1
|
Qannita RA, Alalami AI, Harb AA, Aleidi SM, Taneera J, Abu-Gharbieh E, El-Huneidi W, Saleh MA, Alzoubi KH, Semreen MH, Hudaib M, Bustanji Y. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals (Basel) 2024; 17:195. [PMID: 38399410 PMCID: PMC10892333 DOI: 10.3390/ph17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.
Collapse
Affiliation(s)
- Reem A. Qannita
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayah I. Alalami
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman 19111, Jordan;
| | - Shereen M. Aleidi
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Hudaib
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (R.A.Q.); (A.I.A.); (J.T.); (E.A.-G.); (W.E.-H.); (M.A.S.); (K.H.A.); (M.H.S.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (S.M.A.); (M.H.)
| |
Collapse
|
2
|
Arseni C, Samiotaki M, Panayotou G, Simos G, Mylonis I. Combinatorial regulation by ERK1/2 and CK1δ protein kinases leads to HIF-1α association with microtubules and facilitates its symmetrical distribution during mitosis. Cell Mol Life Sci 2024; 81:72. [PMID: 38300329 PMCID: PMC10834586 DOI: 10.1007/s00018-024-05120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is the key transcriptional mediator of the cellular response to hypoxia and is also involved in cancer progression. Regulation of its oxygen-sensitive HIF-1α subunit involves post-translational modifications that control its stability, subcellular localization, and activity. We have previously reported that phosphorylation of the HIF-1α C-terminal domain by ERK1/2 promotes HIF-1α nuclear accumulation and stimulates HIF-1 activity while lack of this modification triggers HIF-1α nuclear export and its association with mitochondria. On the other hand, modification of the N-terminal domain of HIF-1α by CK1δ impairs HIF-1 activity by obstructing the formation of a HIF-1α/ARNT heterodimer. Investigation of these two antagonistic events by expressing double phospho-site mutants in HIF1A-/- cells under hypoxia revealed independent and additive phosphorylation effects that can create a gradient of HIF-1α subcellular localization and transcriptional activity. Furthermore, modification by CK1δ caused mitochondrial release of the non-nuclear HIF-1α form and binding to microtubules via its N-terminal domain. In agreement, endogenous HIF-1α could be shown to co-localize with mitotic spindle microtubules and interact with tubulin, both of which were inhibited by CK1δ silencing or inhibition. Moreover, CK1δ expression was necessary for equal partitioning of mother cell-produced HIF-1α to the daughter cell nuclei at the end of mitosis. Overall, our results suggest that phosphorylation by CK1δ stimulates the association of non-nuclear HIF-1α with microtubules, which may serve as a means to establish a symmetric distribution of HIF-1α during cell division under low oxygen conditions.
Collapse
Affiliation(s)
- Christina Arseni
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece
| | - Martina Samiotaki
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Panayotou
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
3
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
4
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
6
|
Xie T, Guo D, Luo J, Guo Z, Zhang S, Wang A, Wang X, Wang X, Cao W, Su L, Guo J, Huang R, Xiao Y. The Relationship Between HIF1α and Clock Gene Expression in Patients with Obstructive Sleep Apnea. Nat Sci Sleep 2022; 14:381-392. [PMID: 35299629 PMCID: PMC8922359 DOI: 10.2147/nss.s348580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/27/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose In this study, we aimed to investigate the precise relationship between hypoxia-inducible factor 1α (HIF1α), circadian clock genes, and OSA. Methods We recruited 21 patients with OSA and 22 age-matched controls who underwent polysomnography and had their peripheral blood collected on the evening before and the morning after sleep. OSA was defined as an apnea hypopnea index (AHI) ≥15 events/h. Patients in which T90 > 0 were defined as having nocturnal hypoxemia (NH) and were referred to as the NH group. The mRNA levels of HIF1α, HIF1β and several clock genes (Timeless, Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Ck1δ, Rorα, NR1D1, and NPAS2) were determined by RT-qPCR. The percentage difference in gene expression levels when compared between the morning and evening was then determined as referred to as morning-evening variation (MEV). Results The MEV for HIF1α mRNA expression in OSA patients increased significantly by 23% (P = 0.008) when compared to patients without OSA. The gene expression levels of Timeless (P = 0.038) and Cry2 (P = 0.012) decreased with AHI. The MEV of Bmal1, Rorα, and HIF1α mRNA levels were upregulated by 16% (P = 0.006), 14% (P = 0.027), and 25% (P = 0.005), respectively, in participants with NH when compared to those without NH. Furthermore, the MEV for HIF1α mRNA levels was positively correlated with the MEV of Bmal1, Cry1, and CK1δ mRNA levels (R = 0.638, P < 0.001; R = 0.327, P = 0.002; R = 0.332, P = 0.001, respectively) and negatively correlated with LSpO2 (R = -0.464, P =0.009) and Mean SpO2 (R = -0.500, P = 0.003). Conclusion Our data suggest that patients with OSA or NH tend to develop circadian rhythm disorders that may be induced by the hypoxia-mediated augmentation of HIF1α gene expression in OSA.
