1
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
2
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
3
|
Petgrave M, Ramgoolam SD, Ganesan A. Deciphering the Molecular Association of Human CRIP1a with an Agonist-Bound Cannabinoid Receptor 1. J Chem Inf Model 2024; 64:499-517. [PMID: 38159053 DOI: 10.1021/acs.jcim.3c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cannabinoid receptor 1 (CB1) is a class A G-protein-coupled receptor that plays important roles in several physiological and pathophysiological processes. Therefore, targeted regulation of CB1 activity is a potential therapeutic strategy for several diseases, including neurological disorders. Apart from cannabinoid ligands, CB1 signaling can also be regulated by different CB1-associated proteins. In particular, the cannabinoid receptor interacting protein 1a (CRIP1a) associates with an activated CB1 receptor and alters the G-protein selectivity, thereby reducing the agonist-mediated signal transduction of the CB1 receptor. Experimental evidence suggests that two peptides corresponding to the distal and central C-terminal segments of CB1 could interact with CRIP1a. However, our knowledge of the molecular basis of CB1-CRIP1a recognition is still limited. In this work, we use an extensive combination of computational methods to build the first comprehensive atomistic model human CB1-CRIP1a complex. Our model provides novel structural insights into the interactions of CRIP1a with a membrane-embedded, complete, agonist-bound CB1 receptor in humans. Our results highlight the key residues that stabilize the CB1-CRIP1a complex, which will be useful to guide in vitro mutagenesis experiments. Furthermore, our human CB1-CRIP1a complex presents a model system for structure-based drug design to target this physiologically important complex for modulating CB1 activity.
Collapse
Affiliation(s)
- Maya Petgrave
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | - Shubham Devesh Ramgoolam
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | - Aravindhan Ganesan
- ArGan'sLab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| |
Collapse
|
4
|
Durydivka O, Mackie K, Blahos J. SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function. Front Neurosci 2023; 17:1213094. [PMID: 37547151 PMCID: PMC10397514 DOI: 10.3389/fnins.2023.1213094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Booth WT, Clodfelter JE, Leone-Kabler S, Hughes EK, Eldeeb K, Howlett AC, Lowther WT. Cannabinoid receptor interacting protein 1a interacts with myristoylated Gα i N terminus via a unique gapped β-barrel structure. J Biol Chem 2021; 297:101099. [PMID: 34418434 PMCID: PMC8446797 DOI: 10.1016/j.jbc.2021.101099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022] Open
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) modulates CB1 cannabinoid receptor G-protein coupling in part by altering the selectivity for Gαi subtype activation, but the molecular basis for this function of CRIP1a is not known. We report herein the first structure of CRIP1a at a resolution of 1.55 Å. CRIP1a exhibits a 10-stranded and antiparallel β-barrel with an interior comprised of conserved hydrophobic residues and loops at the bottom and a short helical cap at the top to exclude solvent. The β-barrel has a gap between strands β8 and β10, which deviates from β-sandwich fatty acid–binding proteins that carry endocannabinoid compounds and the Rho-guanine nucleotide dissociation inhibitor predicted by computational threading algorithms. The structural homology search program DALI identified CRIP1a as homologous to a family of lipidated-protein carriers that includes phosphodiesterase 6 delta subunit and Unc119. Comparison with these proteins suggests that CRIP1a may carry two possible types of cargo: either (i) like phosphodiesterase 6 delta subunit, cargo with a farnesyl moiety that enters from the top of the β-barrel to occupy the hydrophobic interior or (ii) like Unc119, cargo with a palmitoyl or a myristoyl moiety that enters from the side where the missing β-strand creates an opening to the hydrophobic pocket. Fluorescence polarization analysis demonstrated CRIP1a binding of an N-terminally myristoylated 9-mer peptide mimicking the Gαi N terminus. However, CRIP1a could not bind the nonmyristolyated Gαi peptide or cargo of homologs. Thus, binding of CRIP1a to Gαi proteins represents a novel mechanism to regulate cell signaling initiated by the CB1 receptor.
Collapse
Affiliation(s)
- William T Booth
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jill E Clodfelter
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Erin K Hughes
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Khalil Eldeeb
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| |
Collapse
|
7
|
Lezirovitz K, Vieira-Silva GA, Batissoco AC, Levy D, Kitajima JP, Trouillet A, Ouyang E, Zebarjadi N, Sampaio-Silva J, Pedroso-Campos V, Nascimento LR, Sonoda CY, Borges VM, Vasconcelos LG, Beck RMO, Grasel SS, Jagger DJ, Grillet N, Bento RF, Mingroni-Netto RC, Oiticica J. A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58. Hum Mol Genet 2021; 29:1520-1536. [PMID: 32337552 DOI: 10.1093/hmg/ddaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Here we define a ~200 Kb genomic duplication in 2p14 as the genetic signature that segregates with postlingual progressive sensorineural autosomal dominant hearing loss (HL) in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein coding), in addition to four uncharacterized long non-coding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to HL, such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 HL.
