1
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Schildhauer P, Selke P, Scheller C, Strauss C, Horstkorte R, Leisz S, Scheer M. Glycation Leads to Increased Invasion of Glioblastoma Cells. Cells 2023; 12:cells12091219. [PMID: 37174618 PMCID: PMC10177211 DOI: 10.3390/cells12091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFβ, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Potez M, Snedal S, She C, Kim J, Thorner K, Tran TH, Ramello MC, Abate-Daga D, Liu JKC. Use of phage display biopanning as a tool to design CAR-T cells against glioma stem cells. Front Oncol 2023; 13:1124272. [PMID: 37035164 PMCID: PMC10080078 DOI: 10.3389/fonc.2023.1124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Background Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation. Therefore, targeting these cancer stem cells will allow for the development of more effective therapeutic strategies against GBM. We have previously identified several 7-amino acid length peptides which specifically target GSCs through in vitro and in vivo phage display biopanning. Methods and results We have combined two of these peptides to create a dual peptide construct (EV), and demonstrated its ability to bind GSCs in vitro and target intracranial GBM in mouse models. A peptide pull-down performed with peptide EV followed by mass spectrometry determined N-cadherin as the binding partner of the peptide, which was validated by enzyme-linked immunosorbent assay and surface plasmon resonance. To develop cytotoxic cellular products aimed at specifically targeting GSCs, chimeric antigen receptors (CARs) were engineered containing the peptide EV in place of the single-chain variable fragment (scFv) as the antigen-binding domain. EV CAR-transduced T cells demonstrated specific reactivity towards GSCs by production of interferon-gamma when exposed to GSCs, in addition to the induction of GSC-specific apoptosis as illustrated by Annexin-V staining. Conclusion These results exemplify the use of phage display biopanning for the isolation of GSC-targeting peptides, and their potential application in the development of novel cytotoxic therapies for GBM.
Collapse
Affiliation(s)
- Marine Potez
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Sebastian Snedal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Chunhua She
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jongmyung Kim
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Konrad Thorner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Maria Cecilia Ramello
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - James K. C. Liu
- Neurosurgical Oncology, Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Huang Y, Liu P, Luo J, Zhu C, Lu C, Zhao N, Zhao W, Cui W, Yang X. Par6 Enhances Glioma Invasion by Activating MEK/ERK Pathway Through a LIN28/let-7d Positive Feedback Loop. Mol Neurobiol 2023; 60:1626-1644. [PMID: 36542194 DOI: 10.1007/s12035-022-03171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The invasion of glioblastoma usually results in the recurrence and poor prognosis in patients with glioma. However, the underlying mechanisms involved in glioma invasion remains undefined. In this study, immunohistochemistry analyses of glioma specimens demonstrated that high expression of Par6 was positively correlated with malignancy and poor prognosis of patients with glioma. Par6-overexpressing glioma cells showed much more fibroblast-like morphology, suggesting that regulation of Par6 expression might be associated with tumor invasion in glioma cells. Further study indicated that Par6 overexpression subsequently increased CD44 and N-cadherin expression to enhance glioma invasion through activating MEK/ERK/STAT3 pathway, in vivo and in vitro. Moreover, we found that LIN28/let-7d axis was involved in this process via a positive feedback loop, suggesting that MEK/ERK/LIN28/let-7d/STAT3 cascade might be essential for Par6-mediated glioma invasion. Therefore, these data highlight the roles of Par6 in glioma invasion, and Par6 may serve as a potential therapeutic target for patients with glioma.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Pei Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chenchen Zhu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Na Zhao
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Weijiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Cui
- Department of Pharmacology, College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Hong X, Zhang J, Zou J, Ouyang J, Xiao B, Wang P, Peng X. Role of COL6A2 in malignant progression and temozolomide resistance of glioma. Cell Signal 2023; 102:110560. [PMID: 36521657 DOI: 10.1016/j.cellsig.2022.110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gliomas are one of the most common primary malignant tumors of the central nervous system, and have an unfavorable prognosis. Even combining precise surgery, chemotherapy and radiotherapy, the survival rate is still unsatisfactory. Chemotherapy resistance is one of main reasons for its adverse prognosis. As shown by several studies, glioma stem cells (GSCs) were correlated with radiotherapy/chemotherapy resistance and high relapse rate. This study aimed to find a new biomarker related to GSCs and chemotherapy resistance. METHODS TCGA, CGGA, GSE16011, GSE23806 and GDSC datasets were used to screen the genes related to GSCs, Temozolomide (TMZ) resistance, and survival. In the TCGA, GTEx, GSE16011 and CGGA datasets, mRNA level, prognostic value, and correlation with immune infiltration in the selected genes were analyzed through methods including Kaplan-Meier analysis, Cox analysis, the ESTIMATE algorithm, and the CIBERSORT algorithm. The expression of COL6A2 mRNA and protein in different groups was detected by RT-qPCR and western blot. A MTT assay and flow cytometry were used to measure the effect of COL6A2 on proliferation and apoptosis of glioma cells. RESULTS COL6A2 was positively correlated with glioma stemness and TMZ resistance. Its expression was up-regulated in GBM, and high expression was correlated with adverse prognosis. As shown by Cox analysis, COL6A2 was an independent prognostic factor for glioma. COL6A2 mRNA was increased with the glioma grade. It was over-expressed in MGMT non-methylation and IDH wild-type specimens. The results of in vitro experiments showed that COL6A2 promots proliferation of glioma cells and inhibits their apoptosis. Meanwhile, the expression of COL6A2 in TMZ-resistant glioma cells was significantly higher than that in ordinary glioma cells. As shown by GO and KEGG pathway analysis, COL6A2 was correlated with glioma proliferation, migration, invasion, and immunity. In particular, it was significantly positively correlated with PD-1, PD-L2, PD-L1, B7-H3, CTLA-4, IDO1 and TIM-3 expression, further verifying that it may play an important role in immune response. In addition, COL6A2 might influence immune cell infiltration in the glioma microenvironment. CONCLUSION COL6A2 high-expression is an indicator for adverse glioma prognosis, and is correlated with TMZ-resistant and immune response. Meanwhile, it may be a prospective biomarker for treatment.