Collapse
Affiliation(s)
- Ting Xie
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dan Guo
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jinmei Luo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zijian Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Sumei Zhang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Anqi Wang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoxi Wang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaona Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Linfan Su
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Junwei Guo
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Rong Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yi Xiao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Koukoulas K, Giakountis A, Karagiota A, Samiotaki M, Panayotou G, Simos G, Mylonis I. ERK signalling controls productive HIF-1 binding to chromatin and cancer cell adaptation to hypoxia through HIF-1α interaction with NPM1. Mol Oncol 2021; 15:3468-3489. [PMID: 34388291 PMCID: PMC8637566 DOI: 10.1002/1878-0261.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by ERK1/2, in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia-response elements (HREs), its interaction with acetylated histones and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.
Collapse
Affiliation(s)
- Kreon Koukoulas
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Panayotou
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| |
Collapse
|
8
|
Mortalin/glucose-regulated protein 75 promotes the cisplatin-resistance of gastric cancer via regulating anti-oxidation/apoptosis and metabolic reprogramming. Cell Death Discov 2021; 7:140. [PMID: 34117210 PMCID: PMC8196146 DOI: 10.1038/s41420-021-00517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Platinum drug treatment is one of the most predominant chemotherapeutic strategies for patients with gastric cancer (GC). However, the therapeutic effect is less than satisfactory, largely due to the acquired resistance to platinum drugs. Therefore, a better understanding of the underlying mechanisms can greatly improve the therapeutic efficacy of GC. In this study, we aimed to investigate the chemo-resistance related functions/mechanisms and clinical significance of glucose-regulated protein 75 (GRP75) in GC. Here, our data showed that compared with SGC7901 cells, the expression of GRP75 was markedly higher in cisplatin-resistance cells (SGC7901CR). Knockdown of GRP75 abolished the maintenance of mitochondrial membrane potential (MMP) and inhibited the nuclear factor erythroid-2-related factor 2 (NRF2), phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), hypoxia-inducible factor 1α (HIF-1α), and c-myc, which resulted in blocking the activation of their downstream targets. These processes attenuated the anti-oxidation/apoptosis abilities and altered the metabolic reprogramming in SGC7901CR cells, leading to re-sensitizing these cells to cisplatin. However, overexpression of GRP75 in SGC7901 cells caused the opposite effects. A xenografts model confirmed the abovementioned results. In GC patients receiving platinum chemotherapy and a meta-analysis, a high level of GRP75 was positively associated with aggressive characteristics and poor prognosis including but not limited to gastrointestinal cancers, and was an independent predictor for overall survival. Collectively, our study indicated that GRP75 was involved in the cisplatin-resistance of GC and that GRP75 could be a potential therapeutic target for restoring the drug response in platinum-resistance cells and a useful additive prognostic tool in guiding clinical management of GC patients.
Collapse
|
9
|
Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22115703. [PMID: 34071836 PMCID: PMC8199012 DOI: 10.3390/ijms22115703] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.
Collapse
|
10
|
Mylonis I, Chachami G, Simos G. Specific Inhibition of HIF Activity: Can Peptides Lead the Way? Cancers (Basel) 2021; 13:cancers13030410. [PMID: 33499237 PMCID: PMC7865418 DOI: 10.3390/cancers13030410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cells in solid tumors often experience lack of oxygen (hypoxia), which they overcome with the help of hypoxia inducible transcription factors (HIFs). When HIFs are activated, they stimulate the expression of many genes and cause the production of proteins that help cancer cells grow and migrate even in the presence of very little oxygen. Many experiments have shown that agents that block the activity of HIFs (HIF inhibitors) can prevent growth of cancer cells under hypoxia and, subsequently, hinder formation of malignant tumors or metastases. Most small chemical HIF inhibitors lack the selectivity required for development of safe anticancer drugs. On the other hand, peptides derived from HIFs themselves can be very selective HIF inhibitors by disrupting specific associations of HIFs with cellular components that are essential for HIF activation. This review discusses the nature of available peptide HIF inhibitors and their prospects as effective pharmaceuticals against cancer. Abstract Reduced oxygen availability (hypoxia) is a characteristic of many disorders including cancer. Central components of the systemic and cellular response to hypoxia are the Hypoxia Inducible Factors (HIFs), a small family of heterodimeric transcription factors that directly or indirectly regulate the expression of hundreds of genes, the products of which mediate adaptive changes in processes that include metabolism, erythropoiesis, and angiogenesis. The overexpression of HIFs has been linked to the pathogenesis and progression of cancer. Moreover, evidence from cellular and animal models have convincingly shown that targeting HIFs represents a valid approach to treat hypoxia-related disorders. However, targeting transcription factors with small molecules is a very demanding task and development of HIF inhibitors with specificity and therapeutic potential has largely remained an unattainable challenge. Another promising approach to inhibit HIFs is to use peptides modelled after HIF subunit domains known to be involved in protein–protein interactions that are critical for HIF function. Introduction of these peptides into cells can inhibit, through competition, the activity of endogenous HIFs in a sequence and, therefore also isoform, specific manner. This review summarizes the involvement of HIFs in cancer and the approaches for targeting them, with a special focus on the development of peptide HIF inhibitors and their prospects as highly-specific pharmacological agents.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Correspondence: (I.M.); (G.S.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence: (I.M.); (G.S.)