Collapse
Affiliation(s)
- Karina Lezirovitz
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Gleiciele A Vieira-Silva
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Ana C Batissoco
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Débora Levy
- Lipids, Oxidation, and Cell Biology Group, Head, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil
| | | | - Alix Trouillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Ellen Ouyang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Navid Zebarjadi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Juliana Sampaio-Silva
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Vinicius Pedroso-Campos
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Larissa R Nascimento
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Cindy Y Sonoda
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Vinícius M Borges
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Laura G Vasconcelos
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Roberto M O Beck
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Signe S Grasel
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Daniel J Jagger
- UCL Ear Institute, University College London, London WC1E 6BT, UK
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA 94305, USA
| | - Ricardo F Bento
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Regina C Mingroni-Netto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Jeanne Oiticica
- Otorhinolaryngology/LIM32, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil.,Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 05403-000, Brazil
| |
Collapse
|
8
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
9
|
Egaña-Huguet J, Saumell-Esnaola M, Achicallende S, Soria-Gomez E, Bonilla-Del Río I, García Del Caño G, Barrondo S, Sallés J, Gerrikagoitia I, Puente N, Elezgarai I, Grandes P. Lack of the Transient Receptor Potential Vanilloid 1 Shifts Cannabinoid-Dependent Excitatory Synaptic Plasticity in the Dentate Gyrus of the Mouse Brain Hippocampus. Front Neuroanat 2021; 15:701573. [PMID: 34305539 PMCID: PMC8294191 DOI: 10.3389/fnana.2021.701573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) participates in synaptic functions in the brain. In the dentate gyrus, post-synaptic TRPV1 in the granule cell (GC) dendritic spines mediates a type of long-term depression (LTD) of the excitatory medial perforant path (MPP) synapses independent of pre-synaptic cannabinoid CB1 receptors. As CB1 receptors also mediate LTD at these synapses, both CB1 and TRPV1 might be influencing the activity of each other acting from opposite synaptic sites. We tested this hypothesis in the MPP–GC synapses of mice lacking TRPV1 (TRPV1-/-). Unlike wild-type (WT) mice, low-frequency stimulation (10 min at 10 Hz) of TRPV1-/- MPP fibers elicited a form of long-term potentiation (LTP) that was dependent on (1) CB1 receptors, (2) the endocannabinoid 2-arachidonoylglycerol (2-AG), (3) rearrangement of actin filaments, and (4) nitric oxide signaling. These functional changes were associated with an increase in the maximum binding efficacy of guanosine-5′-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) stimulated by the CB1 receptor agonist CP 55,940, and a significant decrease in receptor basal activation in the TRPV1-/- hippocampus. Finally, TRPV1-/- hippocampal synaptosomes showed an augmented level of the guanine nucleotide-binding (G) Gαi1, Gαi2, and Gαi3 protein alpha subunits. Altogether, the lack of TRPV1 modifies CB1 receptor signaling in the dentate gyrus and causes the shift from CB1 receptor-mediated LTD to LTP at the MPP–GC synapses.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Svein Achicallende
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Gontzal García Del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain.,Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, Centro de Investigación Biomédica en Red de Salud Mental, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
10
|
Molina-Holgado E, Paniagua-Torija B, Arevalo-Martin A, Moreno-Luna R, Esteban PF, Le MQU, Del Cerro MDM, Garcia-Ovejero D. Cannabinoid Receptor 1 associates to different molecular complexes during GABAergic neuron maturation. J Neurochem 2021; 158:640-656. [PMID: 33942314 DOI: 10.1111/jnc.15381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Minh Quynh Uyen Le
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
11
|
Chen D, Wu H, Feng X, Chen Y, Lv Z, Kota VG, Chen J, Wu W, Lu Y, Liu H, Zhang Y, Zheng S, Wu J. DNA Methylation of Cannabinoid Receptor Interacting Protein 1 Promotes Pathogenesis of Intrahepatic Cholangiocarcinoma Through Suppressing Parkin-Dependent Pyruvate Kinase M2 Ubiquitination. Hepatology 2021; 73:1816-1835. [PMID: 32955740 DOI: 10.1002/hep.31561] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Methylation landscape is important for maintaining the silence of cannabinoid receptor-interacting protein 1 (CNRIP1) in some tumors. However, the role of CNRIP1 in intrahepatic cholangiocarcinoma (ICC) remains poorly defined. APPROACH AND RESULTS In our study, we showed that CNRIP1 was down-regulated in ICC tissues, and low expression of CNRIP1 was significantly associated with poor prognosis of patients with ICC in 3-year overall survival and tumor-free survival. Investigating the genomic DNA methylation profile, we disclosed a CpG island site named CNRIP1 MS-2 (CNRIP1 methylation site-2) that contributes to the down-regulation of CNRIP1. In addition, the methylation level of CNRIP1 MS-2 was correlated to the pathological grade, metastasis, and tumor-node-metastasis classification in ICC. Notably, we observed that CNRIP1 suppressed tumor cell migration, invasion, and proliferation by inhibiting the activity of pyruvate kinase M2 (PKM2). Sustained overexpression of CNRIP1 suppressed the in vivo tumor growth in a mouse xenograft model. It was also found that CNRIP1 overexpression activated Parkin (an E3 ubiquitin ligase), which resulted in the protein degradation of PKM2 in ICC cells. CONCLUSIONS We identified that CNRIP1 acted as a putative tumor suppressor in ICC, which suggested that CNRIP1 could be a candidate biomarker for predicting tumor recurrence in patients with ICC. Furthermore, these findings highlight a potential therapeutic approach in targeting the CNRIP1/Parkin/PKM2 pathway for the treatment of ICC.
