1
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
2
|
Sun H, Sun R, Hua Y, Lu Q, Shao X. An update on the role of thioredoxin-interacting protein in diabetic kidney disease: A mini review. Front Med (Lausanne) 2023; 10:1153805. [PMID: 37144033 PMCID: PMC10151556 DOI: 10.3389/fmed.2023.1153805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) was first isolated from Vitamin D3-exposed HL60 cells. TXNIP is the main redox-regulating factor in various organs and tissues. We begin with an overview of the TXNIP gene and protein information, followed by a summary of studies that have shown its expression in human kidneys. Then, we highlight our current understanding of the effect of TXNIP on diabetic kidney disease (DKD) to improve our understanding of the biological roles and signal transduction of TXNIP in DKD. Based on the recent review, the modulation of TXNIP may be considered as a new target in the management of DKD.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Rong Sun
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Yulin Hua
- The First Clinical Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Ophthalmology, Changshu No. 1 People’s Hospital, Suzhou, Jiangsu, China
- Qianyi Lu,
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xinyu Shao,
| |
Collapse
|
3
|
Lee S, Choi S, Park SH, Im GJ, Chang J. Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression. Curr Issues Mol Biol 2022; 45:286-310. [PMID: 36661507 PMCID: PMC9857533 DOI: 10.3390/cimb45010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Ototoxicity is the drug-induced damage of the inner ear, causing bilateral irreversible sensorineural hearing loss. Cisplatin is a widely used chemotherapeutic agent which causes ototoxicity as its side effect. Pretreatment with metformin prior to the application of cisplatin significantly decreased the late apoptosis and attenuated the cisplatin-induced increase in ROS. To understand the molecular mechanisms that are involved in the preventive effect of metformin, we evaluated the change of gene expression induced by cisplatin at several different time points (0 h, 6 h, 15 h, 24 h and 48 h) and the alteration of gene expression according to pretreatment with metformin in HEI-OC1 cells through microarray analysis. Cisplatin exposure induced a total of 89 DEGs (differentially expressed genes) after 6 h, with a total of 433 DEGs after 15 h, a total of 941 DEGs after 24 h, and a total of 2764 DEGs after 48 h. When cells were pretreated with metformin for 24 h, we identified a total of 105 DEGs after 6 h of cisplatin exposure, a total of 257 DEGs after 15 h, a total of 1450 DEGs after 24 h, and a total of 1463 DEGs after 48 h. The analysis was performed based on the gene expression, network analyses, and qRT-PCR, and we identified several genes (CSF2, FOS, JUN, TNFα, NFκB, Txnip, ASK1, TXN2, ATF3, TP53, IL6, and IGF1) as metformin-related preventive biomarkers in cisplatin ototoxicity.
Collapse
Affiliation(s)
- Sehee Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sun Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Seok Hyun Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| | - Gi Jung Im
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jiwon Chang
- Department of Otorhinolaryngology-Head & Neck Surgery, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
- Correspondence: or ; Tel.: +82-2-6960-1270
| |
Collapse
|
4
|
Nutraceuticals/Drugs Promoting Mitophagy and Mitochondrial Biogenesis May Combat the Mitochondrial Dysfunction Driving Progression of Dry Age-Related Macular Degeneration. Nutrients 2022; 14:nu14091985. [PMID: 35565950 PMCID: PMC9104458 DOI: 10.3390/nu14091985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria—inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with “healthy” new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.
Collapse
|
5
|
van Laar A, Grootaert C, Van Nieuwerburgh F, Deforce D, Desmet T, Beerens K, Van Camp J. Metabolism and Health Effects of Rare Sugars in a CACO-2/HepG2 Coculture Model. Nutrients 2022; 14:nu14030611. [PMID: 35276968 PMCID: PMC8839664 DOI: 10.3390/nu14030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide and is impacted by an unhealthy diet with excessive calories, although the role of sugars in NAFLD etiology remains largely unexplored. Rare sugars are natural sugars with alternative monomers and glycosidic bonds, which have attracted attention as sugar replacers due to developments in enzyme engineering and hence an increased availability. We studied the impact of (rare) sugars on energy production, liver cell physiology and gene expression in human intestinal colorectal adenocarcinoma (Caco-2) cells, hepatoma G2 (HepG2) liver cells and a coculture model with these cells. Fat accumulation was investigated in the presence of an oleic/palmitic acid mixture. Glucose, fructose and galactose, but not mannose, l-arabinose, xylose and ribose enhanced hepatic fat accumulation in a HepG2 monoculture. In the coculture model, there was a non-significant trend (p = 0.08) towards higher (20–55% increased) median fat accumulation with maltose, kojibiose and nigerose. In this coculture model, cellular energy production was increased by glucose, maltose, kojibiose and nigerose, but not by trehalose. Furthermore, glucose, fructose and l-arabinose affected gene expression in a sugar-specific way in coculture HepG2 cells. These findings indicate that sugars provide structure-specific effects on cellular energy production, hepatic fat accumulation and gene expression, suggesting a health potential for trehalose and l-arabinose, as well as a differential impact of sugars beyond the distinction of conventional and rare sugars.
Collapse
Affiliation(s)
- Amar van Laar
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Charlotte Grootaert
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Dieter Deforce
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (F.V.N.); (D.D.)
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (T.D.); (K.B.)
| | - John Van Camp
- Department of Food Technology, Safety & Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.v.L.); (C.G.)