| |
Collapse
|
11
|
Zhao Y, Ma DX, Wang HG, Li MZ, Talukder M, Wang HR, Li JL. Lycopene Prevents DEHP-Induced Liver Lipid Metabolism Disorder by Inhibiting the HIF-1α-Induced PPARα/PPARγ/FXR/LXR System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11468-11479. [PMID: 32962341 DOI: 10.1021/acs.jafc.0c05077] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread pollutant that badly affects animals and human health. Lycopene (LYC) has been used as a dietary supplement that has effective antioxidant and antiobesity functions. The present goal was to understand the molecular mechanisms of LYC preventing DEHP-induced lipid metabolism of the liver. The mice were intragastrically administered with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg). Here, we found that LYC attenuated DEHP-caused hepatic histopathological lesions including steatosis. Hematological and biochemical analyses revealed that LYC ameliorated DEHP-caused liver function and lipid metabolism disorders. DEHP caused lipid metabolism disorders via activating the peroxisome proliferator activated receptor α/γ (PPARα/γ) signal transducer and Farnesoid X receptor (FXR)/liver X receptor (LXR) signaling pathway. As a major regulator of lipid metabolism, hypoxia-inducible factor-1α (HIF-1α) system was elevated with increased fatty degeneration under DEHP exposure. However, LYC could decrease the levels of HIF-1α/PPARα/PPARγ/FXR/LXR signaling pathway-related factors. Our research indicated that LYC could prevent DEHP-induced lipid metabolism disorders via inhibiting the HIF-1α-mediated PPARα/PPARγ/FXR/LXR system. This study may provide a possible molecular mechanism for fatty liver induced by DEHP.
Collapse
Affiliation(s)
| | | | - Hong-Guang Wang
- The Technical Identification Station of Agricultural Products and Veterinary Drug and Animal Feed in Heilongjiang Province, Harbin 150000, P. R. China
| | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | | | | |
Collapse
|
12
|
Kihira Y, Fujimura Y, Tomita S, Tamaki T, Sato E. Hypoxia‑inducible factor‑1α regulates Lipin1 differently in pre‑adipocytes and mature adipocytes. Mol Med Rep 2020; 22:559-565. [PMID: 32319636 DOI: 10.3892/mmr.2020.11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor that is activated in low oxygen conditions. Adipose tissues are poorly oxygenated in patients with obesity. The low oxygen conditions in obese adipose tissues induce HIF‑1α in adipocytes. Previous studies using genetically modified mice suggest that HIF‑1α contributes to dysfunction in adipocytes. Lipin1 is a bifunctional protein that works as a phosphatidate phosphatase and transcriptional coactivator, which regulates lipid metabolism and adipogenesis, respectively. HIF‑1α directly regulates Lipin1 in hepatocytes. However, the regulation of Lipin1 by HIF‑1α in adipocytes is not well determined. Therefore, the present study investigated the regulation of Lipin1 by HIF‑1α in adipocytes. Expression levels of Lipin1 were reduced in epididymal adipose tissues of adipocyte‑specific HIF‑1α knockout mice, indicating that HIF‑1α regulates Lipin1 in adipocytes. In differentiated mature adipocytes, a HIF‑1α activator, dimethyloxallyl glycine (DMOG), was demonstrated to increase Lipin1, and a HIF‑1α inhibitor, 3‑(5'‑hydroxymethyl‑2'‑furyl)-1‑benzylindazole (YC‑1), reversed this increase, indicating that HIF‑1α regulates Lipin1 in differentiated adipocytes. However, during differentiation of pre‑adipocytes into adipocytes, YC‑1 increased Lipin1 even though HIF‑1α was decreased. The differentiation efficiency increased with YC‑1 treatment. In addition, DMOG reduced Lipin1 expression levels during differentiation despite increased HIF‑1α. Under these conditions, differentiation efficiency was reduced. These results suggest that Lipin1 is negatively regulated by HIF‑1α in pre‑adipocytes. Our results show that regulation of Lipin1 by HIF‑1α is different in adipocytes and pre‑adipocytes.