Collapse
Affiliation(s)
- Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Yunhao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Vishnu Goutham Kota
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Wenxuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Yuejie Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Hua Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Yanpeng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, National Health Commission, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Oliver EE, Hughes EK, Puckett MK, Chen R, Lowther WT, Howlett AC. Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in Health and Disease. Biomolecules 2020; 10:biom10121609. [PMID: 33261012 PMCID: PMC7761089 DOI: 10.3390/biom10121609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling depends upon the CB1 and CB2 cannabinoid receptors, their endogenous ligands anandamide and 2-arachidonoylglycerol, and intracellular proteins that mediate responses via the C-terminal and other intracellular receptor domains. The CB1 receptor regulates and is regulated by associated G proteins predominantly of the Gi/o subtypes, β-arrestins 1 and 2, and the cannabinoid receptor-interacting protein 1a (CRIP1a). Evidence for a physiological role for CRIP1a is emerging as data regarding the cellular localization and function of CRIP1a are generated. Here we summarize the neuronal distribution and role of CRIP1a in endocannabinoid signaling, as well as discuss investigations linking CRIP1a to development, vision and hearing sensory systems, hippocampus and seizure regulation, and psychiatric disorders including schizophrenia. We also examine the genetic and epigenetic association of CRIP1a within a variety of cancer subtypes. This review provides evidence upon which to base future investigations on the function of CRIP1a in health and disease.
Collapse
Affiliation(s)
- Emily E. Oliver
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Erin K. Hughes
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Meaghan K. Puckett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - W. Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Correspondence: ; Tel.: +1-336-716-8545
| |
Collapse
|
13
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
14
|
Fletcher-Jones A, Hildick KL, Evans AJ, Nakamura Y, Henley JM, Wilkinson KA. Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R). Front Mol Neurosci 2020; 13:108. [PMID: 32595453 PMCID: PMC7304349 DOI: 10.3389/fnmol.2020.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system (ECS) acts as a negative feedback mechanism to suppress synaptic transmission and plays a major role in a diverse range of brain functions including, for example, the regulation of mood, energy balance, and learning and memory. The function and dysfunction of the ECS are strongly implicated in multiple psychiatric, neurological, and neurodegenerative diseases. Cannabinoid type 1 receptor (CB1R) is the most abundant G protein-coupled receptor (GPCR) expressed in the brain and, as for any synaptic receptor, CB1R needs to be in the right place at the right time to respond appropriately to changing synaptic circumstances. While CB1R is found intracellularly throughout neurons, its surface expression is highly polarized to the axonal membrane, consistent with its functional expression at presynaptic sites. Surprisingly, despite the importance of CB1R, the interacting proteins and molecular mechanisms that regulate the highly polarized distribution and function of CB1R remain relatively poorly understood. Here we set out what is currently known about the trafficking pathways and protein interactions that underpin the surface expression and axonal polarity of CB1R, and highlight key questions that still need to be addressed.
Collapse
Affiliation(s)
- Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Keri L Hildick
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Ashley J Evans
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Yasuko Nakamura
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Eldeeb K, Wittmann TG, Leone-Kabler S, Howlett AC. The CB1 cannabinoid receptor‐mediated inhibition of cAMP accumulation in neuroblastoma cells: role of different Gi/o protein subtypes. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.04298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Lv YC, Gao AB, Yang J, Zhong LY, Jia B, Ouyang SH, Gui L, Peng TH, Sun S, Cayabyab FS. Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregulation in dopaminergic neurons. Neural Regen Res 2020; 15:712-723. [PMID: 31638096 PMCID: PMC6975149 DOI: 10.4103/1673-5374.266916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolonged activation of adenosine A1 receptor likely leads to damage of dopaminergic neurons and subsequent development of neurodegenerative diseases. However, the pathogenesis underlying long-term adenosine A1 receptor activation-induced neurodegeneration remains unclear. In this study, rats were intraperitoneally injected with 5 mg/kg of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) for five weeks. The mobility of rats was evaluated by forced swimming test, while their cognitive capabilities were evaluated by Y-maze test. Expression of sortilin, α-synuclein, p-JUN, and c-JUN proteins in the substantia nigra were detected by western blot analysis. In addition, immunofluorescence staining of sortilin and α-synuclein was performed to detect expression in the substantia nigra. The results showed that, compared with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg) + CPA co-treated rats, motor and memory abilities were reduced, surface expression of sortin and α-synuclein in dopaminergic neurons was reduced, and total sortilin and total α-synuclein were increased in CPA-treated rats. MN9D cells were incubated with 500 nM CPA alone or in combination with 10 μM SP600125 (JNK inhibitor) for 48 hours. Quantitative real-time polymerase chain reaction analysis of sortilin and α-synuclein mRNA levels in MN9D cells revealed upregulated sortilin expression in MN9D cells cultured with CPA alone, but the combination of CPA and SP600125 could inhibit this expression. Predictions made using Jasper, PROMO, and Alibaba online databases identified a highly conserved sequence in the sortilin promoter that was predicted to bind JUN in both humans and rodents. A luciferase reporter assay of sortilin promoter plasmid-transfected HEK293T cells confirmed this prediction. After sortilin expression was inhibited by sh-SORT1, expression of p-JUN and c-JUN was detected by western blot analysis. Long-term adenosine A1 receptor activation levels upregulated α-synuclein expression at the post-transcriptional level by affecting sortilin expression. The online tool Raptor-X-Binding and Discovery Studio 4.5 prediction software predicted that sortilin can bind to α-synuclein. Co-immunoprecipitation revealed an interaction between sortilin and α-synuclein in MN9D cells. Our findings indicate that suppression of prolonged adenosine A1 receptor activation potently inhibited sortilin expression and α-synuclein accumulation, and dramatically improved host cognition and kineticism. This study was approved by the University Committee of Animal Care and Supply at the University of Saskatchewan (approval No. AUP#20070090) in March 2007 and the Animals Ethics Committee of University of South China (approval No. LL0387-USC) in June 2017.