Collapse
Affiliation(s)
- Xia Hong
- Medical School of Jingchu University of Technology, Jingmen 448000, China
| | - Jingjing Zhang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Jianmin Zou
- The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
| | - Jiecai Ouyang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Boan Xiao
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Peng Wang
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Xiaobin Peng
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| |
Collapse
|
6
|
Netrin-1 Stimulates Migration of Neogenin Expressing Aggressive Melanoma Cells. Int J Mol Sci 2022; 23:ijms232112751. [DOI: 10.3390/ijms232112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Netrin-1 is a neural guidance factor that regulates migration and positioning of neural crest-derived cells during embryonic development. Depending on the type of Netrin-1 receptor expression, cells are either attracted or repulsed by Netrin-1. Postnatal expression of Netrin-1 is detected in brain, colon, liver, and kidney, which are common sites of cancer metastasis, including melanoma. Thus, understanding the dynamics between Netrin-1 and its receptors could explain the attraction of melanoma towards these Netrin-1-expressing tissues. Here, we investigate whether the Netrin-1-attractive receptor Neogenin can affect migration of melanoma cells towards a Netrin-1 source. Results from Western blot (WB) analysis show higher expression of Neogenin in aggressive compared to non-aggressive melanoma cells. Cell migration experiments show increased migration of Neogenin-expressing aggressive melanoma cells towards exogenous, soluble recombinant human Netrin-1 and towards a Netrin-1-expressing cell line. Furthermore, WB reveals ERK1/2 activation and increased N-cadherin expression in Neogenin-expressing aggressive melanoma cells treated with rhNetrin-1. Moreover, treatment with anti-Neogenin blocking antibody caused decreased migration towards Netrin-1-expressing cells and reduced ERK1/2 activity in Neogenin-expressing aggressive melanoma cells. These results suggest Neogenin may play a role during migration of melanoma cells towards Netrin-1 via ERK1/2 signaling.
Collapse
|
7
|
Wang M, Shen S, Hou F, Yan Y. Pathophysiological roles of integrins in gliomas from the perspective of glioma stem cells. Front Cell Dev Biol 2022; 10:962481. [PMID: 36187469 PMCID: PMC9523240 DOI: 10.3389/fcell.2022.962481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary intracranial tumor and is also one of the most malignant central nervous system tumors. Its characteristics, such as high malignancy, abundant tumor vasculature, drug resistance, and recurrence-prone nature, cause great suffering to glioma patients. Furthermore, glioma stem cells are the primordial cells of the glioma and play a central role in the development of glioma. Integrins—heterodimers composed of noncovalently bound a and ß subunits—are highly expressed in glioma stem cells and play an essential role in the self-renewal, differentiation, high drug resistance, and chemo-radiotherapy resistance of glioma stem cells through cell adhesion and signaling. However, there are various types of integrins, and their mechanisms of function on glioma stem cells are complex. Therefore, this article reviews the feasibility of treating gliomas by targeting integrins on glioma stem cells.
Collapse
|
8
|
The Protein L-Isoaspartyl (D-Aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells. Int J Mol Sci 2022; 23:ijms23105698. [PMID: 35628507 PMCID: PMC9146343 DOI: 10.3390/ijms23105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The enzyme PIMT methylates abnormal aspartyl residues in proteins. U-87 MG cells are commonly used to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT isoform I possessed oncogenic features when overexpressed in U-87 MG and U-251 MG glioma cells. Higher levels of wild-type PIMT stimulated migration and invasion in both glioma cell lines. Conversely, PIMT silencing reduced these migratory abilities of both cell lines. These results indicate that PIMT could play a critical role in glioblastoma growth. Here, we investigated for the first time, molecular mechanisms involving PIMT in the regulation of epithelial to mesenchymal transition (EMT) upon TGF-β1 treatments. Gene array analyses indicated that EMT genes but not PIMT gene were regulated in U-87 MG cells treated with TGF-β1. Importantly, PIMT silencing by siRNA inhibited in vitro migration in U-87 MG cells induced by TGF-β1. In contrast, overexpressed wild-type PIMT and TGF-β1 had additive effects on cell migration. When PIMT was inhibited by siRNA, this prevented Slug induction by TGF-β1, while Snail stimulation by TGF-β1 was increased. Indeed, overexpression of wild-type PIMT led to the opposite effects on Slug and Snail expression dependent on TGF-β1. These data highlighted the importance of PIMT in the EMT response dependent on TGF-β1 in U-87 MG glioma cells by an antagonist regulation in the expression of transcription factors Slug and Snail, which are critical players in EMT.
Collapse
|
9
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
10
|
Tachon G, Masliantsev K, Rivet P, Desette A, Milin S, Gueret E, Wager M, Karayan-Tapon L, Guichet PO. MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers (Basel) 2021; 13:cancers13235943. [PMID: 34885053 PMCID: PMC8672280 DOI: 10.3390/cancers13235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and lethal primary brain tumor for which no curative treatment currently exists. In our previous work, we showed that MEOX2 was associated with a poor patient prognosis but its biological involvement in tumor development remains ill defined. To this purpose, the aim of our study was to investigate the role of MEOX2 in patient-derived glioblastoma cell cultures. We unraveled the MEOX2 contribution to cell viability and growth and its potential involvement in phenotype and adhesion properties of glioblastoma cells. This work paves the way toward a better understanding of the role of MEOX2 in the pathophysiology of primary brain tumors. Abstract The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.
Collapse
Affiliation(s)
- Gaëlle Tachon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Pierre Rivet
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Serge Milin
- Service d’Anatomo-Cytopathologie, CHU Poitiers, 86000 Poitiers, France;
| | - Elise Gueret
- Université Montpellier, CNRS, INSERM, 34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Service de Neurochirurgie, CHU Poitiers, 86000 Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| |
Collapse
|
11
|
Speer J, Barcellona M, Jing L, Liu B, Lu M, Kelly M, Buchowski J, Zebala L, Luhmann S, Gupta M, Setton L. Integrin-mediated interactions with a laminin-presenting substrate modulate biosynthesis and phenotypic expression for cells of the human nucleus pulposus. Eur Cell Mater 2021; 41:793-810. [PMID: 34160056 PMCID: PMC8378851 DOI: 10.22203/ecm.v041a50] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With aging and pathology, cells of the nucleus pulposus (NP) de-differentiate towards a fibroblast-like phenotype, a change that contributes to degeneration of the intervertebral disc (IVD). Laminin isoforms are a component of the NP extracellular matrix during development but largely disappear in the adult NP tissue. Exposing human adult NP cells to hydrogels made from PEGylated-laminin-111 (PEGLM) has been shown to regulate NP cell behaviors and promote cells to assume a biosynthetically active state with gene/protein expression and morphology consistent with those observed in juvenile NP cells. However, the mechanism regulating this effect has remained unknown. In the present study, the integrin subunits that promote adult degenerative NP cell interactions with laminin-111 are identified by performing integrin blocking studies along with assays of intracellular signaling and cell phenotype. The findings indicate that integrin α3 is a primary regulator of cell attachment to laminin and is associated with phosphorylation of signaling molecules downstream of integrin engagement (ERK 1/2 and GSK3β). Sustained effects of blocking integrin α3 were also demonstrated including decreased expression of phenotypic markers, reduced biosynthesis, and altered cytoskeletal organization. Furthermore, blocking both integrin α3 and additional integrin subunits elicited changes in cell clustering, but did not alter the phenotype of single cells. These findings reveal that integrin- mediated interactions through integrin α3 are critical in the process by which NP cells sense and alter phenotype in response to culture upon laminin and further suggest that targeting integrin α3 has potential for reversing or slowing degenerative changes to the NP cell.