Collapse
Affiliation(s)
- Yoshitaka Kihira
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| | - Yoshino Fujimura
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka‑shi 558‑8585, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto‑cho, Tokushima 770‑8503, Japan
| | - Eiji Sato
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729‑0292, Japan
| |
Collapse
|
13
|
Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019; 715:144005. [PMID: 31376410 PMCID: PMC7939460 DOI: 10.1016/j.gene.2019.144005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from protozoa to human. Since their dysregulation as well as mutations within their coding regions contribute to the development of various different pathologies, including cancer and neurodegenerative diseases, they have become interesting new drug targets within the last decade. However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their various splice variants and orthologs is mandatory. In this review we will focus on the stress-induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the consequences of its deregulation for the development and progression of diseases, and its potential as therapeutic drug target.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Chiara Ianes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Timo Burster
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan 020000, Kazakhstan.
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Eltsin, Technology for Organic Synthesis Laboratory, 19 Mirastr., 620002 Ekaterinburg, Russia.
| | - Najma Rachidi
- Unité de Parasitologie Moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
14
|
Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics 2019; 18:1197-1209. [PMID: 30926672 PMCID: PMC6553927 DOI: 10.1074/mcp.ra119.001401] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
Collapse
Affiliation(s)
- Georgia Chachami
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- ‡‡Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Angeliki Karagiota
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Angeliki Basagianni
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Uwe Plessmann
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- ‖Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Frauke Melchior
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - George Simos
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- **Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov 2019; 14:667-682. [PMID: 31070059 DOI: 10.1080/17460441.2019.1613370] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hypoxia is one of the intrinsic features of solid tumors, and it is always associated with aggressive phenotypes, including resistance to radiation and chemotherapy, metastasis, and poor patient prognosis. Hypoxia manifests these unfavorable effects through activation of a family of transcription factors, Hypoxia-inducible factors (HIFs) play a pivotal role in the adaptation of tumor cells to hypoxic and nutrient-deprived conditions by upregulating the transcription of several pro-oncogenic genes. Several advanced human cancers share HIFs activation as a final common pathway. Areas covered: This review highlights the role and regulation of the HIF-1/2 in cancers and alludes on the biological complexity and redundancy of HIF-1/2 regulation. Moreover, this review summarizes recent insights into the therapeutic approaches targeting the HIF-1/2 pathway. Expert opinion: More studies are needed to unravel the extensive complexity of HIFs regulation and to develop more precise anticancer treatments. Inclusion of HIF-1/2 inhibitors to the current chemotherapy regimens has been proven advantageous in numerous reported preclinical studies. The combination therapy ideally should be personalized based on the type of mutations involved in the specific cancers, and it might be better to include two drugs that inhibit HIF-1/2 activity by synergistic molecular mechanisms.
Collapse
Affiliation(s)
- Najah Albadari
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Shanshan Deng
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Wei Li
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
16
|
Mylonis I, Simos G, Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 2019; 8:cells8030214. [PMID: 30832409 PMCID: PMC6468845 DOI: 10.3390/cells8030214] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Oxygen deprivation or hypoxia characterizes a number of serious pathological conditions and elicits a number of adaptive changes that are mainly mediated at the transcriptional level by the family of hypoxia-inducible factors (HIFs). The HIF target gene repertoire includes genes responsible for the regulation of metabolism, oxygen delivery and cell survival. Although the involvement of HIFs in the regulation of carbohydrate metabolism and the switch to anaerobic glycolysis under hypoxia is well established, their role in the control of lipid anabolism and catabolism remains still relatively obscure. Recent evidence indicates that many aspects of lipid metabolism are modified during hypoxia or in tumor cells in a HIF-dependent manner, contributing significantly to the pathogenesis and/or progression of cancer and metabolic disorders. However, direct transcriptional regulation by HIFs has been only demonstrated in relatively few cases, leaving open the exact and isoform-specific mechanisms that underlie HIF-dependency. This review summarizes the evidence for both direct and indirect roles of HIFs in the regulation of genes involved in lipid metabolism as well as the involvement of HIFs in various diseases as demonstrated by studies with transgenic animal models.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada.
