CXCL16 level and circulating Tregs were higher in GIST patients than that in the healthy volunteers. CXCL16, CXCR6, serum CXCL16, and circulating Tregs were significantly associated with a decreased survival time of patients. Relative to control cells, high concentration recombinant CXCL16 treated Tregs and GIST cells exhibited lower proliferation and mobility rates as assessed by MTT assay and transwell assay, respectively. Taken together, CXCL16 was observed to mediate the inhibitory effects in Tregs and GIST cells, and these involved suppression of the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Ya-Nan Xing
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Liaoning, People's Republic of China
| | - Jun-Yan Zhang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Liaoning, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Wang D, Wang W, Song CL, Xia P. The roles of serum PDCD5 in circulating CD133 positive cells of the patients with gastric cancer. Tumour Biol 2016; 37:11799-11804. [DOI: 10.1007/s13277-016-5040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
|
13
|
The tumor promoting roles of HSP60 and HIF2α in gastric cancer cells. Tumour Biol 2016; 37:9849-54. [DOI: 10.1007/s13277-015-4783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
|
14
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
15
|
Altındal DÇ, Gümüşderelioğlu M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J Microencapsul 2015; 33:53-63. [PMID: 26605784 DOI: 10.3109/02652048.2015.1115901] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.
Collapse
Affiliation(s)
- Damla Çetin Altındal
- a Chemical Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
| | | |
Collapse
|
16
|
Wang W, Song XW, Bu XM, Zhang N, Zhao CH. PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cell Oncol (Dordr) 2015; 39:129-37. [PMID: 26589942 DOI: 10.1007/s13402-015-0258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported. METHODS The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays. RESULTS We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3. CONCLUSIONS Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xian-Min Bu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Ning Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
17
|
Yang XR, Xiong Y, Duan H, Gong RR. Identification of genes associated with methotrexate resistance in methotrexate-resistant osteosarcoma cell lines. J Orthop Surg Res 2015; 10:136. [PMID: 26337976 PMCID: PMC4558632 DOI: 10.1186/s13018-015-0275-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/09/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to better understand the mechanisms underlying methotrexate (MTX)-resistance in osteosarcoma. METHODS The raw transcription microarray data GSE16089 collected from three MTX-sensitive osteosarcoma (Saos-2) cell samples and three MTX-resistant osteosarcoma (Saos-2) cell samples were downloaded from Gene Expression Omnibus. After data processing, the differentially expressed genes (DEGs) were identified. Next, DEGs were submitted to DAVID for functional annotation based on the GO (Gene Ontology) database, as well as pathway enrichment analysis based on the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. Transcription factors (TFs) and tumor-associated genes (TAGs) were identified with reference to TRANSFAC and TAG, and TSGene databases, respectively. The protein-protein interaction (PPI) network of the gene-encoded products was constructed, and the subnetwork with the highest score was also detected using Search Tool for the Retrieval of Interacting Genes and BioNet package. RESULTS A total of 690 up-regulated genes and down-regulated 626 genes were identified. Up-regulated DEGs (including AARS and PARS2) were associated to transfer RNA (tRNA) aminoacylation while down-regulated DEGs (including AURKA, CCNB1, CCNE2, CDK1, and CENPA) were correlated with mitotic cell cycle. Totally, 13 TFs (including HMGB2), 13 oncogenes (including CCNA2 and AURKA), and 19 tumor suppressor genes (TSGs) (including CDKN2C) were identified from the down-regulated DEGs. Ten DEGs, including nine down-regulated genes (such as AURKA, CDK1, CCNE2, and CENPA) and one up-regulated gene (GADD45A), were involved in the highest score subnetwork. CONCLUSION AARS, AURKA, AURKB, CENPA, CCNB1, CCNE2, and CDK may contribute to MTX resistance via aminoacyl-tRNA biosynthesis pathway, cell cycle pathway, or p53 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Rong Yang
- Department of Operation Room, West China Hospital, Sichuan University, No 37, Guo Xue Lane, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Yan Xiong
- Department of Orthopedics, West China Hospital, Sichuan University, No 37, Guo Xue Lane, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Hong Duan
- Department of Orthopedics, West China Hospital, Sichuan University, No 37, Guo Xue Lane, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ren-Rong Gong
- Department of Operation Room, West China Hospital, Sichuan University, No 37, Guo Xue Lane, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
18
|
Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation 2015; 12:117. [PMID: 26068104 PMCID: PMC4474568 DOI: 10.1186/s12974-015-0338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background In multiple sclerosis (MS) and its widely used animal model, experimental autoimmune encephalomyelitis (EAE), autoreactive T cells contribute importantly to central nervous system (CNS) tissue damage and disease progression. Promoting apoptosis of autoreactive T cells may help eliminate cells responsible for inflammation and may delay disease progression and decrease the frequency and severity of relapse. Programmed cell death 5 (PDCD5) is a protein known to accelerate apoptosis in response to various stimuli. However, the effects of recombinant human PDCD5 (rhPDCD5) on encephalitogenic T cell-mediated inflammation remain unknown. Methods We examined the effects of intraperitoneal injection of rhPDCD5 (10 mg/kg) on EAE both prophylactically (started on day 0 post-EAE induction) and therapeutically (started on the onset of EAE disease at day 8), with both of the treatment paradigms being given every other day until day 25. Repeated measures two-way analysis of variance was used for statistical analysis. Results We showed that the anti-inflammatory effects of rhPDCD5 were due to a decrease in Th1/Th17 cell frequency, accompanied by a reduction of proinflammatory cytokines, including IFN-γ and IL-17A, and were observed in both prophylactic and therapeutic regimens of rhPDCD5 treatment in EAE mice. Moreover, rhPDCD5-induced apoptosis of myelin-reactive CD4+ T cells, along with the upregulation of Bax and downregulation of Bcl-2, and with activated caspase 3. Conclusions Our data demonstrate that rhPDCD5 ameliorates the autoimmune CNS disease by inhibiting Th1/Th17 differentiation and inducing apoptosis of predominantly pathogenic T cells. This study provides a novel mechanism to explain the effects of rhPDCD5 on neural inflammation. The work represents a translational demonstration that rhPDCD5 has prophylactic and therapeutic properties in a model of multiple sclerosis.