- Correspondence:
| |
Collapse
|
6
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
7
|
Chu Y, Widjaja J, Hong J, Dolo PR, Zhu X, Yao L. Effect of Sleeve Gastrectomy on Plasma Thioredoxin-Interacting Protein (TXNIP). Obes Surg 2021; 31:4829-4835. [PMID: 34370159 DOI: 10.1007/s11695-021-05649-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE The mechanism in which bariatric surgery induces diabetes remission is still poorly understood. This study proposes Thioredoxin-interacting protein (TXNIP) as a possible factor for the anti-diabetic mechanism after sleeve gastrectomy (SG). MATERIALS AND METHODS Plasma TXNIP level in obesity patients with diabetes (T2D, N = 20), obesity patients without diabetes (NDO, N = 20), and patients without obesity and diabetes (lean, N = 10) were assessed before surgery and at 1 and 12 months after SG. RESULTS Preoperative TXNIP level was significantly higher in T2D (196.4 ± 76.0 pg/ml) and NDO (149.7 ± 94.1 pg/ml) patients when compared with lean patients (98.7 ± 22.7 pg/ml) (p-value < 0.05). At 1 month and 12 months postoperatively, the TXNIP levels were reduced significantly from the preoperative levels in the T2D and NDO patients (p-value < 0.05). Before surgery, a correlation between TXNIP and fasting blood glucose (FBG) (r2 = 0.1585, p-value = 0.0109), HbA1C (r2 = 0.2120, p-value = 0.0028), and insulin (r2 = 0.1217, p-value = 0.0274) was observed. At 12 months after surgery, the reduction of TXNIP was also correlated with the degree of FBG (r2 = 0.1038, p-value = 0.0426), HbA1C (r2 = 0.2459, p-value = 0.0011), and insulin (r2 = 0.1365, p-value = 0.0190) reduction. CONCLUSION Plasma TXNIP level is elevated in obesity patients with/without diabetes. SG resulted in a significant reduction of plasma TXNIP level which is correlated with the degree of FBG, HbA1C, and insulin reduction. Regulation of TXNIP could be part of the mechanism of diabetes remission after bariatric surgery.
Collapse
Affiliation(s)
- Yuxiao Chu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Jason Widjaja
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Jian Hong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Ponnie Robertlee Dolo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Xiaocheng Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Libin Yao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| |
Collapse
|
8
|
Pushkarev VV, Sokolova LK, Kovzun OI, Pushkarev VM, Tronko MD. The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasomes in the Development of Atherosclerosis. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Noblet B, Benhamed F, O-Sullivan I, Zhang W, Filhoulaud G, Montagner A, Polizzi A, Marmier S, Burnol AF, Guilmeau S, Issad T, Guillou H, Bernard C, Unterman T, Postic C. Dual regulation of TxNIP by ChREBP and FoxO1 in liver. iScience 2021; 24:102218. [PMID: 33748706 PMCID: PMC7966993 DOI: 10.1016/j.isci.2021.102218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/17/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
TxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic β cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction.
Collapse
Affiliation(s)
- Benedicte Noblet
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - Fadila Benhamed
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - InSug O-Sullivan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
- Medical Research Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Wenwei Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
- Medical Research Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Gaëlle Filhoulaud
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - Alexandra Montagner
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Arnaud Polizzi
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Solenne Marmier
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | | | - Sandra Guilmeau
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | | | - Terry Unterman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
- Medical Research Service, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, 75014 Paris, France
| |
Collapse
|
10
|
Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook. Int J Mol Sci 2021; 22:ijms22052754. [PMID: 33803178 PMCID: PMC7963165 DOI: 10.3390/ijms22052754] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.
Collapse
|
11
|
Xie X, Bai G, Liu H, Zhang L, He Y, Qiang D, Zou X. Early Predictors in the Onset of Type 2 Diabetes at Different Fasting Blood Glucose Levels. Diabetes Metab Syndr Obes 2021; 14:1485-1492. [PMID: 33833539 PMCID: PMC8020326 DOI: 10.2147/dmso.s301352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE This study investigates the possible roles and potential prediction ability of metabolic parameters in the early development of T2D by detecting their serum levels at different fasting blood glucose (FBG) levels. METHODS The subjects were included and divided into normal glucose tolerance (NGT), prediabetes (PD), and T2Dsubgroups. Apart from detecting the levels of routine biochemical parameters, fasting serum insulin (FINS), 25(OH)D, thioredoxin-interacting protein (TXNIP), thioredoxin (TRX), and NOD-like receptor family, pyrin domain-containing 3 (NLRP3) were detected. β-cell dysfunction (HOMA-β) and insulin resistance (HOMA-IR) were assessed by homeostasis model assessment. Both univariate and multivariate logistic regression analyses were used to estimate the risk of metabolic parameters, and their optimal cut-off values were obtained in the receiver operating characteristic (ROC) curve analysis and the Youden index. RESULTS Among the 207 subjects, aged from 20 to 60 years (44.62+12.92) contain 118 males and 89 females. There was a significantly lower trend of TRX, HOMA-β, and 25(OH)D following the higher FBG level among these three subgroups, while a significantly higher trend of all the other metabolic parameters. The multivariate analysis showed that subjects with higher values of TRX, HOMA-β, and 25(OH)D had a significantly lower risk for patients to be diagnosed as PD (aOR: 0.945, 0.961, and 0.543) and T2D (aOR: 0.912, 0.947, 0.434). Under the reliable 95% CI, TXNIP with a cut-off value of 119.27 showed the highest AUC value, sensitivity, and specificity (AUC: 0.981, 95% CI: 0.8524-0.9839, 91.49%, and 83.33%) to diagnose PD. FINS with a cut-off value of 28.1 also showed the highest ones (AUC=0.9872, 95% CI: 0.9753-0.9992, 100%, and 92.91%) to diagnose T2D. CONCLUSION Early prediction of T2D is vital for timely intervention. Based on the FBG ≥100.8 mg/dl, the results provide evidence that 25(OH)D might be the protective factor in the early development of T2D. Besides, TXNIP and FINS might be the predictor for PD and T2D, respectively.