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| |
Collapse
|
17
|
Karagiota A, Mylonis I, Simos G, Chachami G. Protein phosphatase PPP3CA (calcineurin A) down-regulates hypoxia-inducible factor transcriptional activity. Arch Biochem Biophys 2019; 664:174-182. [PMID: 30776328 DOI: 10.1016/j.abb.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Hypoxia-inducible factors (HIF) are master regulators of the response to hypoxia. Although several kinases are known to modify their oxygen sensitive HIF-α subunits or affect indirectly their function, little is known about the role of phosphatases in HIF control. To address this issue, a library containing siRNAs for the 25 known catalytic subunits of human phosphatases was used to screen for their effect on HIF transcriptional activity in HeLa cells. Serine-threonine phosphatase PPP3CA (calcineurin A, isoform a) was identified as the strongest candidate for a negative regulator of HIF activity. Indeed, independent silencing of PPP3CA expression stimulated HIF transcriptional activity under hypoxia, without increasing the protein levels of HIF-1α or HIF-2α. Overexpression of a constitutively active PPP3CA form, but not its catalytically inactive counterpart, inhibited HIF activity and expression of HIF target genes but did not affect HIF-1α or HIF-2α expression. These results were phenocopied by treatment with the ionophore ionomycin, that activates endogenous PPP3CA. The effect of ionomycin was mediated by PPP3CA as it was largely abolished by PPP3CA silencing. Furthermore, ionomycin enhanced the down-regulation of HIF activity by wild-type PPP3CA overexpression. Overall, our results suggest the involvement of PPP3CA in fine-tuning the HIF-dependent transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
18
|
Karagiota A, Kourti M, Simos G, Mylonis I. HIF-1α-derived cell-penetrating peptides inhibit ERK-dependent activation of HIF-1 and trigger apoptosis of cancer cells under hypoxia. Cell Mol Life Sci 2019; 76:809-825. [PMID: 30535970 PMCID: PMC11105304 DOI: 10.1007/s00018-018-2985-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Hypoxia is frequently encountered in the microenvironment of solid tumors. Hypoxia-inducible factors (HIFs), the main effectors of cell response to hypoxia, promote cancer cell survival and progression. HIF-1α, the oxygen-regulated subunit of HIF-1, is often correlated with oncogenesis and represents an attractive therapeutic target. We have previously reported that activation HIF-1α by ERK involves modification of two serine residues and masking of a nuclear export signal (NES), all inside a 43-amino acid domain termed ERK Targeted Domain (ETD). Overexpression of ETD variants including wild-type, phospho-mimetic (SE) or NES-less (IA) mutant forms caused HIF-1 inactivation in two hepatocarcinoma cell lines, while a phospho-deficient (SA) form was ineffective and acted as a sequence-specific negative control. To deliver these ETD forms directly into cancer cells, they were fused to the HIV TAT-sequence and produced as cell-permeable peptides. When the TAT-ETD peptides were added to the culture medium of Huh7 cells, they entered the cells and, with the exception of ETD-SA, accumulated inside the nucleus, caused mislocalization of endogenous HIF-1α to the cytoplasm, significant reduction of HIF-1 activity and inhibition of expression of specific HIF-1, but not HIF-2, gene targets under hypoxia. More importantly, transduced nuclear TAT-ETD peptides restricted migration, impaired colony formation and triggered apoptotic cell death of cancer cells grown under hypoxia, while they produced no effects in normoxic cells. These data demonstrate the importance of ERK-mediated activation of HIF-1 for low oxygen adaptation and the applicability of ETD peptide derivatives as sequence-specific HIF-1 and cancer cell growth inhibitors under hypoxia.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria Kourti
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
19
|
Hennessy M, Granade ME, Hassaninasab A, Wang D, Kwiatek JM, Han GS, Harris TE, Carman GM. Casein kinase II-mediated phosphorylation of lipin 1β phosphatidate phosphatase at Ser-285 and Ser-287 regulates its interaction with 14-3-3β protein. J Biol Chem 2019; 294:2365-2374. [PMID: 30617183 DOI: 10.1074/jbc.ra118.007246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
The mammalian lipin 1 phosphatidate phosphatase is a key regulatory enzyme in lipid metabolism. By catalyzing phosphatidate dephosphorylation, which produces diacylglycerol, the enzyme plays a major role in the synthesis of triacylglycerol and membrane phospholipids. The importance of lipin 1 to lipid metabolism is exemplified by cellular defects and lipid-based diseases associated with its loss or overexpression. Phosphorylation of lipin 1 governs whether it is associated with the cytoplasm apart from its substrate or with the endoplasmic reticulum membrane where its enzyme reaction occurs. Lipin 1β is phosphorylated on multiple sites, but less than 10% of them are ascribed to a specific protein kinase. Here, we demonstrate that lipin 1β is a bona fide substrate for casein kinase II (CKII), a protein kinase that is essential to viability and cell cycle progression. Phosphoamino acid analysis and phosphopeptide mapping revealed that lipin 1β is phosphorylated by CKII on multiple serine and threonine residues, with the former being major sites. Mutational analysis of lipin 1β and its peptides indicated that Ser-285 and Ser-287 are both phosphorylated by CKII. Substitutions of Ser-285 and Ser-287 with nonphosphorylatable alanine attenuated the interaction of lipin 1β with 14-3-3β protein, a regulatory hub that facilitates the cytoplasmic localization of phosphorylated lipin 1. These findings advance our understanding of how phosphorylation of lipin 1β phosphatidate phosphatase regulates its interaction with 14-3-3β protein and intracellular localization and uncover a mechanism by which CKII regulates cellular physiology.