Collapse
Affiliation(s)
- J. Speer
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - L. Jing
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - B. Liu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Lu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Kelly
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - J. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Zebala
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - S. Luhmann
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - M. Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Setton
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA,Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA,Address for correspondence: Dr. Lori A. Setton, Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA. Telephone number: +1 3149356164,
| |
Collapse
|
12
|
Osuka S, Zhu D, Zhang Z, Li C, Stackhouse CT, Sampetrean O, Olson JJ, Gillespie GY, Saya H, Willey CD, Van Meir EG. N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. J Clin Invest 2021; 131:136098. [PMID: 33720050 PMCID: PMC7954595 DOI: 10.1172/jci136098] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is composed of heterogeneous tumor cell populations, including those with stem cell properties, termed glioma stem cells (GSCs). GSCs are innately less radiation sensitive than the tumor bulk and are believed to drive GBM formation and recurrence after repeated irradiation. However, it is unclear how GSCs adapt to escape the toxicity of repeated irradiation used in clinical practice. To identify important mediators of adaptive radioresistance in GBM, we generated radioresistant human and mouse GSCs by exposing them to repeat cycles of irradiation. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by a reduction in cell proliferation and an increase in cell-cell adhesion and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs lost their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which suppressed Wnt/β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype could be reverted with picropodophyllin, a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation.
Collapse
Affiliation(s)
- Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Zhaobin Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christian T. Stackhouse
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J. Olson
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, USA
| | - Erwin G. Van Meir
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Datta S, Sears T, Cortopassi G, Woolard K, Angelastro JM. Repurposing FDA approved drugs inhibiting mitochondrial function for targeting glioma-stem like cells. Biomed Pharmacother 2020; 133:111058. [PMID: 33378970 DOI: 10.1016/j.biopha.2020.111058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma Multiforme (GBM) tumors contain a small population of glioma stem-like cells (GSCs) among the various differentiated GBM cells (d-GCs). GSCs drive tumor recurrence, and resistance to Temozolomide (TMZ), the standard of care (SoC) for GBM chemotherapy. In order to investigate a potential link between GSC specific mitochondria function and SoC resistance, two patient-derived GSC lines were evaluated for differences in their mitochondrial metabolism. In both the lines, GSCs had significantly lower mitochondrial -content, and -function compared to d-GCs. In vitro, the standard mitochondrial-specific inhibitors oligomycin A, antimycin A, and rotenone selectively inhibited GSC proliferation to a greater extent than d-GCs and human primary astrocytes. These findings indicate that mitochondrial inhibition can be a potential GSC-targeted therapeutic strategy in GBM with minimal off-target toxicity. Mechanistically the standard mitochondrial inhibitors elicit their GSC-selective cytotoxic effects through the induction of apoptosis or autophagy pathways. We tested for GSC proliferation in the presence of 3 safe FDA-approved drugs--trifluoperazine, mitoxantrone, and pyrvinium pamoate, all of which are also known mitochondrial-targeting agents. The SoC GBM therapeutic TMZ did not trigger cytotoxicity in glioma stem cells, even at 100 μM concentration. By contrast, trifluoperazine, mitoxantrone, and pyrvinium pamoate exerted antiproliferative effects in GSCs about 30-50 fold more effectively than temozolomide. Thus, we hereby demonstrate that FDA-approved mitochondrial inhibitors induce GSC-selective cytotoxicity, and targeting mitochondrial function could present a potential therapeutic option for GBM treatment.
Collapse
Affiliation(s)
- Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas Sears
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma Stem Cells: Driving Resilience through Chaos. Trends Cancer 2020; 6:223-235. [PMID: 32101725 PMCID: PMC8779821 DOI: 10.1016/j.trecan.2020.01.009] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is an aggressive and heterogeneous tumor in which glioblastoma stem cells (GSCs) are at the apex of an entropic hierarchy and impart devastating therapy resistance. The high entropy of GSCs is driven by a permissive epigenetic landscape and a mutational landscape that revokes crucial cellular checkpoints. The GSC population encompasses a complex array of diverse microstates that are defined and maintained by a wide variety of attractors including the complex tumor ecosystem and therapeutic intervention. Constant dynamic transcriptional fluctuations result in a highly adaptable and heterogeneous entity primed for therapy evasion and survival. Analyzing the transcriptional, epigenetic, and metabolic landscapes of GSC dynamics in the context of a stochastically fluctuating tumor network will provide novel strategies to target resistant populations of GSCs in glioblastoma.
Collapse
Affiliation(s)
- Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA; Case Western Reserve University Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Vaidehi Mahadev
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
van Bodegraven EJ, van Asperen JV, Sluijs JA, van Deursen CBJ, van Strien ME, Stassen OMJA, Robe PAJ, Hol EM. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner. FASEB J 2019; 33:12941-12959. [PMID: 31480854 DOI: 10.1096/fj.201900916r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary brain tumors. Their highly invasive character and the heterogeneity of active oncogenic pathways within single tumors complicate the development of curative therapies and cause poor patient prognosis. Glioma cells express the intermediate filament protein glial fibrillary acidic protein (GFAP), and the level of its alternative splice variant GFAP-δ, relative to its canonical splice variant GFAP-α, is higher in grade IV compared with lower-grade and lower malignant glioma. In this study we show that a high GFAP-δ/α ratio induces the expression of the dual-specificity phosphatase 4 (DUSP4) in focal adhesions. By focusing on pathways up- and downstream of DUSP4 that are involved in the cell-extracellular matrix interaction, we show that a high GFAP-δ/α ratio equips glioma cells to better invade the brain. This study supports the hypothesis that glioma cells with a high GFAP-δ/α ratio are highly invasive and more malignant cells, thus making GFAP alternative splicing a potential therapeutic target.-Van Bodegraven, E. J., van Asperen, J. V., Sluijs, J. A., van Deursen, C. B. J., van Strien, M. E., Stassen, O. M. J. A., Robe, P. A. J., Hol, E. M. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner.
Collapse
Affiliation(s)
- Emma J van Bodegraven
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen B J van Deursen
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam E van Strien
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar M J A Stassen
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Pierre A J Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neurosciences, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Dong ZQ, Guo ZY, Xie J. The lncRNA EGFR-AS1 is linked to migration, invasion and apoptosis in glioma cells by targeting miR-133b/RACK1. Biomed Pharmacother 2019; 118:109292. [PMID: 31545240 DOI: 10.1016/j.biopha.2019.109292] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common in situ neoplasms in central nervous system (CNS). However, the pathogenesis of GBM is poorly understood. Long noncoding RNAs (lncRNAs) have been implicated in GBM progression. In this study, we attempted to identify the biological role of the EGFR-AS1 in glioma cells and tissues, as well as reveal the molecular mechanism associated. The results indicated that lnc-EGFR-AS1 expression was increased in glioma cells and tissues. EGFR-AS1 knockdown suppressed proliferation, migration and invasion of glioma cells, but induced apoptosis. Additionally, lnc-EGFR-AS1 functioned as a sponge for miR-133b. Promoting lnc-EGFR-AS1 expression significantly reduced miR-133b expression. Furthermore, miR-133b could target the 3'-untranslated region (3'-UTR) of RACK1 and reduced its expression levels. What's more, lnc-EGFR-AS1 knockdown reduced RACK1 expression partly through enhancing miR-133b expression. In vivo experiments confirmed the anti-tumorigenesis capability of EGFR-AS1 knockdown. These findings elucidated that EGFR-AS1 accelerated cell proliferation, migration, invasion and prevented apoptosis in glioma cells by regulating miR-133b/RACK1, providing new insights for the diagnosis and molecular therapy of GBM.