Collapse
Affiliation(s)
- Xiaomin Xie
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
- Correspondence: Xiaomin Xie Department of Endocrinology, The First People’s Hospital of Yinchuan, 2 Liqun Street, Xingqing District, Yinchuan, 750001, Ningxia, People’s Republic of ChinaTel +86 13895189599 Email
| | - Guirong Bai
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Huili Liu
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Li Zhang
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - YanTing He
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Dan Qiang
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Xiaoyan Zou
- Department of Endocrinology, The First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| |
Collapse
|
12
|
Jia Y, Cui R, Wang C, Feng Y, Li Z, Tong Y, Qu K, Liu C, Zhang J. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol 2020; 32:101534. [PMID: 32330868 PMCID: PMC7178548 DOI: 10.1016/j.redox.2020.101534] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a life-threatening vascular emergency and has long been a disturbing problem for surgeons. Oxidative stress is considered a vital factor in I/R injury. Metformin has anti-oxidative properties and protects against I/R injury. The present study aimed to investigate whether Metformin protects against intestinal I/R injury and reveal the protective mechanism of Metformin. I/R injury was induced in mice by temporary superior mesenteric artery occlusion, and Caco-2 cells were subjected to OGD/R to establish an in vitro model. Different doses of Metformin were administered in vivo and in vitro. We found that I/R injury led to intestinal barrier disruption and cell death by examining histopathological results and the intestinal barrier index, including TER, tight junction proteins and serum biomarkers. We confirmed the existence of pyroptosis in intestinal I/R injury. Moreover, we confirmed the role of pyroptosis in intestinal I/R injury by silencing the gasdermin D (GSDMD). Then, we confirmed that Metformin treatment protected barrier function against intestinal I/R injury and reduced oxidative stress and the inflammatory response. Importantly, Metformin reduced pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and the N-terminus of GSDMD. Knocking down the GSDMD could reversed the protective effects of Metformin, which showed pyroptosis was one of the major cell death pathways controlled by Metformin treatment in setting of intestinal I/R injury. We also discovered that Metformin suppressed the expression of TXNIP and the interaction between TXNIP and NLRP3. We performed siRNA knockdown and found that the protective effects were abolished, which further confirmed our findings. In conclusion, we believe that Metformin protects against intestinal I/R injury in a TXNIP-NLRP3-GSDMD-dependent manner. Pyroptosis plays an important role in intestinal I/R injury. Metformin protects against intestinal I/R injury in mice. Metformin protects Caco-2 cells subjected to OGD/R. Metformin inhibits pyroptosis, inflammation and oxidative stress during I/R injury. Metformin exerts protective effect through TXNIP-NLRP3-GSDMD pathway.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yang Feng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Northwest University, Xi'an NO.3 Hospital, Xi'an, Shaanxi, 710021, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, 710068, China
| | - Yingmu Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
13
|
Park SH, Kang MA, Moon YJ, Jang KY, Kim JR. Metformin coordinates osteoblast/osteoclast differentiation associated with ischemic osteonecrosis. Aging (Albany NY) 2020; 12:4727-4741. [PMID: 32045366 PMCID: PMC7138543 DOI: 10.18632/aging.102796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/12/2020] [Indexed: 01/22/2023]
Abstract
In this study, we aimed to identify a candidate drug that can activate endogenous Angiopoietin 1 (Ang1) expression via drug repositioning as a pharmacological treatment for avascular osteonecrosis. After incubation with 821 drugs from the Food and Drug Administration (FDA)-approved drug library, Ang1 expression in U2OS cell culture media was examined by ELISA. Metformin, the first-line medication for treatment of type 2 diabetes, was selected as a candidate for in vitro and in vivo experimental evaluation. Ang1 was induced, and alkaline phosphatase activity was increased by metformin treatment in U2OS and MG63 cells. Wound healing and migration assay showed increased osteoblastic cell mobility by metformin treatment in U2OS and MG63 cells. Metformin upregulated expression of protein markers for osteoblastic differentiation in U2OS and MG63 cells but inhibited osteoclastic differentiation in Raw264.7 cells. Metformin (25 mg/kg) protected against ischemic necrosis in the epiphysis of the rat femoral head by maintaining osteoblast/osteocyte function and vascular density but inhibiting osteoclast activity in the necrotic femoral head. These findings provide novel insight into the specific biomarkers that are targeted and regulated by metformin in osteoblast differentiation and contribute to understanding the effects of these FDA-approved small-molecule drugs as novel therapeutics for ischemic osteonecrosis.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Korea
| | - Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam, Korea
| | - Young Jae Moon
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Korea
| |
Collapse
|
14
|
Tang G, Duan F, Li W, Wang Y, Zeng C, Hu J, Li H, Zhang X, Chen Y, Tan H. Metformin inhibited Nod-like receptor protein 3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE -/- mice. Biomed Pharmacother 2019; 119:109410. [PMID: 31518877 DOI: 10.1016/j.biopha.2019.109410] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
AIMS The present study aimed to investigate the effect of metformin on diabetes-accelerated atherosclerosis and whether Nod-like receptor protein 3 (NLRP3) inflammasome is a target for metformin. MATERIALS AND METHODS ApoE-/- male mice were divided randomly into control, streptozocin-induced diabetes mellitus and metformin groups. Metabolic parameters, atherosclerotic lesion, activation of NLRP3 inflammasomes and related signaling pathways were detected. THP-1-differentiated macrophages were used in in vitro experiments. RESULTS Compared with control mice, increased plasma lipids and proinflammatory interleukin-1β, aggravated macrophage infiltration into the atherosclerotic lesion, and accelerated development of atherosclerosis were observed in diabetic mice, which were associated with the activation of NLRP3 inflammasomes and dysregulation of thioredoxin-1 and thioredoxin-interacting protein. Treatment with metformin alleviated diabetes-induced metabolic disorders and atherosclerosis, as well as NLRP3 inflammasomes activation and dysregulation of thioredoxin-1/thioredoxin-interacting protein. In vitro experiments showed that high glucose induced the accumulation of reactive oxygen species and activated NLRP3 inflammasomes, which was significantly suppressed by treatment with metformin or antioxidant N-acetyl-L-cysteine. Moreover, Compound C, an inhibitor of adenosine 5'-monophosphate-activated protein kinase (AMPK), blocked the anti-inflammatory effect of metformin, indicating that metformin inhibited high glucose-induced NLRP3 inflammasomes activation through AMPK activation. Moreover, high glucose decreased thioredoxin-1 expression and increased thioredoxin-interacting protein expression, which was also reversed by metformin. CONCLUSIONS Metformin inhibited NLRP3 inflammasomes activation and suppressed diabetes-accelerated atherosclerosis in apoE-/- mice, which at least partially through activation of AMPK and regulation of thioredoxin-1/thioredoxin-interacting protein.
Collapse
Affiliation(s)
- Ge Tang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weixuan Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiqin Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyu Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuanhong Zhang
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanming Chen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, 510630, China.