Collapse
Affiliation(s)
- Meagan Hennessy
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Mitchell E Granade
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Dana Wang
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanna M Kwiatek
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| |
Collapse
|
20
|
Triantafyllou EA, Georgatsou E, Mylonis I, Simos G, Paraskeva E. Expression of AGPAT2, an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1142-1152. [PMID: 29908837 DOI: 10.1016/j.bbalip.2018.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1 (HIF-1) supports survival of normal cells under low oxygen concentration and cancer cells in the hypoxic tumor microenvironment. This involves metabolic reprogramming via upregulation of glycolysis, downregulation of oxidative phosphorylation and, less well documented, effects on lipid metabolism. To investigate the latter, we examined expression of relevant enzymes in cancer cells grown under hypoxia. We show that expression of acylglycerol-3-phosphate acyltransferase 2 (AGPAT2), also known as lysophosphatidic acid acyltransferase β (LPAATβ), was upregulated under hypoxia and this was impaired by siRNA-mediated knockdown of HIF-1α. Moreover, a sequence of the AGPAT2 gene promoter region, containing 6 putative Hypoxia Response Elements (HREs), activated transcription of a reporter gene under hypoxic conditions or in normoxic cells over-expressing HIF-1α. Chromatin immunoprecipitation experiments confirmed binding of HIF-1α to one of these HREs, mutation of which abolished hypoxic activation of the AGPAT2 promoter. Knockdown of AGPAT2 by siRNA reduced lipid droplet accumulation and cell viability under hypoxia and increased cancer cell sensitivity to the chemotherapeutic etoposide. In conclusion, our findings demonstrate that AGPAT2, which is mutated in patients with congenital generalized lipodystrophy and over-expressed in different types of cancer, is a direct transcriptional target of HIF-1, suggesting that upregulation of lipid storage by HIF-1 plays an important role in adaptation and survival of cancer cells under low oxygen conditions.
Collapse
Affiliation(s)
| | - Eleni Georgatsou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
21
|
Cui H, Yang S, Zheng M, Liu R, Zhao G, Wen J. High-salt intake negatively regulates fat deposition in mouse. Sci Rep 2017; 7:2053. [PMID: 28515432 PMCID: PMC5435674 DOI: 10.1038/s41598-017-01560-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/20/2017] [Indexed: 01/14/2023] Open
Abstract
High-salt (HS) intake contributes to hypertension and cardiopathy, but the effect of HS on fat deposition is controversial. Feed intake, fat mass, the percentage of abdominal fat, heat production, rate of oxygen consumption and the respiratory exchange ratio of mice on a HS diet were significantly decreased (P < 0.01 or 0.05) compared with mice on a normal-salt (NS) diet. An in vitro experiment with differentiating pre-adipocytes showed reduced fat deposition in the presence of high concentrations of NaCl (>0.05 M). Abdominal fat mRNA profiles and protein measurements showed that 5 known genes involved in lipolysis were up-regulated significantly and 9 genes related to lipogenesis were down-regulated in HS mice. Abundant genes and some proteins (ATP2a1, AGT, and ANGPTL4) related to calcium ion metabolism or the renin-angiotensin system (RAS) were differentially expressed between HS and NS mice. Of special interest, CREB1 phosphorylation (S133 and S142), a key factor involved in calcium signaling and other pathways, was up-regulated in HS mice. By IPA analysis, a network mediated by calcium was established providing the molecular mechanisms underlying the negative effect of HS on fat deposition.