Collapse
Affiliation(s)
- Zhi-Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Zhao-Yu Guo
- Department of Neurosurgery, Yangling Demonstration Zone Hospital, Xianyang 712100, China.
| | - Jun Xie
- Department of Neurosurgery, People's Hospital of Tongchuan City, Tongchuan 727000, China
| |
Collapse
|
17
|
Logun MT, Wynens KE, Simchick G, Zhao W, Mao L, Zhao Q, Mukherjee S, Brat DJ, Karumbaiah L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J 2019; 33:11973-11992. [PMID: 31398290 DOI: 10.1096/fj.201802610rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Kallie E Wynens
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Gregory Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Leidong Mao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials 2019; 219:119371. [PMID: 31352310 DOI: 10.1016/j.biomaterials.2019.119371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
Abstract
Therapeutic options to treat primary glioblastoma (GBM) tumors are scarce. GBM tumors with epidermal growth factor receptor (EGFR) mutations, in particular a constitutively active EGFRvIII mutant, have extremely poor clinical outcomes. GBM tumors with concurrent EGFR amplification and active phosphatase and tensin homolog (PTEN) are sensitive to the tyrosine kinase inhibitor erlotinib, but the effect is not durable. A persistent challenge to improved treatment is the poorly understood role of cellular, metabolic, and biophysical signals from the GBM tumor microenvironment on therapeutic efficacy and acquired resistance. The intractable nature of studying GBM cell in vivo motivates tissue engineering approaches to replicate aspects of the complex GBM tumor microenvironment. Here, we profile the effect of erlotinib on two patient-derived GBM specimens: EGFR + GBM12 and EGFRvIII GBM6. We use a three-dimensional gelatin hydrogel to present brain-mimetic hyaluronic acid (HA) and evaluate the coordinated influence of extracellular matrix signals and EGFR mutation status on GBM cell migration, survival and proliferation, as well as signaling pathway activation in response to cyclic erlotinib exposure. Comparable to results observed in vivo for xenograft tumors, erlotinib exposure is not cytotoxic for GBM6 EGFRvIII specimens. We also identify a role of extracellular HA (via CD44) in altering the effect of erlotinib in GBM EGFR + cells by modifying STAT3 phosphorylation status. Taken together, we report an in vitro tissue engineered platform to monitor signaling associated with poor response to targeted inhibitors in GBM.
Collapse
|
19
|
Hor CHH, Goh ELK. Rab23 Regulates Radial Migration of Projection Neurons via N-cadherin. Cereb Cortex 2019; 28:1516-1531. [PMID: 29420702 PMCID: PMC6093454 DOI: 10.1093/cercor/bhy018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/12/2023] Open
Abstract
Radial migration of cortical projection neurons is a prerequisite for shaping a distinct multilayered cerebral cortex during mammalian corticogenesis. Members of Rab GTPases family were reported to regulate radial migration. Here, in vivo conditional knockout or in utero knockdown (KD) of Rab23 in mice neocortex causes aberrant polarity and halted migration of cortical projection neurons. Further investigation of the underlying mechanism reveals down-regulation of N-cadherin in the Rab23-deficient neurons, which is a cell adhesion protein previously known to modulate radial migration. (Shikanai M, Nakajima K, Kawauchi T. 2011. N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol. 4:326–330.) Interestingly, pharmacological inhibition of extracellular signal-regulated kinases (ERK1/2) also decreases the expression of N-cadherin, implicating an upstream effect of ERK1/2 on N-cadherin and also suggesting a link between Rab23 and ERK1/2. Further biochemical studies show that silencing of Rab23 impedes activation of ERK1/2 via perturbed platelet-derived growth factor-alpha (PDGFRα) signaling. Restoration of the expression of Rab23 or N-cadherin in Rab23-KD neurons could reverse neuron migration defects, indicating that Rab23 modulates migration through N-cadherin. These studies suggest that cortical neuron migration is mediated by a molecular hierarchy downstream of Rab23 via N-cadherin.
Collapse
Affiliation(s)
- Catherine H H Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.,KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
20
|
Kowalski-Chauvel A, Modesto A, Gouaze-Andersson V, Baricault L, Gilhodes J, Delmas C, Lemarie A, Toulas C, Cohen-Jonathan-Moyal E, Seva C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis 2018; 9:872. [PMID: 30158599 PMCID: PMC6115442 DOI: 10.1038/s41419-018-0853-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022]
Abstract
Radiotherapy is the cornerstone of glioblastoma (GBM) standard treatment. However, radioresistance of cancer cells leads to an inevitable recurrence. In the present study, we showed that blocking α6-integrin in cells derived from GBM biopsy specimens cultured as neurospheres, sensitized cells to radiation. In cells downregulated for α6-integrin expression, we observed a decrease in cell survival after irradiation and an increase in radio-induced cell death. We also demonstrated that inhibition of α6-integrin expression affects DNA damage checkpoint and repair. Indeed, we observed a persistence of γ-H2AX staining after IR and the abrogation of the DNA damage-induced G2/M checkpoint, likely through the downregulation of the checkpoint kinase CHK1 and its downstream target Cdc25c. We also showed that α6-integrin contributes to GBM radioresistance by controlling the expression of the transcriptional network ZEB1/OLIG2/SOX2. Finally, the clinical data from TCGA and Rembrandt databases demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin and its targets, CHK1, ZEB1, OLIG2 and SOX2, have a significantly shorter overall survival. Our study suggest that α6-integrin is an attractive therapeutic target to overcome radioresistance of GBM cancer cells.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Anouchka Modesto
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Valerie Gouaze-Andersson
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Laurent Baricault
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | | | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Anthony Lemarie
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
21
|
CD146 mediates an E-cadherin-to-N-cadherin switch during TGF-β signaling-induced epithelial-mesenchymal transition. Cancer Lett 2018; 430:201-214. [PMID: 29777784 DOI: 10.1016/j.canlet.2018.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/05/2023]
Abstract
Cadherin switch is an initiating factor of epithelial-mesenchymal transition (EMT) and is intimately correlated with cancer metastatic potential; however, its underlying mechanisms remain unclear. Here, using a transforming growth factor-β (TGF-β)-induced EMT model, we provide explicit evidence that CD146, with elevated expression and activity in a variety of cancers, is a key factor involved in the cadherin switch. We show that CD146 can be induced by TGF-β signaling. Moreover, CD146 expression is positively correlated with the activation levels of STAT3/Twist and ERK pathways. Transcriptional response of the CD146/STAT3/Twist cascade inhibits E-cadherin expression, whereas the CD146/ERK cascade enhances N-cadherin expression. CD146 overexpression also significantly promotes EMT in both mouse embryonic fibroblasts (MEFs) and ovarian cancer cells. Clinically, ovarian cancer patients with detectable CD146 expression had a significantly lower survival rate than that of patients without CD146 expression. Furthermore, CD146-deficient MEFs exhibited decreased motility as a result of reversion in this cadherin switch, strongly suggesting that targeting CD146 is a potential strategy for cancer treatment. Therefore, CD146-mediated regulation of the E-cadherin-to-N-cadherin switch provides an insight into the general mechanisms of EMT as well as cancer metastasis.