Collapse
Affiliation(s)
- Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Wenwei Liu
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing, 100191, China.
| | - Wenbin Deng
- Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
19
|
Zhang Y, Liu H, Cui M, Liu J, Yi R, Niu Y, Chen T, Zhao Y. Effect of the HBV whole-X gene on the expression of hepatocellular carcinoma associated proteins. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:335-43. [PMID: 25311406 DOI: 10.1016/j.jmii.2014.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The hepatitis B virus (HBV) pre-X gene resides upstream of the HBV X gene, and together they form the HBV whole-X gene. Although it has been evident that the HBV whole-X protein is involved in the development of hepatocellular carcinoma, its biological role and molecular mechanism remain largely unknown. METHODS In this study, we subcloned the HBV whole-X gene and constructed a HBV whole-X expressing vector. After transfection of the HBV whole-X gene into HL-7702 cells, the profile of the differential cellular protein composition in the cells was analyzed by using two-dimensional electrophoresis coupled to matrix-assisted laser desorption/ionization-time of flight mass spectrometry. RESULTS The results showed that 18 major proteins were differentially expressed in the cells transfected with or without the HBV whole-X gene. The expression of these genes was further confirmed by reverse transcription-polymerase chain reaction and Western blot analysis. CONCLUSION Our findings provide a new insight into the investigation of the pathological role that the HBV whole-X gene plays in the development of hepatocellular carcinoma and may lead to the design of novel strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Hongli Liu
- Shaanxi Provincial Infectious Diseases Hospital, Xi'an 710061, Shaanxi Province, China; Xi'an Eighth Hospital Affiliated to Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi Province, China
| | - Meiling Cui
- Zhengzhou Sixth People's Hospital, Zhengzhou 450061, He'nan Province, China
| | - Jinfeng Liu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Ruitian Yi
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yinghua Niu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Tianyan Chen
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| |
Collapse
|
20
|
Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem 2013; 289:4490-502. [PMID: 24375412 DOI: 10.1074/jbc.m113.542159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.
Collapse
Affiliation(s)
- Christopher M Tracy
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu F, Wu K, Zhao M, Qin Y, Xia M. Expression and clinical significance of the programmed cell death 5 gene and protein in laryngeal squamous cell carcinoma. J Int Med Res 2013; 41:1838-47. [PMID: 24265335 DOI: 10.1177/0300060513498021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To determine the expression of the gene programmed cell death 5 ( PDCD5) and its protein PDCD5 in laryngeal squamous cell carcinoma and to analyse possible correlations with clinicopathological parameters. Methods PDCD5 mRNA expression was assessed using reverse transcription–polymerase chain reaction and expression of PDCD5 protein was studied using Western blot analysis and immunohistochemistry in laryngeal squamous cell carcinoma and morphologically normal para-carcinoma tissue. Results A total of 41 laryngeal squamous cell carcinoma and 29 normal para-carcinoma tissue specimens were examined. Expression of both PDCD5 mRNA and PDCD5 protein was significantly reduced in laryngeal squamous cell carcinoma compared with normal tissue. Expression was correlated with clinical stage and histological grade, but was not associated with age, sex, location of primary tumour or the presence of lymph node metastases. Conclusion The expression of PDCD5 and its protein were shown to be reduced in laryngeal squamous cell carcinoma. The functional importance of PDCD5 as a regulating agent in cell apoptosis suggests that it may play a key role in tumour pathogenesis and development.