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Laboratory Animal Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
15
|
Schulten HJ, Bakhashab S. Meta-Analysis of Microarray Expression Studies on Metformin in Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20133173. [PMID: 31261735 PMCID: PMC6650866 DOI: 10.3390/ijms20133173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated that metformin (MTF) acts with variable efficiency as an anticancer agent. The pleiotropic anticancer effects of MTF on cancer cells have not been fully explored yet. By interrogating the Gene Expression Omnibus (GEO) for microarray expression data, we identified eight eligible submissions, representing five different studies, that employed various conditions including different cell lines, MTF concentrations, treatment durations, and cellular components. A compilation of the data sets of 13 different conditions contained 443 repeatedly up- and 387 repeatedly down-regulated genes; the majority of these 830 differentially expressed genes (DEGs) were associated with higher MTF concentrations and longer MTF treatment. The most frequently upregulated genes include DNA damage inducible transcript 4 (DDIT4), chromodomain helicase DNA binding protein 2 (CHD2), endoplasmic reticulum to nucleus signaling 1 (ERN1), and growth differentiation factor 15 (GDF15). The most commonly downregulated genes include arrestin domain containing 4 (ARRDC4), and thioredoxin interacting protein (TXNIP). The most significantly (p-value < 0.05, Fisher’s exact test) overrepresented protein class was entitled, nucleic acid binding. Cholesterol biosynthesis and other metabolic pathways were specifically affected by downregulated pathway molecules. In addition, cell cycle pathways were significantly related to the data set. Generated networks were significantly related to, e.g., carbohydrate and lipid metabolism, cancer, cell cycle, and DNA replication, recombination, and repair. A second compilation comprised genes that were at least under one condition up- and in at least another condition down-regulated. Herein, the most frequently deregulated genes include nuclear paraspeckle assembly transcript 1 (NEAT1) and insulin induced gene 1 (INSIG1). The most significantly overrepresented protein classes in this compilation were entitled, nucleic acid binding, ubiquitin-protein ligase, and mRNA processing factor. In conclusion, this study provides a comprehensive list of deregulated genes and biofunctions related to in vitro MTF application and individual responses to different conditions. Biofunctions affected by MTF include, e.g., cholesterol synthesis and other metabolic pathways, cell cycle, and DNA replication, recombination, and repair. These findings can assist in defining the conditions in which MTF exerts additive or synergistic effects in cancer treatment.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
16
|
Skórzyńska-Dziduszko KE, Kimber-Trojnar Ż, Patro-Małysza J, Stenzel-Bembenek A, Oleszczuk J, Leszczyńska-Gorzelak B. Heat Shock Proteins as a Potential Therapeutic Target in the Treatment of Gestational Diabetes Mellitus: What We Know so Far. Int J Mol Sci 2018; 19:ijms19103205. [PMID: 30336561 PMCID: PMC6213996 DOI: 10.3390/ijms19103205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex condition that involves a variety of pathological mechanisms, including pancreatic β-cell failure, insulin resistance, and inflammation. There is an increasing body of literature suggesting that these interrelated phenomena may arise from the common mechanism of endoplasmic reticulum (ER) stress. Both obesity-associated nutrient excess and hyperglycemia disturb ER function in protein folding and transport. This results in the accumulation of polypeptides in the ER lumen and impairs insulin secretion and signaling. Exercise elicits metabolic adaptive responses, which may help to restore normal chaperone expression in insulin-resistant tissues. Pharmacological induction of chaperones, mimicking the metabolic effect of exercise, is a promising therapeutic tool for preventing GDM by maintaining the body's natural stress response. Metformin, a commonly used diabetes medication, has recently been identified as a modulator of ER-stress-associated inflammation. The results of recent studies suggest the potential use of chemical ER chaperones and antioxidant vitamins as therapeutic interventions that can prevent glucose-induced ER stress in GDM placentas. In this review, we discuss whether chaperones may significantly contribute to the pathogenesis of GDM, as well as whether they can be a potential therapeutic target in GDM treatment.
Collapse
Affiliation(s)
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Agnieszka Stenzel-Bembenek
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, W. Chodźki 1 Street, 20-093 Lublin, Poland.
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| |
Collapse
|
17
|
McWherter C, Choi YJ, Serrano RL, Mahata SK, Terkeltaub R, Liu-Bryan R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res Ther 2018; 20:204. [PMID: 30189890 PMCID: PMC6127987 DOI: 10.1186/s13075-018-1699-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Arhalofenate acid, the active acid form of arhalofenate, is a non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand, with uricosuric activity via URAT1 inhibition. Phase II studies revealed decreased acute arthritis flares in arhalofenate-treated gout compared with allopurinol alone. Hence, we investigated the anti-inflammatory effects and mechanisms of arhalofenate and its active acid form for responses to monosodium urate (MSU) crystals. Methods We assessed in-vivo responses to MSU crystals in murine subcutaneous air pouches and in-vitro responses in murine bone marrow-derived macrophages (BMDMs) by enzyme-linked immunosorbent assay (ELISA), SDS-PAGE/Western blot, immunostaining, and transmission electron microscopy analyses. Results Oral administration of arhalofenate (250 mg/kg) blunted total leukocyte ingress, neutrophil influx, and air pouch fluid interleukin (IL)-1β, IL-6, and CXCL1 in response to MSU crystal injection (p < 0.05 for each). Arhalofenate acid (100 μM) attenuated MSU crystal-induced IL-1β production in BMDMs via inhibition of NLRP3 inflammasome activation. In addition, arhalofenate acid dose-dependently increased activation (as assessed by phosphorylation) of AMP-activated protein kinase (AMPK). Studying AMPKα1 knockout mice, we elucidated that AMPK mediated the anti-inflammatory effects of arhalofenate acid. Moreover, arhalofenate acid attenuated the capacity of MSU crystals to suppress AMPK activity, regulated expression of multiple downstream AMPK targets that modulate mitochondrial function and oxidative stress, preserved intact mitochondrial cristae and volume density, and promoted anti-inflammatory autophagy flux in BMDMs. Conclusions Arhalofenate acid is anti-inflammatory and acts via AMPK activation and its downstream signaling in macrophages. These effects likely contribute to a reduction of gout flares. Electronic supplementary material The online version of this article (10.1186/s13075-018-1699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Ramon L Serrano
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
18
|