Collapse
|
22
|
Andreopoulou E, Arampatzis A, Patsoni M, Kazanis I. Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:81-118. [PMID: 29204830 DOI: 10.1007/978-3-319-69194-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.
Collapse
Affiliation(s)
- Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Asterios Arampatzis
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melina Patsoni
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Nakod PS, Kim Y, Rao SS. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett 2018; 429:41-53. [PMID: 29746930 DOI: 10.1016/j.canlet.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor, is the deadliest form of human cancer with low survival rates because of its highly invasive nature. In recent years, there has been a growing appreciation for the role that glioblastoma stem cells (GSCs) play during tumorigenesis and tumor recurrence of GBM. GSCs are a specialized subset of GBM cells with stem cell-like features that contribute to tumor initiation and therapeutic resistance. Thus, to enhance therapeutic efficiency and improve survival, targeting GSCs and their microenvironmental niche appears to be a promising approach. To develop this approach, understanding GSC-microenvironment interactions is crucial. This review discusses various biomimetic model systems to understand the impact of biophysical, biochemical, and cellular microenvironmental cues on GSC behaviors. These models include two-dimensional or matrix-free environment models, engineered biomaterial-based three-dimensional models, co-culture models, and mouse and rat in vivo models. These systems have been used to study the effects of biophysical factors, modulation of signaling pathways, extracellular matrix components, and culture conditions on the GSC phenotype. The advantages and disadvantages of these model systems and their impact in the field of GSC research are discussed.
Collapse
Affiliation(s)
- Pinaki S Nakod
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yonghyun Kim
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
24
|
Meel MH, Schaper SA, Kaspers GJL, Hulleman E. Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cell Mol Life Sci 2018; 75:871-887. [PMID: 29164272 PMCID: PMC5809527 DOI: 10.1007/s00018-017-2714-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
Abstract
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal types of cancer in children. In recent years, it has become evident that these tumors are driven by epigenetic events, mainly mutations involving genes encoding Histone 3, setting them apart from their adult counterparts. These tumors are exceptionally resistant to chemotherapy and respond only temporarily to radiotherapy. Moreover, their delicate location and diffuse growth pattern make complete surgical resection impossible. In many other forms of cancer, chemo- and radioresistance, in combination with a diffuse, invasive phenotype, are associated with a transcriptional program termed the epithelial-to-mesenchymal transition (EMT). Activation of this program allows cancer cells to survive individually, invade surrounding tissues and metastasize. It also enables them to survive exposure to cytotoxic therapy, including chemotherapeutic drugs and radiation. We here suggest that EMT plays an important, yet poorly understood role in the biology and therapy resistance of pHGG and DIPG. This review summarizes the current knowledge on the major signal transduction pathways and transcription factors involved in the epithelial-to-mesenchymal transition in cancer in general and in pediatric HGG and DIPG in particular. Despite the fact that the mesenchymal transition has not yet been specifically studied in pHGG and DIPG, activation of pathways and high levels of transcription factors involved in EMT have been described. We conclude that the mesenchymal transition is likely to be an important element of the biology of pHGG and DIPG and warrants further investigation for the development of novel therapeutics.
Collapse
Affiliation(s)
- Michaël H Meel
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Sophie A Schaper
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Esther Hulleman
- Departments of Pediatric Oncology/Hematology, Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Wen Z, Liang C, Pan Q, Wang Y. Eya2 overexpression promotes the invasion of human astrocytoma through the regulation of ERK/MMP9 signaling. Int J Mol Med 2017; 40:1315-1322. [PMID: 28901379 PMCID: PMC5627874 DOI: 10.3892/ijmm.2017.3132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
The overexpression of eyes absent (Eya) 2 has been found in several human cancers. However, its biological roles and clinical significance in human astrocytoma have not yet been explored. This study investigated the clinical significance and biological roles of Eya2 in human astrocytoma tissues and cell lines. Using immunohistochemistry, we found Eya2 overexpression in 33 out of 90 (36.7%) astrocytoma specimens. The rate of Eya2 overexpression was higher in grade III-IV (48.1%) than in grade Ⅰ+Ⅱ astrocytomas (21.1%). Transfection with an Eya2 expression plasmid was performed in A172 cells with a low endogenous expression of Eya2 and the knockdown of Eya2 was carried out in U251 cells with a high endogenous expression using siRNA. Eya2 overexpression induced A172 cell proliferation and invasion, while the knockdown of Eya2 using siRNA decreased the proliferation and invasion of U251 cells. In addition, we found that transfection with the Eya2 expression plasmid facilitated cell cycle progression, and that the knockdown of Eya2 inhibited cell cycle progression, accompanied by a change in the expression of cell cycle-related proteins, including cyclin D1 and cyclin E. Eya2 also positively regulated extracellular signal-regulated kinase (ERK) activity and matrix metalloproteinase (MMP)9 expression. The blockade of ERK signaling using an inhibitor abolished the effects of Eya2 on A172 cell invasion and MMP9 production. In addition, we found that there was a positive correlation between Eya2 and Six1 in the astrocytoma cell lines. Immunoprecipitation revealed that Eya2 interacted with Six1 protein in the U251 cell line, which exhibited a high expression of both proteins. Eya2 failed to upregulate MMP expression in the A172 cells in which Six1 was silenced. On the whole, our data indicate that Eya2 may serve as a potential oncoprotein in human astrocytoma. Eya2 regulates astrocytoma cell proliferation and invasion, possibly through the regulation of ERK signaling.