Collapse
Affiliation(s)
- Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China; Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - An-Bo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College; Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan Province, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Li-Yuan Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Bo Jia
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Shu-Hui Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Le Gui
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Sha Sun
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan Province, China
| | - Francisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
17
|
Singh P, Ganjiwale A, Howlett AC, Cowsik SM. Molecular Interaction between Distal C-Terminal Domain of the CB 1 Cannabinoid Receptor and Cannabinoid Receptor Interacting Proteins (CRIP1a/CRIP1b). J Chem Inf Model 2019; 59:5294-5303. [PMID: 31769975 DOI: 10.1021/acs.jcim.9b00948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the structure of the distal C-terminal domain of the of the CB1 cannabinoid receptor (CB1R) to study its interactions with CRIP1a and CRIP1b using computational techniques. The amino acid sequence from the distal C-terminal domain of CB1R (G417-L472) was found to be unique, as it does not share sequence similarity with other protein structures, so the structure was predicted using ab initio modeling. The computed model of the distal C-terminal region of CB1R has a helical region between positions 441 and 455. The CRIP1a and CRIP1b were modeled using Rho-GDI 2 as a template. The three-dimensional model of the distal C-terminal domain of the CB1R was docked with both CRIP1a as well as CRIP1b to study the crucial interactions between CB1R and CRIP1a/b. The last nine residues of CB1R (S464TDTSAEAL4722) are known to be a CRIP1a/b binding site. The majority of the key interactions were identified in this region, but notable interactions were also observed beyond theses nine residues. The multiple interactions between Thr418 (CB1R) and Asn61 (CRIP1a) as well as Asp430 (CB1R) and Lys76 (CRIP1a) indicate their importance in the CB1R-CRIP1a interaction. In the case of CRIP1b, multiple hydrogen bond interactions between Asn437 (CB1R) and Glu77 (CRIP1b) were observed. These interactions can be critical for CB1R's interaction with CRIP1a/b, and targeting them for further experimental studies can advance information about CRIP1a/b functionality.
Collapse
Affiliation(s)
- Pratishtha Singh
- School of Life Sciences , Jawaharlal Nehru University , New Delhi - 110067 , India
| | - Anjali Ganjiwale
- Department of Life Sciences , Bangalore University , Bangalore - 560056 , India
| | - Allyn C Howlett
- Department of Physiology and Pharmacology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Sudha M Cowsik
- School of Life Sciences , Jawaharlal Nehru University , New Delhi - 110067 , India
| |
Collapse
|
18
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. Biphasic effects of methanandamide on murine gastric vagal afferent mechanosensitivity. J Physiol 2019; 598:139-150. [PMID: 31642519 DOI: 10.1113/jp278696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The fine control of food intake is important for the maintenance of a healthy metabolic state. Gastric vagal afferents (GVAs) are involved in the peripheral regulation of food intake via signalling the degree of distension of the stomach which ultimately leads to feelings of fullness and satiety. This study provides evidence that endocannabinoids such as anandamide are capable of regulating GVA sensitivity in a concentration-dependent biphasic manner. This biphasic effect is dependent upon interactions between the CB1, TRPV1 and GHSR receptors. These data have important implications for the peripheral control of food intake. ABSTRACT Gastric vagal afferents (GVAs) signal to the hindbrain resulting in satiety. Endocannabinoids are endogenous ligands of cannabinoid 1 receptor (CB1) and transient receptor potential vanilloid-1 (TRPV1) channels. The endocannabinoid anandamide (AEA) is expressed in the stomach, and its receptor CB1 is expressed in ghrelin-positive gastric mucosal cells. Further, TRPV1, CB1 and growth hormone secretagogue receptor (ghrelin receptor, GHSR) are expressed in subpopulations of GVA neurons. This study aimed to determine the interaction between TRPV1, CB1, GHSR and endocannabinoids in the modulation of GVA signalling. An in vitro electrophysiology preparation was used to assess GVA mechanosensitivity in male C57BL/6 mice. Effects of methanandamide (mAEA; 1-100 nm), on GVA responses to stretch were determined in the absence and presence of antagonists of CB1, TRPV1, GHSR, protein kinase-A (PKA), protein kinase-C (PKC) and G-protein subunits Gαi/o , or Gαq . Low doses (1-10 nm) of mAEA reduced GVA responses to 3 g stretch, whereas high doses (30-100 nm) increased the response. The inhibitory and excitatory effects of mAEA (1-100 nm) were reduced/lost in the presence of a CB1 and TRPV1 antagonist. PKA, Gαi/o or GHSR antagonists prevented the inhibitory effect of mAEA on GVA mechanosensitivity. Conversely, in the presence of a PKC or Gαq antagonist the excitatory effect of mAEA was reduced or lost, respectively. Activation of CB1, by mAEA, can activate or inhibit TRPV1 to increase or decrease GVA responses to stretch, depending on the pathway activated. These interactions could play an important role in the fine control of food intake.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| |
Collapse
|
19
|
Booth WT, Walker NB, Lowther WT, Howlett AC. Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure. Molecules 2019; 24:molecules24203672. [PMID: 31614728 PMCID: PMC6832298 DOI: 10.3390/molecules24203672] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3′,5′monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via β-arrestin, suggesting that CRIP1a competes for β-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.