Zhou Y, Zhou J, Lu X, Tan TZ, Chng WJ. BET Bromodomain inhibition promotes De-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Cancer 2018; 18:731. [PMID: 29996811 PMCID: PMC6042241 DOI: 10.1186/s12885-018-4661-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Background Targeted therapy has always been the focus in developing therapeutic approaches in cancer, especially in the treatment of acute myeloid leukemia (AML). A new small molecular inhibitor, JQ1, targeting BRD4, which recognizes the acetylated lysine residues, has been shown to induce cell cycle arrest in different cancers by inhibiting MYC oncogene. However, the downstream signaling of MYC inhibition induced by BET inhibitor is not well understood. Methods In this study, we explored the more mechanisms of JQ1-induced cell death in acute myeloid lukemia and downstream signaling of JQ1. Results We found that JQ1 is able to reactivate the tumor suppressor gene, TXNIP, and induces apoptosis through the ASK1-MAPK pathway. Further studies confirmed that MYC could repress the expression of TXNIP through the miR-17-92 cluster. Conclusions These findings provide novel insight on how BET inhibitor can induce apoptosis in AML, and further support the development of BET inhibitors as a promising therapeutic strategy against AML. Electronic supplementary material The online version of this article (10.1186/s12885-018-4661-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yafeng Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Xiao Lu
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Tuan-Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Republic of Singapore. .,Department of Hematology-Oncology, National University Cancer Institute, NUHS, 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| |
Collapse
|
19
|
Feingold PL, Surman DR, Brown K, Xu Y, McDuffie LA, Shukla V, Reardon ES, Crooks DR, Trepel JB, Lee S, Lee MJ, Gao S, Xi S, McLoughlin KC, Diggs LP, Beer DG, Nancarrow DJ, Neckers LM, Davis JL, Hoang CD, Hernandez JM, Schrump DS, Ripley RT. Induction of Thioredoxin-Interacting Protein by a Histone Deacetylase Inhibitor, Entinostat, Is Associated with DNA Damage and Apoptosis in Esophageal Adenocarcinoma. Mol Cancer Ther 2018; 17:2013-2023. [PMID: 29934340 DOI: 10.1158/1535-7163.mct-17-1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023]
Abstract
In 2017, an estimated 17,000 individuals were diagnosed with esophageal adenocarcinoma (EAC), and less than 20% will survive 5 years. Positron emission tomography avidity is indicative of high glucose utilization and is nearly universal in EAC. TXNIP blocks glucose uptake and exhibits proapoptotic functions. Higher expression in EAC has been associated with improved disease-specific survival, lack of lymph node involvement, reduced perineural invasion, and increased tumor differentiation. We hypothesized that TXNIP may act as a tumor suppressor that sensitizes EAC cells to standard chemotherapeutics. EAC cell lines and a Barrett epithelial cell line were used. qRT-PCR, immunoblot, and immunofluorescence techniques evaluated gene expression. TXNIP was stably overexpressed or knocked down using lentiviral RNA transduction techniques. Murine xenograft methods examined growth following overexpression of TXNIP. Apoptosis and DNA damage were measured by annexin V and γH2AX assays. Activation of the intrinsic apoptosis was quantitated with green fluorescence protein-caspase 3 reporter assay. In cultured cells and an esophageal tissue array, TXNIP expression was higher in Barrett epithelia and normal tissue compared with EAC. Constitutive overexpression of TXNIP decreased proliferation, clonogenicity, and tumor xenograft growth. TXNIP overexpression increased, whereas knockdown abrogated, DNA damage and apoptosis following cisplatin treatment. An HDAC inhibitor, entinostat (currently in clinical trials), upregulated TXNIP and synergistically increased cisplatin-mediated DNA damage and apoptosis. TXNIP is a tumor suppressor that is downregulated in EACC. Its reexpression dramatically sensitizes these cells to cisplatin. Our findings support phase I/II evaluation of "priming" strategies to enhance the efficacy of conventional chemotherapeutics in EAC. Mol Cancer Ther; 17(9); 2013-23. ©2018 AACR.
Collapse
Affiliation(s)
- Paul L Feingold
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah R Surman
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kate Brown
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yuan Xu
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lucas A McDuffie
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Emily S Reardon
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sichuan Xi
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kaitlin C McLoughlin
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Laurence P Diggs
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David G Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jeremy L Davis
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jonathan M Hernandez
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David S Schrump
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - R Taylor Ripley
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
20
|
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets 2018; 18:1095-1103. [PMID: 28137209 PMCID: PMC5543564 DOI: 10.2174/1389450118666170130145514] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
Background & Objective: Thioredoxin-interacting protein (TXNIP) also known as thioredoxin binding protein-2 is a ubiquitously expressed protein that interacts and negatively regulates expression and function of Thioredoxin (TXN). Over the last few years, TXNIP has attracted considerable attention due to its wide-ranging functions impacting several aspects of energy metabolism. TXNIP acts as an important regulator of glucose and lipid metabolism through pleiotropic actions including regulation of β-cell function, hepatic glucose production, peripheral glucose uptake, adipogenesis, and substrate utilization. Overexpression of TXNIP in animal models has been shown to induce apoptosis of pancreatic β-cells, reduce insulin sensitivity in peripheral tissues like skeletal muscle and adipose, and decrease energy expenditure. On the contrary, TXNIP deficient animals are protected from diet induced insulin resistance and type 2 diabetes. Summary: Consequently, targeting TXNIP is thought to offer novel therapeutic opportunity and TXNIP inhibitors have the potential to become a powerful therapeutic tool for the treatment of diabetes mellitus. Here we summarize the current state of our understanding of TXNIP biology, highlight its role in metabolic regulation and raise critical questions that could help future research to exploit TXNIP as a therapeutic target.
Collapse
Affiliation(s)
- Naif Mohammad Alhawiti
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Mohammad Azhar Aziz
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Shuja Shafi Malik
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Thielen L, Shalev A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr Opin Endocrinol Diabetes Obes 2018; 25:75-80. [PMID: 29356688 PMCID: PMC5831522 DOI: 10.1097/med.0000000000000391] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Thioredoxin-interacting protein has emerged as a major factor regulating pancreatic β-cell dysfunction and death, key processes in the pathogenesis of type 1 and type 2 diabetes. Accumulating evidence based on basic, preclinical, and retrospective epidemiological research suggests that TXNIP represents a promising therapeutic target for diabetes. The present review is aimed at providing an update regarding these developments. RECENT FINDINGS TXNIP has been shown to be induced by glucose and increased in diabetes and to promote β-cell apoptosis, whereas TXNIP deletion protected against diabetes. More recently, TXNIP inhibition has also been found to promote insulin production and glucagon-like peptide 1 signaling via regulation of a microRNA. β-Cell TXNIP expression itself was found to be regulated by hypoglycemic agents, carbohydrate-response-element-binding protein, and cytosolic calcium or the calcium channel blocker, verapamil. Retrospective studies now further suggest that verapamil use might be associated with a lower incidence of type 2 diabetes in humans. SUMMARY TXNIP has emerged as a key factor in the regulation of functional β-cell mass and TXNIP inhibition has shown beneficial effects in a variety of studies. Thus, the inhibition of TXNIP may provide a novel approach to the treatment of diabetes.