Collapse
Affiliation(s)
- Zhifeng Wen
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuansheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qichen Pan
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
26
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
27
|
Glaser T, Han I, Wu L, Zeng X. Targeted Nanotechnology in Glioblastoma Multiforme. Front Pharmacol 2017; 8:166. [PMID: 28408882 PMCID: PMC5374154 DOI: 10.3389/fphar.2017.00166] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Gliomas, and in particular glioblastoma multiforme, are aggressive brain tumors characterized by a poor prognosis and high rates of recurrence. Current treatment strategies are based on open surgery, chemotherapy (temozolomide) and radiotherapy. However, none of these treatments, alone or in combination, are considered effective in managing this devastating disease, resulting in a median survival time of less than 15 months. The efficiency of chemotherapy is mainly compromised by the blood-brain barrier (BBB) that selectively inhibits drugs from infiltrating into the tumor mass. Cancer stem cells (CSCs), with their unique biology and their resistance to both radio- and chemotherapy, compound tumor aggressiveness and increase the chances of treatment failure. Therefore, more effective targeted therapeutic regimens are urgently required. In this article, some well-recognized biological features and biomarkers of this specific subgroup of tumor cells are profiled and new strategies and technologies in nanomedicine that explicitly target CSCs, after circumventing the BBB, are detailed. Major achievements in the development of nanotherapies, such as organic poly(propylene glycol) and poly(ethylene glycol) or inorganic (iron and gold) nanoparticles that can be conjugated to metal ions, liposomes, dendrimers and polymeric micelles, form the main scope of this summary. Moreover, novel biological strategies focused on manipulating gene expression (small interfering RNA and clustered regularly interspaced short palindromic repeats [CRISPR]/CRISPR associated protein 9 [Cas 9] technologies) for cancer therapy are also analyzed. The aim of this review is to analyze the gap between CSC biology and the development of targeted therapies. A better understanding of CSC properties could result in the development of precise nanotherapies to fulfill unmet clinical needs.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Inbo Han
- Department of Neurosurgery, Spine Center, CHA University, CHA Bundang Medical CenterSeongnam, South Korea
| | - Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
28
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
29
|
Turaga SM, Lathia JD. Adhering towards tumorigenicity: altered adhesion mechanisms in glioblastoma cancer stem cells. CNS Oncol 2016; 5:251-9. [PMID: 27616054 DOI: 10.2217/cns-2016-0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults with a high recurrence and mortality rate. GBM tumors contain a high degree of cellular heterogeneity, with cells exhibiting stem-like properties (cancer stem cells; CSCs) that are highly efficient at tumor initiation and are resistant to conventional therapies. CSCs interact with their tumor microenvironment by a large group of diverse cell adhesion molecules (CAMs) that participate in intercellular, intracellular and cell-extracellular matrix interactions. Despite the initial description of CAMs as tumor suppressors, recent work has highlighted specific CAMs that are essential for CSC maintenance and tumor progression. This review will highlight recent findings that provide support for a context-specific role of CAMs in CSC function and GBM progression.
Collapse
Affiliation(s)
- Soumya M Turaga
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin D Lathia
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Lin JJ, Zhao TZ, Cai WK, Yang YX, Sun C, Zhang Z, Xu YQ, Chang T, Li ZY. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition. Oncotarget 2016; 6:17107-20. [PMID: 25940798 PMCID: PMC4627295 DOI: 10.18632/oncotarget.3672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(-)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas.
Collapse
Affiliation(s)
- Jia-Ji Lin
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tian-Zhi Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Yong-Xiang Yang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Qiao Xu
- Department of Pathology, The Fourth Military Medical University, Xi'an, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhu-Yi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Reinhard J, Brösicke N, Theocharidis U, Faissner A. The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol 2016; 81:174-183. [PMID: 27157088 DOI: 10.1016/j.biocel.2016.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
Numerous studies demonstrated that neural stem cells and cancer stem cells (NSCs/CSCs) share several overlapping characteristics such as self-renewal, multipotency and a comparable molecular repertoire. In addition to the intrinsic cellular properties, NSCs/CSCs favor a similar environment to acquire and maintain their characteristics. In the present review, we highlight the shared properties of NSCs and CSCs in regard to their extracellular microenvironment called the NSC/CSC niche. Moreover, we point out that extracellular matrix (ECM) molecules and their complementary receptors influence the behavior of NSCs/CSCs as well as brain tumor progression. Here, we focus on the expression profile and functional importance of the ECM glycoprotein tenascin-C, the chondroitin sulfate proteoglycan DSD-1-PG/phosphacan but also on other important glycoprotein/proteoglycan constituents. Within this review, we specifically concentrate on glioblastoma multiforme (GBM). GBM is the most common malignant brain tumor in adults and is associated with poor prognosis despite intense and aggressive surgical and therapeutic treatment. Recent studies indicate that GBM onset is driven by a subpopulation of CSCs that display self-renewal and recapitulate tumor heterogeneity. Based on the CSC hypothesis the cancer arises just from a small subpopulation of self-sustaining cancer cells with the exclusive ability to self-renew and maintain the tumor. Besides the fundamental stem cell properties of self-renewal and multipotency, GBM stem cells share further molecular characteristics with NSCs, which we would like to review in this article.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Nicole Brösicke
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Ursula Theocharidis
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology & Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
32
|
LEE CHANGSU, CHO HYUNJI, JEONG YUNJEONG, SHIN JAEMOON, PARK KWANKYU, PARK YOONYUB, BAE YOUNGSEUK, CHUNG ILKYUNG, KIM MIHYUN, KIM CHEORLHO, JIN FANSI, CHANG HYEUNWOOK, CHANG YOUNGCHAE. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol Rep 2015; 34:2901-8. [PMID: 26397194 DOI: 10.3892/or.2015.4292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022] Open
|
33
|
Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. Cancer Res 2015; 75:4416-28. [PMID: 26282173 DOI: 10.1158/0008-5472.can-14-3790] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/05/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G2-M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G2-M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC.
Collapse
Affiliation(s)
- Shafiq U Ahmed
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.