Collapse
Affiliation(s)
- William T Booth
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Noah B Walker
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
- Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA.
| | - Allyn C Howlett
- Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA.
- Department of Physiology and Pharmacology, Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
20
|
Eldeeb K, Ganjiwale AD, Chandrashekaran IR, Padgett LW, Burgess J, Howlett AC, Cowsik SM. CB1 cannabinoid receptor-phosphorylated fourth intracellular loop structure-function relationships. Pept Sci (Hoboken) 2018; 111. [PMID: 32411924 DOI: 10.1002/pep2.24104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A peptide comprising the juxtamembrane C-terminal intracellular loop 4 (IL4) of the CB1 cannabinoid receptor possesses three Serine residues (Ser402, Ser411 and Ser415). Here we report the effect of Ser phosphorylation on the CB1 IL4 peptide conformation and cellular signaling functions using nuclear magnetic resonance spectroscopy, circular dichroism, G protein activation and cAMP production. Circular dichroism studies indicated that phosphorylation at various Ser residues induced helical structure in different environments. NMR data indicates that helical content varies in the order of IL4pSer411 > IL4pSer415 > IL4 > IL4pSer402. The efficacy of phosphorylated IL4 peptides in activating Go and Gi3 ([35S]GTPγS binding) and inhibiting cAMP accumulation in N18TG2 cells were correlated with helicity changes. Treatment of cells with bradykinin, which activates PKC, augmented CB1-mediated inhibition of cAMP accumulation, and this was reversed by a PKC inhibitor, suggesting that phosphorylation of serine might be a physiologically relevant modification in vivo. We conclude that phosphorylation-dependent alterations of helicity of CB1 IL4 peptides can increase efficacy of G protein signaling.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.,Al Azhar Faculty of Medicine, New Damietta, Egypt
| | - Anjali D Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, India
| | | | - Lea W Padgett
- J.L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | | - Allyn C Howlett
- Wake Forest University Health Sciences, Winston-Salem, NC, USA.,J.L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | | |
Collapse
|
21
|
Kargapolova Y, Levin M, Lackner K, Danckwardt S. sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Res 2017; 45:6074-6086. [PMID: 28334977 PMCID: PMC5449641 DOI: 10.1093/nar/gkx152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are central for gene expression by controlling the RNA fate from birth to decay. Various disorders arising from perturbations of RNA-protein interactions document their critical function. However, deciphering their function is complex, limiting the general functional elucidation of this growing class of proteins and their contribution to (patho)physiology. Here, we present sCLIP, a simplified and robust platform for genome-wide interrogation of RNA-protein interactomes based on crosslinking-immunoprecipitation and high-throughput sequencing. sCLIP exploits linear amplification of the immunoprecipitated RNA improving the complexity of the sequencing-library despite significantly reducing the amount of input material and omitting several purification steps. Additionally, it permits a radiolabel-free visualization of immunoprecipitated RNA. In a proof of concept, we identify that CSTF2tau binds many previously not recognized RNAs including histone, snoRNA and snRNAs. CSTF2tau-binding is associated with internal oligoadenylation resulting in shortened snRNA isoforms subjected to rapid degradation. We provide evidence for a new mechanism whereby CSTF2tau controls the abundance of snRNAs resulting in alternative splicing of several RNAs including ANK2 with critical roles in tumorigenesis and cardiac function. Combined with a bioinformatic pipeline sCLIP thus uncovers new functions for established RBPs and fosters the illumination of RBP-protein interaction landscapes in health and disease.
Collapse
Affiliation(s)
- Yulia Kargapolova
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Germany
| | - Michal Levin
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Germany
| | - Karl Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Germany
| |
Collapse
|
22
|
Singh P, Ganjiwale A, Howlett AC, Cowsik SM. In silico interaction analysis of cannabinoid receptor interacting protein 1b (CRIP1b) - CB1 cannabinoid receptor. J Mol Graph Model 2017; 77:311-321. [PMID: 28918320 PMCID: PMC5816684 DOI: 10.1016/j.jmgm.2017.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/16/2023]
Abstract
Cannabinoid Receptor Interacting Protein isoform 1b (CRIP1b) is known to interact with the CB1 receptor. Alternative splicing of the CNRIP1 gene produces CRIP1a and CRIP1b with a difference in the third exon only. Exons 1 and 2 encode for a functional domain in both proteins. CRIP1a is involved in regulating CB1 receptor internalization, but the function of CRIP1b is not very well characterized. Since there are significant identities in functional domains of these proteins, CRIP1b is a potential target for drug discovery. We report here predicted structure of CRIP1b followed by its interaction analysis with CB1 receptor by in-silico methods A number of complementary computational techniques, including, homology modeling, ab-initio and protein threading, were applied to generate three-dimensional molecular models for CRIP1b. The computed model of CRIP1b was refined, followed by docking with C terminus of CB1 receptor to generate a model for the CRIP1b- CB1 receptor interaction. The structure of CRIP1b obtained by homology modelling using RHO_GDI-2 as template is a sandwich fold structure having beta sheets connected by loops, similar to predicted CRIP1a structure. The best scoring refined model of CRIP1b in complex with the CB1 receptor C terminus peptide showed favourable polar interactions. The overall binding pocket of CRIP1b was found to be overlapping to that of CRIP1a. The Arg82 and Cys126 of CRIP1b are involved in the majority of hydrogen bond interactions with the CB1 receptor and are possible key residues required for interactions between the CB1 receptor and CRIP1b.
