1
|
Mousso T, Rice K, Tumenbayar BI, Pham K, Heo Y, Heo SC, Lee K, Lombardo AT, Bae Y. Survivin modulates stiffness-induced vascular smooth muscle cell motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628062. [PMID: 39713437 PMCID: PMC11661181 DOI: 10.1101/2024.12.11.628062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Arterial stiffness is a key contributor to cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease, it has been characterized to be associated with the aberrant migration of vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms driving VSMC migration in stiff environments remain incompletely understood. We recently demonstrated that survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in both mouse and human VSMCs cultured on stiff polyacrylamide hydrogels, where it modulates stiffness-mediated cell cycle progression and proliferation. However, its role in stiffness-dependent VSMC migration remains unknown. To assess its impact on migration, we performed time-lapse video microscopy on VSMCs seeded on fibronectin-coated soft and stiff polyacrylamide hydrogels, mimicking the physiological stiffness of normal and diseased arteries, with either survivin inhibition or overexpression. We observed that VSMC motility increased under stiff conditions, while pharmacologic or siRNA-mediated inhibition of survivin reduced stiffness-stimulated migration to rates similar to those observed under soft conditions. Further investigation revealed that cells on stiff hydrogels exhibited greater directional movement and robust lamellipodial protrusion compared to those on soft hydrogels. Interestingly, survivin-inhibited cells on stiff hydrogels showed reduced directional persistence and lamellipodial protrusion compared to control cells. We also examined whether survivin overexpression alone is sufficient to induce cell migration on soft hydrogels, and found that survivin overexpression modestly increased cell motility and partially rescued the lack of directional persistence compared to GFP-expressing control VSMCs on soft hydrogels. In conclusion, our findings demonstrate that survivin plays a key role in regulating stiffness-induced VSMC migration, suggesting that targeting survivin and its signaling pathways could offer therapeutic strategies for addressing arterial stiffness in cardiovascular diseases.
Collapse
Affiliation(s)
- Thomas Mousso
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Kalina Rice
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
| | - Yuna Heo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Chin Heo
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Andrew T Lombardo
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Higashijima F, Hasegawa M, Yoshimoto T, Kobayashi Y, Wakuta M, Kimura K. Molecular mechanisms of TGFβ-mediated EMT of retinal pigment epithelium in subretinal fibrosis of age-related macular degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1060087. [PMID: 38983569 PMCID: PMC11182173 DOI: 10.3389/fopht.2022.1060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/30/2022] [Indexed: 07/11/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly, affecting the macula of the retina and resulting in vision loss. There are two types of AMD, wet and dry, both of which cause visual impairment. Wet AMD is called neovascular AMD (nAMD) and is characterized by the formation of choroidal neovascular vessels (CNVs) in the macula. nAMD can be treated with intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors, which help improve vision. However, approximately half the patients do not achieve satisfactory results. Subretinal fibrosis often develops late in nAMD, leading to irreversible photoreceptor degeneration and contributing to visual loss. Currently, no treatment exists for subretinal fibrosis, and the molecular mechanisms of fibrous tissue formation following neovascular lesions remain unclear. In this review, we describe the clinical features and molecular mechanisms of macular fibrosis secondary to nAMD. Myofibroblasts play an essential role in the development of fibrosis. This review summarizes the latest findings on the clinical features and cellular and molecular mechanisms of the pathogenesis of subretinal fibrosis in nAMD and discusses the potential therapeutic strategies to control subretinal fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
3
|
Hou Y, Li Y, Li Y, Li D, Guo T, Deng X, Zhang H, Xie C, Lu X. Tuning Water-Resistant Networks in Mussel-Inspired Hydrogels for Robust Wet Tissue and Bioelectronic Adhesion. ACS NANO 2023; 17:2745-2760. [PMID: 36734875 DOI: 10.1021/acsnano.2c11053] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels with robust wet adhesion are desirable for applications in aqueous environments. Wet adhesion arising from synergy between hydrophobic and catechol components in mussel foot proteins has been highlighted. However, optimizing hydrogels with multiple components is challenging because of their complex structure-property relationships. Herein, high-throughput screening of a series of hydrophobic alkyl monomers and adhesive catechol derivatives was used to systematically develop wet adhesive hydrogels. Short alkyl chains promote wet adhesion by repelling water at the adhesive interface, whereas long alkyl chains form strong hydrophobic interactions inside the hydrogel network that impede or dissipate energy for wet adhesion. The optimized wet adhesive hydrogel, containing short alkyl chain, was applied for rapid hemostasis and wound healing because of the synergistic effect of catechol and alkyl groups and its immunomodulation ability, which is revealed through a transcriptomic analysis. Conductive nanocomponents were incorporated into the optimized hydrogel to produce a wearable device, which was used for continuous monitoring human electrocardiogram (ECG) during swimming, and in situ epicardial ECG on a porcine living and beating heart. This study demonstrated an efficient and generalized molecular design strategy for multifunctional wet adhesive hydrogels.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yazhen Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Yingqi Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Da Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610041, China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