| | - Ross Carruthers
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lesley Gilmour
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Colin Watts
- Department of Clinical Neurosciences, Division of Neurosurgery, ED Adrian Building, Forvie Site, Robinson Way, Cambridge University, Cambridge, United Kingdom
| | - Anthony J Chalmers
- Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
34
|
Musumeci G, Magro G, Cardile V, Coco M, Marzagalli R, Castrogiovanni P, Imbesi R, Graziano ACE, Barone F, Di Rosa M, Castorina S, Castorina A. Characterization of matrix metalloproteinase-2 and -9, ADAM-10 and N-cadherin expression in human glioblastoma multiforme. Cell Tissue Res 2015; 362:45-60. [DOI: 10.1007/s00441-015-2197-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
|
35
|
Wong SY, Ulrich TA, Deleyrolle LP, MacKay JL, Lin JMG, Martuscello RT, Jundi MA, Reynolds BA, Kumar S. Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res 2015; 75:1113-22. [PMID: 25634210 PMCID: PMC4359960 DOI: 10.1158/0008-5472.can-13-3426] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor-initiating cells (TIC) perpetuate tumor growth, enable therapeutic resistance, and drive initiation of successive tumors. Virtually nothing is known about the role of mechanotransductive signaling in controlling TIC tumorigenesis, despite the recognized importance of altered mechanics in tissue dysplasia and the common observation that extracellular matrix (ECM) stiffness strongly regulates cell behavior. To address this open question, we cultured primary human glioblastoma (GBM) TICs on laminin-functionalized ECMs spanning a range of stiffnesses. Surprisingly, we found that these cells were largely insensitive to ECM stiffness cues, evading the inhibition of spreading, migration, and proliferation typically imposed by compliant ECMs. We hypothesized that this insensitivity may result from insufficient generation of myosin-dependent contractile force. Indeed, we found that both pharmacologic and genetic activation of cell contractility through RhoA GTPase, Rho-associated kinase, or myosin light chain kinase restored stiffness-dependent spreading and motility, with TICs adopting the expected rounded and nonmotile phenotype on soft ECMs. Moreover, constitutive activation of RhoA restricted three-dimensional invasion in both spheroid implantation and Transwell paradigms. Orthotopic xenotransplantation studies revealed that control TICs formed tumors with classical GBM histopathology including diffuse infiltration and secondary foci, whereas TICs expressing a constitutively active mutant of RhoA produced circumscribed masses and yielded a 30% enhancement in mean survival time. This is the first direct evidence that manipulation of mechanotransductive signaling can alter the tumor-initiating capacity of GBM TICs, supporting further exploration of these signals as potential therapeutic targets and predictors of tumor-initiating capacity within heterogeneous tumor cell populations.
Collapse
Affiliation(s)
- Sophie Y Wong
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California. Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Theresa A Ulrich
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California. Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Joanna L MacKay
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| | - Jung-Ming G Lin
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California. Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | | | - Musa A Jundi
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, Florida. Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, Australia
| | - Sanjay Kumar
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, Berkeley, California. Department of Bioengineering, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
36
|
Bourkoula E, Mangoni D, Ius T, Pucer A, Isola M, Musiello D, Marzinotto S, Toffoletto B, Sorrentino M, Palma A, Caponnetto F, Gregoraci G, Vindigni M, Pizzolitto S, Falconieri G, De Maglio G, Pecile V, Ruaro ME, Gri G, Parisse P, Casalis L, Scoles G, Skrap M, Beltrami CA, Beltrami AP, Cesselli D. Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells 2014; 32:1239-53. [PMID: 24375787 DOI: 10.1002/stem.1605] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/16/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. METHODS AND FINDINGS We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. CONCLUSIONS The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma.
Collapse
Affiliation(s)
- Evgenia Bourkoula
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim YH, Yoo KC, Cui YH, Uddin N, Lim EJ, Kim MJ, Nam SY, Kim IG, Suh Y, Lee SJ. Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Lett 2014; 354:132-41. [PMID: 25109450 DOI: 10.1016/j.canlet.2014.07.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 12/27/2022]
Abstract
Given its contribution to malignant phenotypes of cancer, tumor hypoxia has been considered as a potential therapeutic problem. In the stressful microenvironment condition, hypoxia inducible factor 1 (HIF1) is well known to mediate the transcriptional adaptation of cells to hypoxia and acts as a central player for the process of hypoxia-driven malignant cancer progression. Here, we found that irradiation causes the HIF1α protein to stabilize, even in normoxia condition through activation of p38 MAPK, thereby promoting angiogenesis in tumor microenvironment and infiltrative property of glioma cells. Notably, irradiation reduced hydroxylation of HIF1α through destabilization of prolyl hydroxylases (PHD)-2. Moreover, radiation also decreased the half-life of protein von Hippel-Lindau (pVHL), which is a specific E3 ligase for HIF1α. Of note, inhibition of p38 MAPK attenuated radiation-induced stabilization of HIF1α through destabilization of PHD-2 and pVHL. In agreement with these results, targeting of either p38 MAPK, HIF1α, pVHL or PHD-2 effectively mitigated the radiation-induced tube formation of human brain-derived micro-vessel endothelial cells (HB-MEC) and infiltration of glioma cells. Taken together, our findings suggest that targeting HIF1α in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment.
Collapse
Affiliation(s)
- Young-Heon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ki-Chun Yoo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yan-Hong Cui
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Nizam Uddin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Eun-Jung Lim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Seon-Young Nam
- Radiation Health Research Institute, Korea Hydro & Nuclear Power Co. LTD., Seoul 132-703, Republic of Korea
| | - In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea
| | - Yongjoon Suh
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
38
|
CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol Cancer 2014; 13:15. [PMID: 24468059 PMCID: PMC3931313 DOI: 10.1186/1476-4598-13-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a lethal disease due to the high incidence of metastasis at the time of detection. CD133 expression in clinical pancreatic cancer correlates with poor prognosis and metastasis. However, the molecular mechanism of CD133-regulated metastasis remains unclear. In recent years, epithelial-mesenchymal transition (EMT) has been linked to cancer invasion and metastasis. In the present study we investigated the role of CD133 in pancreatic cancer metastasis and its potential regulatory network. METHODS A highly migratory pancreatic cancer cell line, Capan1M9, was established previously. After shRNA was stable transducted to knock down CD133 in Capan1M9 cells, gene expression was profiled by DNA microarray. Orthotopic, splenic and intravenous transplantation mouse models were set up to examine the tumorigenesis and metastatic capabilities of these cells. In further experiments, real-time RT-PCR, Western blot and co-immunoprecipitate were conducted to evaluate the interactions of CD133, Slug, N-cadherin, ERK1/2 and SRC. RESULTS We found that CD133+ human pancreatic cancer cells were prone to generating metastatic nodules in in vivo models using immunodeficient mice. In contrast, CD133 knockdown suppressed cancer invasion and metastasis in vivo. Gene profiling analysis suggested that CD133 modulated mesenchymal characteristics including the expression of EMT-related genes, such as Slug and N-cadherin. These genes were down-regulated following CD133 knockdown. Moreover, CD133 expression could be modulated by the extracellular signal-regulated kinase (ERK)1/2 and SRC signaling pathways. The binding of CD133 to ERK1/2 and SRC acts as an indispensable mediator of N-cadherin expression. CONCLUSIONS These results demonstrate that CD133 plays a critical role in facilitating the EMT regulatory loop, specifically by upregulating N-cadherin expression, leading to the invasion and metastasis of pancreatic cancer cells. Our study provides a novel insight into the function of CD133 in the EMT program and a better understanding of the mechanism underlying the involvement of CD133 in pancreatic cancer metastasis.
Collapse
|
39
|
Zhu J, Wang H, Sun Q, Ji X, Zhu L, Cong Z, Zhou Y, Liu H, Zhou M. Nrf2 is required to maintain the self-renewal of glioma stem cells. BMC Cancer 2013; 13:380. [PMID: 23937621 PMCID: PMC3751732 DOI: 10.1186/1471-2407-13-380] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022] Open
Abstract
Background Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Methods Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Results Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Conclusions Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly.