Collapse
Affiliation(s)
- Lance Thielen
- Division of Endocrinology, Diabetes, and Metabolism, Comprehensive Diabetes Center and Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
22
|
Lalit PS, Thangal Y, Fayi Y, Takhellambam SD. Potentials of Gene Therapy for Diabetic Retinopathy: The Use of Nucleic Acid Constructs Containing a TXNIP Promoter. OPEN ACCESS JOURNAL OF OPHTHALMOLOGY 2018; 3. [PMID: 31106306 DOI: 10.23880/oajo-16000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is considered as a chronic eye disease leading to blindness. DR is associated with hyperglycemia-induced oxidative stress, chronic low-grade inflammation and premature cell death. DR affects retinal capillaries, neuroretina and the retinal pigment epithelium. Recently, the thioredoxin-interacting protein TXNIP has been shown as a pro-oxidative stress, pro-inflammatory and pro-apoptotic protein, highly induced by diabetes and high glucose in all cells examined including the retina. TXNIP's actions involve binding to and inhibition of anti-oxidant and thiol-reducing capacities of thioredoxins (Trx) causing cellular oxidative stress and apoptosis. Trx1 is found in the cytosol and nucleus while Trx2 is the mitochondrial isoform. Several studies provided evidence that knockdown of TXNIP by siRNA or chemical blockade ameliorates early abnormalities of DR including endothelial dysfunction, pericyte apoptosis, Müller cell gliosis and neurodegeneration. Therefore, TXNIP is considered a potential target for preventing or slowing down the progression of DR. We recently proposed that nucleic acid constructs containing a proximal TXNIP promoter linked to a redox gene or shRNA that reduces oxidative stress and inflammation may be used to treat DR. The TXNIP promoter is sensitive to hyperglycemia therefore can drive expression of the linked gene or shRNA under high glucose environment such as seen in diabetes while remaining unresponsive at physiological glucose levels. Such a TXNIP-promoter linked gene or shRNA construct can be delivered to the retina by using adeno-associated viral vectors including AAV2 and AAV2/8 or an appropriate carrier via the intravitreal or sub retinal delivery for long-term gene therapies in DR.
Collapse
Affiliation(s)
- P S Lalit
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA.,Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Y Thangal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - Y Fayi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - S D Takhellambam
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| |
Collapse
|
23
|
Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med 2016; 30:629-636. [PMID: 27392947 DOI: 10.1007/s12149-016-1106-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/03/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Metformin-induced [F-18] fluorodeoxyglucose (FDG) bowel uptake can hinder positron emission tomography/computed tomography (PET/CT) evaluation of the bowel. This study aimed to investigate the segmental bowel uptake of FDG according to metformin discontinuation times up to 72 h. METHODS We retrospectively divided 240 diabetic patients into four groups: metformin discontinuation <24 h (group A; n = 86), 24-48 h (group B; n = 40), 48-72 h (group C; n = 12), and no metformin (control group; n = 102). Segmental FDG bowel uptakes were measured visually (four-point scale) and semi-quantitatively (maximum standardized uptake value). RESULTS Compared with the control group, FDG uptake increased significantly from the ileum to the rectosigmoid colon in group A, from the transverse to the rectosigmoid colon in group B, and from the descending colon to the rectosigmoid colon in group C in both visual and semi-quantitative analyses. CONCLUSIONS Metformin discontinuation for <72 h is likely suboptimal for PET/CT image interpretation, especially with respect to the distal segments of the colon.
Collapse
|
24
|
Zhang Y, Storr SJ, Johnson K, Green AR, Rakha EA, Ellis IO, Morgan DAL, Martin SG. Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 2015; 5:12936-49. [PMID: 25427448 PMCID: PMC4350336 DOI: 10.18632/oncotarget.2683] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022] Open
Abstract
Metformin is under evaluation as a potential anticancer agent. Expression of total and phospho(Thr172)-adenosine monophosphate-activated kinase-α (AMPKα and pAMPKα(Thr172) respectively), a main metformin target, was examined in radiotherapy treated breast cancers and metformin's ability to modulate Trx system expression and breast cancer radiosensitivity evaluated in vitro. AMPKα and pAMPKα(Thr172) expression was assessed using a discovery (n=166) and validation cohort (n=609). Metformin's role in regulating radioresponse, and Trx family expression, was examined via clonogenic assays and Western blots. Intracellular reactive oxygen species (ROS) levels, cell cycle progression and apoptosis were assessed by flow cytometry. High AMPKα expression associated with improved local recurrence-free (P=0.019), relapse-free (P=0.016) and breast cancer-specific survival (P=0.000065) and was, from multivariate analysis, an independent prognostic factor from the discovery cohort. From the validation cases AMPKα expression associated with relapse-free and breast cancer-specific survival in luminal breast cancers. Metformin substantially increased radiosensitivity, intracellular ROS levels and reduced Trx expression, in luminal breast cancer cells, but had little effect on basal phenotype cells. In conclusion, high AMPKα expression associates with improved prognosis, especially in luminal breast cancer. Metformin preferentially radiosensitises luminal breast cancer cells, potentially due to alterations to intracellular ROS levels via modulation of Trx family protein expression.