4
|
Goldberg Z, Sher I, Qassim L, Chapman J, Rotenstreich Y, Shavit-Stein E. Intrinsic Expression of Coagulation Factors and Protease Activated Receptor 1 (PAR1) in Photoreceptors and Inner Retinal Layers. Int J Mol Sci 2022; 23:ijms23020984. [PMID: 35055169 PMCID: PMC8778890 DOI: 10.3390/ijms23020984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to characterize the distribution of the thrombin receptor, protease activated receptor 1 (PAR1), in the neuroretina. Neuroretina samples of wild-type C57BL/6J and PAR1−/− mice were processed for indirect immunofluorescence and Western blot analysis. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to determine mRNA expression of coagulation Factor X (FX), prothrombin (PT), and PAR1 in the isolated neuroretina. Thrombin activity following KCl depolarization was assessed in mouse neuroretinas ex vivo. PAR1 staining was observed in the retinal ganglion cells, inner nuclear layer cells, and photoreceptors in mouse retinal cross sections by indirect immunofluorescence. PAR1 co-localized with rhodopsin in rod outer segments but was not expressed in cone outer segments. Western blot analysis confirmed PAR1 expression in the neuroretina. Factor X, prothrombin, and PAR1 mRNA expression was detected in isolated neuroretinas. Thrombin activity was elevated by nearly four-fold in mouse neuroretinas following KCl depolarization (0.012 vs. 0.044 mu/mL, p = 0.0497). The intrinsic expression of coagulation factors in the isolated neuroretina together with a functional increase in thrombin activity following KCl depolarization may suggest a role for the PAR1/thrombin pathway in retinal function.
Collapse
Affiliation(s)
- Zehavit Goldberg
- Goldschleger Eye Institute, Sheba Medical Center, Ramat Gan 5266202, Israel; (Z.G.); (I.S.); (Y.R.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, Ramat Gan 5266202, Israel; (Z.G.); (I.S.); (Y.R.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lamis Qassim
- Department of Neurology, Sheba Medical Center, Ramat Gan 5266202, Israel; (L.Q.); (J.C.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joab Chapman
- Department of Neurology, Sheba Medical Center, Ramat Gan 5266202, Israel; (L.Q.); (J.C.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, Ramat Gan 5266202, Israel; (Z.G.); (I.S.); (Y.R.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, Sheba Medical Center, Ramat Gan 5266202, Israel; (L.Q.); (J.C.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Fax: +972-3-530-4409
| |
Collapse
|
5
|
Liu H, Tao H, Wang H, Yang Y, Yang R, Dai X, Ding X, Wu H, Chen S, Sun T. Doxycycline Inhibits Cancer Stem Cell-Like Properties via PAR1/FAK/PI3K/AKT Pathway in Pancreatic Cancer. Front Oncol 2021; 10:619317. [PMID: 33643917 PMCID: PMC7905084 DOI: 10.3389/fonc.2020.619317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer stem cells (CSCs) play an important role in the promotion of invasion and metastasis of pancreatic cancer. Protease activation receptor 1 (PAR1) is closely related to malignant progression of tumors, however, its effects on pancreatic cancer stem cell-like (CSC-like) properties formation have not been reported. In this work, the effects of PAR1 on pancreatic cancer stem cell-like (CSC-like) properties formation were studied. PAR1 overexpression can induce CSC-like properties in Aspc-1 cells, whereas interference of PAR1 in Panc-1 cells showed the contrary results. Data on patients with pancreatic cancer obtained from TCGA showed that high PAR1 expression and focal adhesion kinase (FAK) protein considerably affect the prognosis of patients. Further experiments showed that PAR1 could regulate FAK, PI3K, and AKT phosphorylation and the epithelial-mesenchymal transformation (EMT) in Aspc-1 and Panc-1 cells. Doxycycline, as a PAR1 inhibitor, could effectively inhibit the CSC-like properties of pancreatic cancer cells and the FAK/PI3K/AKT pathway activation. Doxycycline inhibits the growth of pancreatic cancer and enhances the treatment effect of 5-fluorouracil (5-FU) in Panc-1 xenograft mouse model. In conclusion, PAR1 promotes the CSC-like properties and EMT of pancreatic cancer cells via the FAK/PI3K/AKT pathway. Doxycycline inhibits the pancreatic cancer through the PAR1/FAK/PI3K/AKT pathway and enhances the therapeutic effect of 5-FU.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuyan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ru Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Haidong Wu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China
| |
Collapse
|
6
|
Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020; 8:e10136. [PMID: 33150072 PMCID: PMC7583629 DOI: 10.7717/peerj.10136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, retinal pigment epithelium (RPE) is a cellular monolayer composed of mitotically quiescent cells. Tight junctions and adherens junctions maintain the polarity of RPE cells, and are required for cellular functions. In proliferative vitreoretinopathy (PVR), upon retinal tear, RPE cells lose cell-cell contact, undergo epithelial-mesenchymal transition (EMT), and ultimately transform into myofibroblasts, leading to the formation of fibrocellular membranes on both surfaces of the detached retina and on the posterior hyaloids, which causes tractional retinal detachment. In PVR, RPE cells are crucial contributors, and multiple signaling pathways, including the SMAD-dependent pathway, Rho pathway, MAPK pathways, Jagged/Notch pathway, and the Wnt/β-catenin pathway are activated. These pathways mediate the EMT of RPE cells, which play a key role in the pathogenesis of PVR. This review summarizes the current body of knowledge on the polarized phenotype of RPE, the role of cell-cell contact, and the molecular mechanisms underlying the RPE EMT in PVR, emphasizing key insights into potential approaches to prevent PVR.