Collapse
Affiliation(s)
- Jianhong Zhu
- Medical School of Nanjing University, Nanjing, Jiangsu 210089, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jo C, Koh YH. Cadmium induces N-cadherin cleavage via ERK-mediated γ-secretase activation in C6 astroglia cells. Toxicol Lett 2013; 222:117-21. [PMID: 23876460 DOI: 10.1016/j.toxlet.2013.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
N-cadherin has known to be involved in tumor progression and metastasis. However, it is still obscure about the signaling pathway involving in the processing of N-cadherin. Thus, we examined which signaling pathway plays a major role in the processing of N-cadherin in C6 glioma cells following treatment of cadmium (Cd), a highly ubiquitous heavy metal. A cleavage product of N-cadherin, N-cad/CTF2 was observed by the treatment of Cd to C6 cells in a time and concentration-dependent manner. The production of N-cad/CTF2 was inhibited by pretreatment of γ-secretase inhibitors or siRNA transfection of nicastrin, indicating that γ-secretase is involved in the cleavage. Interestingly, Cd could activate both ERK and JNK signaling pathways in C6 cells; however, γ-secretase-mediated N-cad/CTF2 production by Cd was completely blocked by MEK1/2 inhibitors PD184352 and U0126, but not by a JNK inhibitor SP600125, demonstrating that the ERK signaling pathway plays a major role in the cleavage. In addition, pretreatment of an antioxidant or Ca²⁺ blocker blocked the production of N-cad/CTF2 by Cd together with the inhibition of ERK1/2 phosphorylation. Collectively, these results suggest that Cd increases intracellular Ca²⁺ or ROS, which induces γ-secretase-dependent N-cad/CTF2 production via the activation of the ERK signaling pathway in C6 glial cells.
Collapse
Affiliation(s)
- Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | | |
Collapse
|
41
|
Pathological features of highly invasive glioma stem cells in a mouse xenograft model. Brain Tumor Pathol 2013; 31:77-84. [PMID: 23670138 DOI: 10.1007/s10014-013-0149-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Glioma stem cells (GSCs) may be a source of tumor progression and recurrence after multimodal therapy, because of their high invasive potential. The purpose of this study was to compare the invasive and migratory properties of GSCs and non-GSCs and examine the distribution of these cells in a mouse xenograft model. Three GSC lines, G144, Y02, and Y10, cultured from human glioblastoma, were used in the study. Matrigel-invasion assays of infiltration and time-lapse studies of migration were performed for comparison of the GSCs with the corresponding differentiated non-GSC lines. Cells were also transplanted into mouse brain and the different distribution of GSCs and non-GSCs was examined in the tumor xenograft model. All 3 GSC lines had greater invasion and migration ability than the corresponding non-GSCs. In vivo, GSCs infiltrated more widely than non-GSCs and reached the contralateral hemisphere via the corpus callosum in the early stage of tumorigenesis. GSCs also primarily penetrated the subventricular zone (SVZ). GSCs have high invasive potential and tend to be present in the outer tumor bulk and infiltrate the contralateral hemisphere via the corpus callosum, in addition to penetrating the SVZ.
Collapse
|
42
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Background: Glioma stem-like cell (GSC) properties are responsible for gliomagenesis and recurrence. GSCs are invasive but its mechanism remains to be elucidated. Here, we attempted to identify the molecules that promote invasion in GSCs. Methods: Neurospheres and CD133+ cells were collected from glioblastoma (GBM) specimens and glioma cell lines by sphere-formation method and magnetic affinity cell sorting, respectively. Differential expression of gene candidates, its role in invasion and its signaling pathway were evaluated in glioma cell lines. Results: Neurospheres from surgical specimens attached to fibronectin and laminin, the receptors of which belong to the integrin family. Integrin α3 was overexpressed in CD133+ cells compared with CD133− cells in all the glioma cell lines (4 out of 4). Immunohistochemistry demonstrated the localisation of integrin α3 in GBM cells, including invading cells, and in the tumour cells around the vessels, which is believed to be a stem cell niche. The expression of integrin α3 was correlated with migration and invasion. The invasion activity of glioma cells was linked to the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2. Conclusion: Our results suggest that integrin α3 contributes to the invasive nature of GSCs via ERK1/2, which renders integrin α3 a prime candidate for anti-invasion therapy for GBM.
Collapse
|
44
|
Hitting Them Where They Live: Targeting the Glioblastoma Perivascular Stem Cell Niche. CURRENT PATHOBIOLOGY REPORTS 2013; 1:101-110. [PMID: 23766946 DOI: 10.1007/s40139-013-0012-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glioblastoma growth potential and resistance to therapy is currently largely attributed to a subset of tumor cells with stem-like properties. If correct, this means that cure will not be possible without eradication of the stem cell fraction and abrogation of those mechanisms through which stem cell activity is induced and maintained. Glioblastoma stem cell functions appear to be non-cell autonomous and the consequence of tumor cell residence within specialized domains such as the perivascular stem cell niche. In this review we consider the multiple cellular constituents of the perivascular niche, the molecular mechanisms that support niche structure and function and the implications of the perivascular localization of stem cells for anti-angiogenic approaches to cure.
Collapse
|
45
|
Chen X, Chen L, Chen J, Hu W, Gao H, Xie B, Wang X, Yin Z, Li S, Wang X. ADAM17 promotes U87 glioblastoma stem cell migration and invasion. Brain Res 2013; 1538:151-8. [PMID: 23470260 DOI: 10.1016/j.brainres.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Glioblastoma stem cells (GSCs) are thought to contribute to the diffuse invasiveness of malignant gliomas. Emerging evidence supports a role for a disintegrin and metalloproteinase 17 (ADAM17) in proteolytic ectodomain shedding of several EGFR-binding ligands, which subsequently activate PI3K/AKT and MEK/ERK pathways through EGFR phosphorylation thus mediating glioma invasiveness. However, it is not clear if ADAM17 also plays important roles in promoting GSC invasion. In this study, we isolated CD133+ GSCs from the human glioblastoma cell line U87 using fluorescence-activated cell sorting and demonstrated their increased invasive potential compared with matched non-stem tumor cells. Furthermore, we showed that CD133+ GSCs expressed higher levels of ADAM17. Immunofluorescence staining revealed that high expression levels of ADAM17 at the invasive front were correlated with the presence of CD133+ GSCs in human glioblastoma specimens. Stimulation with the ADAM17 agonist chemokine phorbol myristate acetate increased migration and invasion of GSCs, which was counteracted by ADAM17 knockdown. In addition, ADAM17 also induced CD133+ GSC invasion via activation of the EGFR/PI3K/AKT signaling pathway. These findings suggest that ADAM17 is involved in U87 GSC invasive process and may provide a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China; Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kondo T. Molecular markers of glioma initiating cells. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|