Collapse
Affiliation(s)
- Yimin Zhang
- Academic Unit of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Sarah J Storr
- Academic Unit of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Kerstie Johnson
- Clinical Oncology, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Andrew R Green
- Histopathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Emad A Rakha
- Histopathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Ian O Ellis
- Histopathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - David A L Morgan
- Clinical Oncology, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Stewart G Martin
- Academic Unit of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| |
Collapse
|
25
|
RETRACTED: Effect of thioredoxin-interacting protein on Wnt/β-catenin signaling pathway and diabetic myocardial infarction. ASIAN PAC J TROP MED 2015; 8:976-982. [DOI: 10.1016/j.apjtm.2015.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
|
26
|
Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, Zang M, Clements MA, Yan Y. New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells. Mol Endocrinol 2015; 29:1184-94. [PMID: 26147751 DOI: 10.1210/me.2015-1090] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metformin has been considered a potential adjunctive therapy in treating poorly controlled type 1 diabetes with obesity and insulin resistance, owing to its potent effects on improving insulin sensitivity. However, the underlying mechanism of metformin's vascular protective effects remains obscure. Thioredoxin-interacting protein (TXNIP), a key regulator of cellular redox state induced by high-glucose concentration, decreases thioredoxin reductase activity and mediates apoptosis induced by oxidative stress. Here we report that high glucose-induced endothelial dysfunction is associated with induction of TXNIP expression in primary human aortic endothelial cells exposed to high-glucose conditions, whereas the metformin treatment suppresses high-glucose-induced TXNIP expression at mRNA and protein levels. We further show that metformin decreases the high-glucose-stimulated nuclear entry rate of two transcription factors, carbohydrate response element-binding protein (ChREBP) and forkhead box O1 (FOXO1), as well as their recruitment on the TXNIP promoter. An AMP-activated protein kinase inhibitor partially compromised these metformin effects. Our data suggest that endothelial dysfunction resulting from high-glucose concentrations is associated with TXNIP expression. Metformin down-regulates high-glucose-induced TXNIP transcription by inactivating ChREBP and FOXO1 in endothelial cells, partially through AMP-activated protein kinase activation.
Collapse
Affiliation(s)
- Xiaoyu Li
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Karen L Kover
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Daniel P Heruth
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Dara J Watkins
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Wayne V Moore
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Kathyrin Jackson
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Mengwei Zang
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Mark A Clements
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| | - Yun Yan
- Division of Endocrinology (X.L., K.L.K., D.J.W., W.V.M., K.J., M.A.C., Y.Y.), Department of Pediatrics, and Division of Experimental and Translational Genetics (D.P.H.), Department of Pediatrics, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri 64108; and Department of Medicine (M.Z.), Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02481
| |
Collapse
|
27
|
Chong CR, Chan WPA, Nguyen TH, Liu S, Procter NEK, Ngo DT, Sverdlov AL, Chirkov YY, Horowitz JD. Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther 2015; 28:347-60. [PMID: 25088927 DOI: 10.1007/s10557-014-6538-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The thioredoxin system, which consists of thioredoxin (Trx), nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), has emerged as a major anti-oxidant involved in the maintenance of cellular physiology and survival. Dysregulation in this system has been associated with metabolic, cardiovascular, and malignant disorders. Thioredoxin-interacting protein (TXNIP), also known as vitamin D-upregulated protein or thioredoxin-binding-protein-2, functions as a physiological inhibitor of Trx, and pathological suppression of Trx by TXNIP has been demonstrated in diabetes and cardiovascular diseases. Furthermore, TXNIP effects are partially Trx-independent; these include direct activation of inflammation and inhibition of glucose uptake. Many of the effects of TXNIP are initiated by its dissociation from intra-nuclear binding with Trx or other SH-containing proteins: these effects include its migration to cytoplasm, modulating stress responses in mitochondria and endoplasmic reticulum, and also potentially activating apoptotic pathways. TXNIP also interacts with the nitric oxide (NO) signaling system, with apparent suppression of NO effect. TXNIP production is modulated by redox stress, glucose levels, hypoxia and several inflammatory activators. In recent studies, it has been shown that therapeutic agents including insulin, metformin, angiotensin converting enzyme inhibitors and calcium channel blockers reduce TXNIP expression, although it is uncertain to what extent TXNIP suppression contributes to their clinical efficacy. This review addresses the role of TXNIP in health and in cardiovascular and metabolic disorders. Finally, the potential advantages (and disadvantages) of pharmacological suppression of TXNIP in cardiovascular disease and diabetes are summarized.
Collapse
Affiliation(s)
- Cher-Rin Chong
- Cardiology and Clinical Pharmacology Department, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hur KY, Lee MS. New mechanisms of metformin action: Focusing on mitochondria and the gut. J Diabetes Investig 2015; 6:600-9. [PMID: 26543531 PMCID: PMC4627534 DOI: 10.1111/jdi.12328] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
The most well-known mechanism of metformin action, one of the most commonly prescribed antidiabetic drugs, is adenosine monophosphate-activated protein kinase activation; however, recent investigations have shown that adenosine monophosphate-activated protein kinase-independent pathways can explain some of metformin's beneficial metabolic effects as well as undesirable side-effects. Such novel pathways include induction of mitochondrial stress, inhibition of mitochondrial shuttles, alteration of intestinal microbiota, suppression of glucagon signaling, activation of autophagy, attenuation of inflammasome activation, induction of incretin receptors and reduction of terminal endoplasmic reticulum stress. Together, these studies have broadened our understanding of the mechanisms of antidiabetic agents as well as the pathogenic mechanism of diabetes itself. The results of such investigations might help to identify new target molecules and pathways for treatment of diabetes and metabolic syndrome, and could also have broad implications in diseases other than diabetes. Accordingly, new antidiabetic drugs with better efficacy and fewer adverse effects will likely result from these studies.
Collapse
Affiliation(s)
- Kyu Yeon Hur
- Division of Endocrinology & Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea
| | - Myung-Shik Lee
- Division of Endocrinology & Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea
| |
Collapse
|
29
|
Tu Y, Zhang P, Pang X. Thioredoxin-interacting Protein as a Common Regulation Target for Multiple Drugs in Clinical Therapy/Application. CANCER TRANSLATIONAL MEDICINE 2015. [DOI: 10.4103/2395-3977.151488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Kinaan M, Ding H, Triggle CR. Metformin: An Old Drug for the Treatment of Diabetes but a New Drug for the Protection of the Endothelium. Med Princ Pract 2015; 24:401-15. [PMID: 26021280 PMCID: PMC5588255 DOI: 10.1159/000381643] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/15/2015] [Indexed: 12/25/2022] Open
Abstract
The anti-diabetic and oral hypoglycaemic agent metformin, first used clinically in 1958, is today the first choice or 'gold standard' drug for the treatment of type 2 diabetes and polycystic ovary disease. Of particular importance for the treatment of diabetes, metformin affords protection against diabetes-induced vascular disease. In addition, retrospective analyses suggest that treatment with metformin provides therapeutic benefits to patients with several forms of cancer. Despite almost 60 years of clinical use, the precise cellular mode(s) of action of metformin remains controversial. A direct or indirect role of adenosine monophosphate (AMP)-activated protein kinase (AMPK), the fuel gauge of the cell, has been inferred in many studies, with evidence that activation of AMPK may result from a mild inhibitory effect of metformin on mitochondrial complex 1, which in turn would raise AMP and activate AMPK. Discrepancies, however, between the concentrations of metformin used in in vitro studies versus therapeutic levels suggest that caution should be applied before extending inferences derived from cell-based studies to therapeutic benefits seen in patients. Conceivably, the effects, or some of them, may be at least partially independent of AMPK and/or mitochondrial respiration and reflect a direct effect of either metformin or a minor and, as yet, unidentified putative metabolite of metformin on a target protein(s)/signalling cascade. In this review, we critically evaluate the data from studies that have investigated the pharmacokinetic properties and the cellular and clinical basis for the oral hypoglycaemic, insulin-sensitising and vascular protective effects of metformin.