Collapse
Affiliation(s)
- Pratishtha Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore 560056, India
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sudha M Cowsik
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
23
|
Eldeeb K, Leone-Kabler S, Howlett AC. Mouse Neuroblastoma CB 1 Cannabinoid Receptor-Stimulated [ 35S]GTPɣS Binding: Total and Antibody-Targeted Gα Protein-Specific Scintillation Proximity Assays. Methods Enzymol 2017; 593:1-21. [PMID: 28750799 PMCID: PMC6535336 DOI: 10.1016/bs.mie.2017.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are important regulators of cellular signaling functions and therefore are a major target for drug discovery. The CB1 cannabinoid receptor is among the most highly expressed GPCRs in neurons, where it regulates many differentiated neuronal functions. One model system for studying the biochemistry of neuronal responses is the use of neuroblastoma cells originating from the C1300 tumor in the A/J mouse, including cloned cell lines NS20, N2A, N18TG2, N4TG1, and N1E-115, and various immortalized hybrids of neurons with N18TG2 cells. GPCR signal transduction is mediated through interaction with multiple types and subtypes of G proteins that transduce the receptor stimulus to effectors. The [35S]GTPɣS assay provides a valuable pharmacological method to evaluate efficacy and potency in the first step in GPCR signaling. Here, we present detailed protocols for the [35S]GTPɣS-binding assay to measure the total G protein binding and the antibody-targeted scintillation proximity assay to measure specific Gα proteins in neuroblastoma cell membrane preparations. This chapter presents step-by-step methods from cell culture, membrane preparation, assay procedures, and data analysis.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Wake Forest School of Medicine, Winston-Salem, NC, United States; Campbell University School of Osteopathic Medicine, Lillington, NC, United States; AL-Azhar Faculty of Medicine, New Damietta, Egypt.
| | | | - Allyn C Howlett
- Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
24
|
The Cannabinoid Receptor Interacting Proteins 1 of zebrafish are not required for morphological development, viability or fertility. Sci Rep 2017; 7:4858. [PMID: 28687732 PMCID: PMC5501828 DOI: 10.1038/s41598-017-05017-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/23/2017] [Indexed: 01/10/2023] Open
Abstract
The Cannabinoid Receptor Interacting Protein 1 (Cnrip1) was discovered as an interactor with the intracellular region of Cannabinoid Receptor 1 (CB1R, also known as Cnr1 or CB1). Functional assays in mouse show cannabinoid sensitivity changes and Cnrip1 has recently been suggested to control eye development in Xenopus laevis. Two Cnrip1 genes are described in zebrafish, cnrip1a and cnrip1b. In situ mRNA hybridisation revealed accumulation of mRNA encoding each gene primarily in brain and spinal cord, but also elsewhere. For example, cnrip1b is expressed in forming skeletal muscle. CRISPR/Cas9 genome editing generated predicted null mutations in cnrip1a and cnrip1b. Each mutation triggered nonsense-mediated decay of the respective mRNA transcript. No morphological or behavioural phenotype was observed in either mutant. Moreover, fish lacking both Cnrip1a and Cnrip1b both maternally and zygotically are viable and fertile and no phenotype has so far been detected despite strong evolutionary conservation over at least 400 Myr.
Collapse
|
25
|
Mascia F, Klotz L, Lerch J, Ahmed MH, Zhang Y, Enz R. CRIP1a inhibits endocytosis of G-protein coupled receptors activated by endocannabinoids and glutamate by a common molecular mechanism. J Neurochem 2017; 141:577-591. [PMID: 28295323 DOI: 10.1111/jnc.14021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/10/2017] [Indexed: 01/20/2023]
Abstract
The excitability of the central nervous system depends largely on the surface density of neurotransmitter receptors. The endocannabinoid receptor 1 (CB1 R) and the metabotropic glutamate receptor mGlu8 R are expressed pre-synaptically where they reduce glutamate release into the synaptic cleft. Recently, the CB1 R interacting protein cannabinoid receptor interacting protein 1a (CRIP1a) was identified and characterized to regulate CB1 R activity in neurons. However, underlying molecular mechanisms are largely unknown. Here, we identified a common mechanism used by CRIP1a to regulate the cell surface density of two different types of G-protein coupled receptors, CB1 R and mGlu8a R. Five amino acids within the CB1 R C-terminus were required and sufficient to reduce constitutive CB1 R endocytosis by about 72% in the presence of CRIP1a. Interestingly, a similar sequence is present in mGlu8a R and consistently, endocytosis of mGlu8a R depended on CRIP1a, as well. Docking analysis and molecular dynamics simulations identified a conserved serine in CB1 R (S468) and mGlu8a R (S894) that forms a hydrogen bond with the peptide backbone of CRIP1a at position R82. In contrast to mGlu8a R, the closely related mGlu8b R splice-variant carries a lysine (K894) at this position, and indeed, mGlu8b R endocytosis was not affected by CRIP1a. Chimeric constructs between CB1 R, mGlu8a R, and mGlu8b R underline the role of the identified five CRIP1a sensitive amino acids. In summary, we suggest that CRIP1a negatively regulates endocytosis of two different G-protein coupled receptor types, CB1 R and mGlu8a R.