Collapse
Affiliation(s)
- Hui Zou
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Chenli Shan
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Linlin Ma
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Ning Yang
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinsong Zhao
- Eye Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Thrombin-activated PAR1 membrane expression is regulated by Rab11a-RCP complex dissociation. Cell Signal 2020; 75:109748. [PMID: 32860953 DOI: 10.1016/j.cellsig.2020.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
PAR1 activation by thrombin promotes intracellular signaling leading to RPE cell transformation, proliferation, and migration, characteristic of fibroproliferative eye diseases. Due to the cleavage of PAR1 N-terminal domain, carried by thrombin, the arrest of PAR1 signaling is achieved by transport into lysosomes and degradation. Recent findings suggest that the GTPase Rab11a in conjunction with its effector RCP may direct PAR1 to lysosomes. Hereby we demonstrate that thrombin-induced PAR1 internalization and lysosomal targeting requires the disassembly of the Rab11a/RCP complex, and that this process depends on thrombin-induced intracellular calcium increase and calpain activation. These findings unveil a novel mechanism that regulates thrombin activated PAR1 internalization and degradation.
Collapse
|
8
|
Pang Y, Zhang Z, Wang Z, Wang Y, Yan Y, Li S, Tong H. Platelet endothelial aggregation receptor-1 regulates bovine muscle satellite cell migration and differentiation via integrin beta-1 and focal adhesion kinase. Cell Adh Migr 2020; 13:192-202. [PMID: 31096840 PMCID: PMC6550786 DOI: 10.1080/19336918.2019.1619434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.
Collapse
Affiliation(s)
- Yusheng Pang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Ziheng Zhang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Zhao Wang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Yuxin Wang
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Yunqin Yan
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Shufeng Li
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Huili Tong
- a The Laboratory of Cell and Developmental Biology , Northeast Agricultural University , Harbin , Heilongjiang , China
| |
Collapse
|
9
|
Huang HK, Lin YH, Chang HA, Lai YS, Chen YC, Huang SC, Chou CY, Chiu WT. Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca 2+ entry-mediated turnover of focal adhesions. J Biomed Sci 2020; 27:36. [PMID: 32079527 PMCID: PMC7033940 DOI: 10.1186/s12929-020-00630-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. Methods Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. Results We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. Conclusion Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ho-Kai Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, 736, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
FAK and BMP-9 synergistically trigger osteogenic differentiation and bone formation of adipose derived stem cells through enhancing Wnt-β-catenin signaling. Biomed Pharmacother 2018; 105:753-757. [DOI: 10.1016/j.biopha.2018.04.185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
|
11
|
Sun J, Luo Q, Liu L, Song G. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway. Cancer Lett 2018; 427:1-8. [PMID: 29678550 DOI: 10.1016/j.canlet.2018.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 10/24/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumour cells that have been proposed to be responsible for cancer initiation, chemotherapy resistance and cancer recurrence. Shear stress activated cellular signalling is involved in cellular migration, proliferation and differentiation. However, little is known about the effects of shear stress on the migration of liver cancer stem cells (LCSCs). Here, we studied the effects of shear stress that are generated from a parallel plated flow chamber system, on LCSC migration and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2), using transwell assay and western blot, respectively. We found that 2 dyne/cm2 shear stress loading for 6 h promotes LCSC migration and activation of the FAK and ERK1/2 signalling pathways, whereas treatment with the FAK phosphorylation inhibitor PF573228 or the ERK1/2 phosphorylation inhibitor PD98059 suppressed the shear stress-promoted migration, indicating the involvement of FAK and ERK1/2 activation in shear stress-induced LCSC migration. Additionally, atomic force microscopy (AFM) analysis showed that shear stress lowers LCSC stiffness via the FAK and ERK1/2 pathways, suggesting that the mechanism by which shear stress promotes LCSC migration might partially be responsible for the decrease in cell stiffness. Further experiments focused on the role of the actin cytoskeleton, demonstrating that the F-actin filaments in LCSCs are less well-defined after shear stress treatment, providing an explanation for the reduction in cell stiffness and the promotion of cell migration. Overall, our study demonstrates that shear stress promotes LCSC migration through the activation of the FAK-ERK1/2 signalling pathways, which further results in a reduction of organized actin and softer cell bodies.
Collapse
Affiliation(s)
- Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China; School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Lingling Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China; School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China.
| |
Collapse
|