Collapse
Affiliation(s)
- Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Shuyan Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
22
|
Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 2017; 356:128-135. [PMID: 28336293 DOI: 10.1016/j.yexcr.2017.03.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 activity in either an O2-dependent or O2-independent manner.
Collapse
Affiliation(s)
- Gregg L Semenza
- Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205 USA.
| |
Collapse
|
23
|
Shimizu K, Fukushima H, Ogura K, Lien EC, Nihira NT, Zhang J, North BJ, Guo A, Nagashima K, Nakagawa T, Hoshikawa S, Watahiki A, Okabe K, Yamada A, Toker A, Asara JM, Fukumoto S, Nakayama KI, Nakayama K, Inuzuka H, Wei W. The SCFβ-TRCP E3 ubiquitin ligase complex targets Lipin1 for ubiquitination and degradation to promote hepatic lipogenesis. Sci Signal 2017; 10:10/460/eaah4117. [PMID: 28049764 DOI: 10.1126/scisignal.aah4117] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SCFβ-TRCP E3 ubiquitin ligase complex plays pivotal roles in normal cellular physiology and in pathophysiological conditions. Identification of β-transducin repeat-containing protein (β-TRCP) substrates is therefore critical to understand SCFβ-TRCP biology and function. We used a β-TRCP-phosphodegron motif-specific antibody in a β-TRCP substrate screen coupled with tandem mass spectrometry and identified multiple β-TRCP substrates. One of these substrates was Lipin1, an enzyme and suppressor of the family of sterol regulatory element-binding protein (SREBP) transcription factors, which activate genes encoding lipogenic factors. We showed that SCFβ-TRCP specifically interacted with and promoted the polyubiquitination of Lipin1 in a manner that required phosphorylation of Lipin1 by mechanistic target of rapamycin 1 (mTORC1) and casein kinase I (CKI). β-TRCP depletion in HepG2 hepatocellular carcinoma cells resulted in increased Lipin1 protein abundance, suppression of SREBP-dependent gene expression, and attenuation of triglyceride synthesis. Moreover, β-TRCP1 knockout mice showed increased Lipin1 protein abundance and were protected from hepatic steatosis induced by a high-fat diet. Together, these data reveal a critical physiological function of β-TRCP in regulating hepatic lipid metabolic homeostasis in part through modulating Lipin1 stability.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hidefumi Fukushima
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Evan C Lien
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Naoe Taira Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ailan Guo
- Cell Signaling Technology Inc., Danvers, MA 01923, USA
| | - Katsuyuki Nagashima
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Seira Hoshikawa
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Giakoumakis NN, Rapsomaniki MA, Lygerou Z. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP). Methods Mol Biol 2017; 1563:243-267. [PMID: 28324613 DOI: 10.1007/978-1-4939-6810-7_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
Collapse
Affiliation(s)
| | - Maria Anna Rapsomaniki
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.,IBM Research Zurich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.
| |
Collapse
|
25
|
Mylonis I, Kourti M, Samiotaki M, Panayotou G, Simos G. Mortalin-mediated and ERK-controlled targeting of HIF-1α to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci 2016; 130:466-479. [PMID: 27909249 DOI: 10.1242/jcs.195339] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Hypoxia inducible factor-1 (HIF-1) is the main transcriptional activator of the cellular response to hypoxia and an important target of anticancer therapy. Phosphorylation by ERK1 and/or ERK2 (MAPK3 and MAPK1, respectively; hereafter ERK) stimulates the transcriptional activity of HIF-1α by inhibiting its CRM1 (XPO1)-dependent nuclear export. Here, we demonstrate that phosphorylation by ERK also regulates the association of HIF-1α with a so-far-unknown interaction partner identified as mortalin (also known as GRP75 and HSPA9), which mediates non-genomic involvement of HIF-1α in apoptosis. Mortalin binds specifically to HIF-1α that lacks modification by ERK, and the HIF-1α-mortalin complex is localized outside the nucleus. Under hypoxia, mortalin mediates targeting of unmodified HIF-1α to the outer mitochondrial membrane, as well as association with VDAC1 and hexokinase II, which promotes production of a C-terminally truncated active form of VDAC1, denoted VDAC1-ΔC, and protection from apoptosis when ERK is inactivated. Under normoxia, transcriptionally inactive forms of unmodified HIF-1α or its C-terminal domain alone are also targeted to mitochondria, stimulate production of VDAC1-ΔC and increase resistance to etoposide- or doxorubicin-induced apoptosis. These findings reveal an ERK-controlled, unconventional and anti-apoptotic function of HIF-1α that might serve as an early protective mechanism upon oxygen limitation and promote cancer cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3, BIOPOLIS, 41500 Larissa, Greece
| | - Maria Kourti
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3, BIOPOLIS, 41500 Larissa, Greece
| | - Martina Samiotaki
- Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - George Panayotou
- Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 34 Fleming Street, 16672 Vari, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3, BIOPOLIS, 41500 Larissa, Greece
| |
Collapse
|
26
|
Pangou E, Befani C, Mylonis I, Samiotaki M, Panayotou G, Simos G, Liakos P. HIF-2α phosphorylation by CK1δ promotes erythropoietin secretion in liver cancer cells under hypoxia. J Cell Sci 2016; 129:4213-4226. [PMID: 27686097 DOI: 10.1242/jcs.191395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Hypoxia inducible factor 2 (HIF-2) is a transcriptional activator implicated in the cellular response to hypoxia. Regulation of its inducible subunit, HIF-2α (also known as EPAS1), involves post-translational modifications. Here, we demonstrate that casein kinase 1δ (CK1δ; also known as CSNK1D) phosphorylates HIF-2α at Ser383 and Thr528 in vitro We found that disruption of these phosphorylation sites, and silencing or chemical inhibition of CK1δ, reduced the expression of HIF-2 target genes and the secretion of erythropoietin (EPO) in two hepatic cancer cell lines, Huh7 and HepG2, without affecting the levels of HIF-2α protein expression. Furthermore, when CK1δ-dependent phosphorylation of HIF-2α was inhibited, we observed substantial cytoplasmic mislocalization of HIF-2α, which was reversed upon the addition of the nuclear protein export inhibitor leptomycin B. Taken together, these data suggest that CK1δ enhances EPO secretion from liver cancer cells under hypoxia by modifying HIF-2α and promoting its nuclear accumulation. This modification represents a new mechanism of HIF-2 regulation that might allow HIF isoforms to undertake differing functions.
Collapse
Affiliation(s)
- Evanthia Pangou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Christina Befani
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Martina Samiotaki
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Panayotou
- Protein Chemistry Laboratory, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
27
|
Koizume S, Miyagi Y. Lipid Droplets: A Key Cellular Organelle Associated with Cancer Cell Survival under Normoxia and Hypoxia. Int J Mol Sci 2016; 17:ijms17091430. [PMID: 27589734 PMCID: PMC5037709 DOI: 10.3390/ijms17091430] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
The Warburg effect describes the phenomenon by which cancer cells obtain energy from glycolysis even under normoxic (O₂-sufficient) conditions. Tumor tissues are generally exposed to hypoxia owing to inefficient and aberrant vasculature. Cancer cells have multiple molecular mechanisms to adapt to such stress conditions by reprogramming the cellular metabolism. Hypoxia-inducible factors are major transcription factors induced in cancer cells in response to hypoxia that contribute to the metabolic changes. In addition, cancer cells within hypoxic tumor areas have reduced access to serum components such as nutrients and lipids. However, the effect of such serum factor deprivation on cancer cell biology in the context of tumor hypoxia is not fully understood. Cancer cells are lipid-rich under normoxia and hypoxia, leading to the increased generation of a cellular organelle, the lipid droplet (LD). In recent years, the LD-mediated stress response mechanisms of cancer cells have been revealed. This review focuses on the production and functions of LDs in various types of cancer cells in relation to the associated cellular environment factors including tissue oxygenation status and metabolic mechanisms. This information will contribute to the current understanding of how cancer cells adapt to diverse tumor environments to promote their survival.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
28
|
Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis. Int J Mol Sci 2016; 17:ijms17071061. [PMID: 27384557 PMCID: PMC4964437 DOI: 10.3390/ijms17071061] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is the leading malignancy among men in United States. Recent studies have focused on the identification of novel metabolic characteristics of PCa, aimed at devising better preventive and therapeutic approaches. PCa cells have revealed unique metabolic features such as higher expression of several enzymes associated with de novo lipogenesis, fatty acid up-take and β-oxidation. This aberrant lipid metabolism has been reported to be important for PCa growth, hormone-refractory progression and treatment resistance. Furthermore, PCa cells effectively use lipid metabolism under adverse environmental conditions for their survival advantage. Specifically, hypoxic cancer cells accumulate higher amount of lipids through a combination of metabolic alterations including high glutamine and fatty acid uptake, as well as decreased fatty acid oxidation. These stored lipids serve to protect cancer cells from oxidative and endoplasmic reticulum stress, and play important roles in fueling cancer cell proliferation following re-oxygenation. Lastly, cellular lipids have also been implicated in extracellular vesicle biogenesis, which play a vital role in intercellular communication. Overall, the new understanding of lipid metabolism in recent years has offered several novel targets to better target and manage clinical PCa.
Collapse
|