Collapse
Affiliation(s)
| | | | - Chris R. Triggle
- *Chris R. Triggle, Weill Cornell Medical College in Qatar, PO Box 24144, Education City, Doha (Qatar), E-Mail
| |
Collapse
|
31
|
Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain. Redox Biol 2014; 2:447-56. [PMID: 24624334 PMCID: PMC3949098 DOI: 10.1016/j.redox.2013.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological disorders associated with diabetes. Thioredoxin mimeitics peptides (TXM) lower apoptosis in the brain of ZDF rat. TxM peptides prevent TXNIP/TBP-2 expression in the brain of ZDF rat. TxM peptides could become beneficial for preventing diabetes associated neurological disorders.
Collapse
|
32
|
Zhang QY, Pan Y, Wang R, Kang LL, Xue QC, Wang XN, Kong LD. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem 2013; 25:420-8. [PMID: 24491314 DOI: 10.1016/j.jnutbio.2013.11.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/17/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022]
Abstract
Fructose is a nutritional composition of fruits and honey. Its excess consumption induces insulin resistance-associated metabolic diseases. Hypothalamic insulin signaling plays a pivotal role in controlling whole-body insulin sensitivity and energy homeostasis. Quercetin, a natural flavonoid, has been reported to ameliorate high fructose-induced rat insulin resistance and hyperlipidemia. In this study, we investigated its regulatory effects on the hypothalamus of high fructose-fed rats. Rats were fed 10% fructose in drinking water for 10 weeks. After 4 weeks, these animals were orally treated with quercetin (50 and 100 mg/kg), allopurinol (5 mg/kg) and water daily for the next 6 weeks, respectively. Quercetin effectively restored high fructose-induced hypothalamic insulin signaling defect by up-regulating the phosphorylation of insulin receptor and protein kinase B. Furthermore, quercetin was found to reduce metabolic nutrient sensors adenosine monophosphate-activated protein kinase (AMPK) activation and thioredoxin-interacting protein (TXNIP) overexpression, as well as the glutamine-glutamate cycle dysfunction in the hypothalamus of high fructose-fed rats. Subsequently, it ameliorated high fructose-caused hypothalamic inflammatory lesions in rats by suppressing the activation of hypothalamic nuclear factor κB (NF-κB) pathway and NOD-like receptor 3 (NLRP3) inflammasome with interleukin 1β maturation. Allopurinol had similar effects. These results provide in vivo evidence that quercetin-mediated down-regulation of AMPK/TXNIP and subsequent inhibition of NF-κB pathway/NLRP3 inflammasome activation in the hypothalamus of rats may be associated with the reduction of hypothalamic inflammatory lesions, contributing to the improvement of hypothalamic insulin signaling defect in this model. Thus, quercetin with the central activity may be a therapeutic for high fructose-induced insulin resistance and hyperlipidemia in humans.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| | - Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Lin-Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qiao-Chu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiao-Ning Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
33
|
Massollo M, Marini C, Brignone M, Emionite L, Salani B, Riondato M, Capitanio S, Fiz F, Democrito A, Amaro A, Morbelli S, Piana M, Maggi D, Cilli M, Pfeffer U, Sambuceti G. Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice. J Nucl Med 2013; 54:259-66. [PMID: 23287574 DOI: 10.2967/jnumed.112.106666] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED In the course of metformin treatment, staging abdominal cancer lesions with (18)F-FDG PET images is often hindered by the presence of a high bowel radioactivity. The present study aimed to verify the mechanism underlying this phenomenon. METHODS Fifty-three mice were submitted to dynamic acquisitions of (18)F-FDG kinetics under fasting conditions. Three small-animal PET scans were obtained over a 4-mo study period. The animals were subdivided into 4 groups according to the following metformin administration protocol: group 1, untreated mice (n = 15); group 2, mice exposed to metformin treatment (750 mg/kg/d) for the 48 h before each PET study (pulsed, n = 10); group 3, mice treated for the whole study period (prolonged, n = 10); and group 4, mice in which prolonged treatment was interrupted 48 h before PET (interrupted, n = 8). The rate constant of (18)F-FDG uptake was estimated by Patlak analysis. At the end of the study, the ileum and colon were harvested, washed, and counted ex vivo. Two further groups, of 5 animals each, were included to evaluate the effect of prolonged metformin treatment on phosphorylated adenosine monophosphate (AMP)-activated protein kinase (pAMPK) form and gene expression for thioredoxin-interacting protein (TXNIP). RESULTS Pulsed treatment did not modify gut tracer retention with respect to the untreated group. Conversely, prolonged treatment induced a progressive increase in (18)F-FDG uptake that selectively involved the colonic wall, without any significant contamination of bowel content. This effect persisted after a complete drug washout in the interrupted group. These responses were paralleled by increased pAMPK availability and by reduced expression of TXNIP messenger RNA in colonic enterocytes exposed to prolonged metformin treatment. CONCLUSION Metformin causes a selective increase in colonic (18)F-FDG uptake. This effect appears after a relatively long period of treatment and persists soon after drug washout. Accordingly, the increased bowel glucose metabolism reflects a biologic response to chronic metformin treatment characterized by increased levels of pAMPK and reduced levels of TXNIP.
Collapse
Affiliation(s)
- Michela Massollo
- Nuclear Medicine, Department of Internal Medicine, University of Genoa and IRCCS San Martino-IST, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|