Collapse
Affiliation(s)
- Fabrizio Mascia
- Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Klotz
- Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Judith Lerch
- Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ralf Enz
- Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
26
|
Blume LC, Patten T, Eldeeb K, Leone-Kabler S, Ilyasov AA, Keegan BM, O'Neal JE, Bass CE, Hantgan RR, Lowther WT, Selley DE, Howlett ALC. Cannabinoid Receptor Interacting Protein 1a Competition with β-Arrestin for CB1 Receptor Binding Sites. Mol Pharmacol 2016; 91:75-86. [PMID: 27895162 DOI: 10.1124/mol.116.104638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminal-associated protein that alters CB1R interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CB1R interactions with β-arrestin proteins that interact with the CB1R at the C-terminus. Coimmunoprecipitation studies indicated that CB1R associates in complexes with either CRIP1a or β-arrestin, but CRIP1a and β-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and β-arrestin binding to the CB1R, which we hypothesized could attenuate the action of β-arrestin to mediate CB1R internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CB1Rs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CB1R. CRIP1a overexpression attenuated CP55940-mediated GFP-CB1R as well as endogenous β-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented β-arrestin redistribution to punctae. Peptides mimicking the CB1R C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CB1R distal C-terminus 14-mer peptide reduced CB1R-CRIP1a association. Coimmunoprecipitation of CB1R protein complexes demonstrated that central or distal C-terminal peptides competed for the CB1R association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with β-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with β-arrestin 2. Thus, CRIP1a can compete with β-arrestins for interaction with C-terminal CB1R domains that could affect agonist-driven, β-arrestin-mediated internalization of the CB1R.
Collapse
Affiliation(s)
- Lawrence C Blume
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Theresa Patten
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Khalil Eldeeb
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Alexander A Ilyasov
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Bradley M Keegan
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Jeremy E O'Neal
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Caroline E Bass
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Roy R Hantgan
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - W Todd Lowther
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - Dana E Selley
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| | - A Llyn C Howlett
- Department of Physiology and Pharmacology (L.C.B., T.P, K.E., S.L.-K., A.A.I., B.M.K., J.E.O., C.E.B., A.C.H.) and Department of Biochemistry and Center for Structural Biology (R.R.H., W.T.L.), Wake Forest University Health Sciences, Winston-Salem, North Carolina; Department of Chemistry (T.P.) and Center for Molecular Signaling (W.T.L., A.C.H.), Wake Forest University, Winston-Salem, North Carolina; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (D.E.S.); and AL Azhar Faculty of Medicine, New Damietta, Egypt (K.E.)
| |
Collapse
|
27
|
Blume LC, Leone-Kabler S, Luessen DJ, Marrs GS, Lyons E, Bass CE, Chen R, Selley DE, Howlett AC. Cannabinoid receptor interacting protein suppresses agonist-driven CB 1 receptor internalization and regulates receptor replenishment in an agonist-biased manner. J Neurochem 2016; 139:396-407. [PMID: 27513693 DOI: 10.1111/jnc.13767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/09/2016] [Accepted: 08/03/2016] [Indexed: 01/30/2023]
Abstract
Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.
Collapse
Affiliation(s)
- Lawrence C Blume
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA.,Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Erica Lyons
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Caroline E Bass
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA. .,Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina, USA.
| |
Collapse
|
28
|
Mattheus T, Kukla K, Zimmermann T, Tenzer S, Lutz B. Cell Type-Specific Tandem Affinity Purification of the Mouse Hippocampal CB1 Receptor-Associated Proteome. J Proteome Res 2016; 15:3585-3601. [PMID: 27596989 DOI: 10.1021/acs.jproteome.6b00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein coupled receptors (GPCRs) exert their effects through multiprotein signaling complexes. The cannabinoid receptor type 1 (CB1) is among the most abundant GPCRs in the mammalian brain and involved in a plethora of physiological functions. We used a combination of viral-mediated cell type-specific expression of a tagged CB1 fusion protein (CB1-SF), tandem affinity purification (TAP) and proteomics on hippocampal mouse tissue to analyze the composition and differences of CB1 protein complexes in glutamatergic neurons and in GABAergic interneurons. Purified proteins underwent tryptic digestion and were identified using deep-coverage data-independent acquisition with ion mobility separation-enhanced mass spectroscopy, leading to the identification of 951 proteins specifically enriched in glutamatergic and GABAergic CB1-SF TAP samples as compared to controls. Gene Ontology and protein network analyses showed an enrichment of single proteins and functional clusters of proteins involved in already well described domains of CB1 functions. Supported by this consistent data set we could confirm already known CB1 interactors, reveal new potentially interacting proteins and differences in cell type-specific signaling properties of CB1, thereby providing the foundation for further functional studies on differential CB1 signaling.