Collapse
Affiliation(s)
- Fenglei Xu
- Department of Otorhinolaryngology – Head and Neck Surgery, Jinling Hospital of Nanjing University Medical School, Jiangsu, China
| | - Kai Wu
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Yejun Qin
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Ming Xia
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Shandong, China
| |
Collapse
|
22
|
Wang L, Wang C, Su B, Song Q, Zhang Y, Luo Y, Li Q, Tan W, Ma D, Wang L. Recombinant human PDCD5 protein enhances chemosensitivity of breast cancer in vitro and in vivo. Biochem Cell Biol 2013; 91:526-31. [PMID: 24219296 DOI: 10.1139/bcb-2013-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resistance to paclitaxel is common for treatment of breast cancer. Programmed cell death 5 (PDCD5) accelerates apoptosis in different cell types in response to various stimuli; moreover PDCD5 has been shown to be down-regulated in many tumors. In this study, protein levels of PDCD5 were found to be up-regulated in paclitaxel-treated MDA-MB-231 breast cancer cells. MTT, CCK-8, and clonogenic assays have shown that recombinant human PDCD5 (rhPDCD5) alone could not produce an obvious growth inhibition. However, upon paclitaxel triggering apoptosis, rhPDCD5 protein potentiated chemotherapeutic drugs-induced growth arrest in MDA-MB-231, SK-BR-3, and ZR-75-1 breast cancer cells. In vivo, we use a human breast cancer xenograft model to study. We found that rhPDCD5 dramatically improves the antitumor effects of paclitaxel treatment by intraperitoneal administration. These data suggest that rhPDCD5 has the potential to use as a therapeutic agent to enhance the paclitaxel sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Lanlan Wang
- a Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiao J, Liu C, Li G, Peng S, Hu J, Qu L, Lv P, Zhang Y, Ma D, Chen Y. PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. J Autoimmun 2013; 47:34-44. [PMID: 24012345 DOI: 10.1016/j.jaut.2013.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Maintenance of FOXP3 protein expression is crucial for differentiation and maturation of regulatory T (Treg) cells, which play important roles in immune homeostasis and immune tolerance. We demonstrate here that PDCD5 interacts with FOXP3, increases acetylation of FOXP3 in synergy with Tip60 and enhances the repressive function of FOXP3. In PDCD5 transgenic (PDCD5tg) mice, overexpression of PDCD5 enhanced the level of FOXP3 protein and percentage of CD4(+)CD25(+)FOXP3(+) cells. Naïve CD4(+) T cells from PDCD5tg mice were more sensitive to TGF-β-induced Treg polarization and expansion. These induced Tregs retained normal suppressive function in vitro. Severity of experimentally-induced autoimmune encephalomyelitis (EAE) in PDCD5tg mice was significantly reduced relative to that of wild-type mice. The beneficial effect of PDCD5 likely resulted from increases of Treg cell frequency, accompanied by a reduction of the predominant pathogenic Th17/Th1 response. Activation-induced cell death enhanced by PDCD5 was also linked to this process. This is the first report revealing that PDCD5 activity in T cells suppresses autoimmunity by modulating Tregs. This study suggests that PDCD5 serves as a guardian of immunological functions and that the PDCD5-FOXP3-Treg axis may be a therapeutic target for autoimmunity.
Collapse
Affiliation(s)
- Juan Xiao
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China; Peking University Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cheng Y, Cai L, Jiang P, Wang J, Gao C, Feng H, Wang C, Pan H, Yang Y. SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 2013; 715:219-29. [DOI: 10.1016/j.ejphar.2013.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 01/20/2023]
|
25
|
FU DAZHI, CHENG YING, HE HUI, LIU HAIYANG, LIU YONGFENG. PDCD5 expression predicts a favorable outcome in patients with hepatocellular carcinoma. Int J Oncol 2013; 43:821-30. [DOI: 10.3892/ijo.2013.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/10/2013] [Indexed: 11/05/2022] Open
|
26
|
Liu Y, Wang L, Wu Y, Lv C, Li X, Cao X, Yang M, Feng D, Luo Z. Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology 2013; 304:120-31. [DOI: 10.1016/j.tox.2012.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/29/2012] [Accepted: 12/31/2012] [Indexed: 12/29/2022]
|
27
|
FU DAZHI, CHENG YING, HE HUI, LIU HAIYANG, LIU YONGFENG. Recombinant human PDCD5 exhibits an antitumor role in hepatocellular carcinoma cells via clathrin-dependent endocytosis. Mol Med Rep 2012; 12:8135-40. [DOI: 10.3892/mmr.2015.4489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
|
28
|
GAO FEI, DING LINGLING, ZHAO MIAOQING, QU ZHONGHUA, HUANG SHANYING, ZHANG LINING. The clinical significance of reduced programmed cell death 5 expression in human gastrointestinal stromal tumors. Oncol Rep 2012; 28:2195-9. [DOI: 10.3892/or.2012.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/23/2012] [Indexed: 11/06/2022] Open
|