Collapse
Affiliation(s)
- Tobias Mattheus
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Katharina Kukla
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Tina Zimmermann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz , Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz , Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
29
|
Luessen DJ, Hinshaw TP, Sun H, Howlett AC, Marrs G, McCool BA, Chen R. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology 2016; 110:297-307. [PMID: 27528587 DOI: 10.1016/j.neuropharm.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Tyler P Hinshaw
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
30
|
Eldeeb K, Leone-Kabler S, Howlett AC. CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function. J Basic Clin Physiol Pharmacol 2016; 27:311-22. [PMID: 27089415 PMCID: PMC5497837 DOI: 10.1515/jbcpp-2015-0096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/10/2016] [Indexed: 04/20/2023]
Abstract
BACKGROUND CB1 cannabinoid receptors (CB1Rs) stimulate Gi/o-dependent signaling pathways. CB1R-mediated cAMP increases were proposed to result from Gs activation, but CB1R-stimulated GTPγS binding to Gs has not heretofore been investigated. METHODS Three models of CB1R-stimulated cAMP production were tested: pertussis toxin disruption of Gi/o in N18TG2 cells; L341A/A342L-CB1R expressed in Chinese hamster ovary (CHO) cells; and CB1 and D2 dopamine receptors endogenously co-expressed in MN9D cells. cAMP was assayed by [3H]cAMP binding competition. G protein activation was assayed by the antibody-targeted scintillation proximity assay. RESULTS In L341A/A342L-CB1-CHO cells, cannabinoid agonists significantly stimulated cAMP accumulation over vehicle; (-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxyl propyl] cyclohexan-1-ol (CP55940)-stimulated [35S]GTPγS binding to Gi1/2/3 was reversed, whereas binding to Gs was not different from CB1R. In MN9D cells, CB1 agonist HU210 or D2 agonist quinpirole alone inhibited forskolin-activated cAMP accumulation, whereas HU210 plus quinpirole increased cAMP accumulation above basal. HU210 alone stimulated [35S]GTPγS binding to Gi1/2/3, whereas co-stimulation with quinpirole reversed HU210-stimulated [35S]GTPγS binding to Gi1/2/3. CONCLUSIONS CB1R couples to Gs but with low efficacy compared to Gi/o. The L341A/A342L mutation in CB1R reversed CP55940 activation of Gi to an inhibition, but had no effect on Gs. Combined CB1 plus D2 agonists in MN9D cells converted the CB1 agonist-mediated activation of Gi to inhibition of Gi. In these models, the CB1 agonist response was converted to an inverse agonist response at Gi activation. Cannabinoid agonist-stimulated cAMP accumulation can be best explained as reduced activation of Gi, thereby attenuating the tonic inhibitory influence of Gi on the major isoforms of adenylyl cyclase.
Collapse
Affiliation(s)
- Khalil Eldeeb
- Dept. Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- ALAzhar Faculty of Medicine, New Damietta, Egypt
- Dept Pharmacology, Campbell School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Sandra Leone-Kabler
- Dept. Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allyn C. Howlett
- Dept. Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
31
|
Hájková A, Techlovská Š, Dvořáková M, Chambers JN, Kumpošt J, Hubálková P, Prezeau L, Blahos J. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology 2016; 107:201-214. [PMID: 26970018 DOI: 10.1016/j.neuropharm.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1.
Collapse
Affiliation(s)
- Alena Hájková
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Šárka Techlovská
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Michaela Dvořáková
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jayne Nicole Chambers
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jiří Kumpošt
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Pavla Hubálková
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Laurent Prezeau
- Institut de Génomique Fonctionnelle, University of Montpellier 1 and 2, Montpellier, France
| | - Jaroslav Blahos
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| |
Collapse
|
32
|
Smith TH, Blume LC, Straiker A, Cox JO, David BG, McVoy JRS, Sayers KW, Poklis JL, Abdullah RA, Egertová M, Chen CK, Mackie K, Elphick MR, Howlett AC, Selley DE. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation. Mol Pharmacol 2015; 87:747-65. [PMID: 25657338 DOI: 10.1124/mol.114.096495] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist-stimulated CB1R signaling and downregulation of CB1Rs. Thus, CRIP1a appears to act as a broad negative regulator of CB1R function.
Collapse
Affiliation(s)
- Tricia H Smith
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Lawrence C Blume
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Alex Straiker
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Jordan O Cox
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Bethany G David
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Julie R Secor McVoy
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Katherine W Sayers
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Justin L Poklis
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Rehab A Abdullah
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Michaela Egertová
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Ching-Kang Chen
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Ken Mackie
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Maurice R Elphick
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Allyn C Howlett
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| | - Dana E Selley
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies (T.H.S., J.O.C., B.G.D., J.R.S.M., J.L.P., R.A.A., D.E.S.), Department of Anatomy and Neurobiology (K.W.S.), Department of Biochemistry and Molecular Biology (C.-K.C.), Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina (L.C.B., A.C.H.); The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana (A.S., K.M.); and School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom (M.E., M.R.E.)
| |
Collapse
|