1
|
Li XQ, Jin B, Liu SX, Zhu Y, Li N, Zhang QY, Wan C, Feng Y, Xing YX, Ma KL, Liu J, Jiang CM, Lu J. Neddylation of RhoA impairs its protein degradation and promotes renal interstitial fibrosis progression in diabetic nephropathy. Acta Pharmacol Sin 2025:10.1038/s41401-024-01460-z. [PMID: 39900822 DOI: 10.1038/s41401-024-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/15/2024] [Indexed: 02/05/2025] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes, characterized by chronic fibro-inflammatory processes with an unclear pathogenesis. Renal fibrosis plays a significant role in the development and progression of DN. While recent research suggests that the neddylation pathway may influence fibrotic processes, its specific dysregulation in DN and the underlying mechanisms remain largely unexplored. This study identified the neddylation of RhoA as a novel post-translational modification that regulates its expression and promotes renal fibrosis in DN. We here demonstrated that two key components of the neddylation pathway-NEDD8-activating enzyme E1 subunit 1 (NAE1) and NEDD8-are significantly upregulated in human chronic kidney disease (CKD) specimens compared to healthy kidneys, implicating neddylation in CKD-associated fibrosis. Our findings further revealed that both pharmacological inhibition of neddylation using MLN4924 and genetic knockdown of NAE1 mitigate renal fibrosis in mouse models of streptozotocin-induced diabetes and unilateral ureteral obstruction (UUO). Immunoprecipitation-mass spectrometry (IP-MS) and subsequent function assays demonstrated a direct interaction between RhoA and NEDD8. Importantly, neddylation inhibition reduced RhoA protein expression, highlighting a potential therapeutic target. Additionally, a positive correlation was noted between elevated NEDD8 mRNA levels and RhoA mRNA expression in human CKD specimens. RhoA overexpression counteracted the antifibrotic effects of neddylation inhibition, underscoring its critical role in fibrosis progression. Mechanistically, we unveiled that neddylation enhances RhoA protein stability by inhibiting its ubiquitination-mediated degradation, which subsequently activates the ERK1/2 pathway. Collectively, this study provides novel insights into NAE1-dependent RhoA neddylation as a key contributor to renal fibrosis in DN. The NAE1 protein mediates RhoA protein hyper-neddylation and subsequent stabilization of the RhoA protein, which, in turn, contributes to the development of renal fibrosis and inflammation through an ERK1/2-dependent mechanism. Consequently, targeting neddylation inhibition represents a viable therapeutic approach for the treatment of renal fibrosis in DN.
Collapse
Affiliation(s)
- Xue-Qi Li
- Institute of Nephrology, Nanjing Drum Tower Hospital, School of Medicine, Southeast University, Nanjing, 210008, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Si-Xiu Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yan Zhu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Li
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qing-Yan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Cheng Wan
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuan Feng
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yue-Xian Xing
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Kun-Ling Ma
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
2
|
Zhang F, Xiong X, Li Z, Wang H, Wang W, Zhao Y, Sun Y. RHEB neddylation by the UBE2F-SAG axis enhances mTORC1 activity and aggravates liver tumorigenesis. EMBO J 2025; 44:1185-1219. [PMID: 39762645 PMCID: PMC11832924 DOI: 10.1038/s44318-024-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 02/19/2025] Open
Abstract
Small GTPase RHEB is a well-known mTORC1 activator, whereas neddylation modifies cullins and non-cullin substrates to regulate their activity, subcellular localization and stability. Whether and how RHEB is subjected to neddylation modification remains unknown. Here, we report that RHEB is a substrate of NEDD8-conjugating E2 enzyme UBE2F. In cell culture, UBE2F depletion inactivates mTORC1, inhibiting cell cycle progression, cell growth and inducing autophagy. Mechanistically, UBE2F cooperates with E3 ligase SAG in neddylation of RHEB at K169 to enhance its lysosome localization and GTP-binding affinity. Furthermore, liver-specific Ube2f knockout attenuates steatosis and tumorigenesis induced by Pten loss in an mTORC1-dependent manner, suggesting a causal role of UBE2F in liver tumorigenesis. Finally, UBE2F expression levels and mTORC1 activity correlate with patient survival in hepatocellular carcinoma. Collectively, our study identifies RHEB as neddylation substrate of the UBE2F-SAG axis, and highlights the UBE2F-SAG axis as a potential target for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fengwu Zhang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Xiufang Xiong
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Zhijian Li
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Haibo Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China
| | - Weilin Wang
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
| | - Yi Sun
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, 310009, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, 310053, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Qi J, Li L, Gao B, Dai K, Shen K, Wu X, Li H, Yu Z, Wang Z, Wang Z. Prognostic prediction and immune checkpoint profiling in glioma patients through neddylation-associated features. Gene 2024; 930:148835. [PMID: 39127414 DOI: 10.1016/j.gene.2024.148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gliomas are the most common primary malignant tumours of the central nervous system, and neddylation may be a potential target for the treatment of gliomas. Our study analysed neddylation's potential role in gliomas of different pathological types and its correlation with immunotherapy. METHODS Genes required for model construction were sourced from existing literature, and their expression data were extracted from the TCGA and CGGA databases. LASSO regression was employed to identify genes associated with the prognosis of glioma patients in TCGA and to establish a clinical prognostic model. Biological changes in glioma cell lines following intervention with hub genes were evaluated using the CCK-8 assay and transwell assay. The genes implicated in the model construction were validated across various cell lines using Western blot. We conducted analyses to examine correlations between model scores and clinical data, tumor microenvironments, and immune checkpoints. Furthermore, we investigated potential differences in molecular functions and mechanisms among different groups. RESULTS We identified 249 genes from the Reactome database and analysed their expression profiles in the TCGA and CGGA databases. After using LASSO-Cox, four genes (BRCA1, BIRC5, FBXL16 and KLHL25, p < 0.05) with significant correlations were identified. We selected FBXL16 for validation in in vitro experiments. Following FBXL16 overexpression, the proliferation, migration, and invasion abilities of glioma cell lines all showed a decrease. Then, we constructed the NEDD Index for gliomas. The nomogram indicated that this model could serve as an independent prognostic marker. Analysis of the tumour microenvironment and immune checkpoints revealed that the NEDD index was also correlated with immune cell infiltration and the expression levels of various immune checkpoints. CONCLUSION The NEDD index can serve as a practical tool for predicting the prognosis of glioma patients, and it is correlated with immune cell infiltration and the expression levels of immune checkpoints.
Collapse
Affiliation(s)
- Juxing Qi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kecheng Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
5
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Zhu F, Li L, Chen Y, Pan Y, Zhang W, Li L, Cai L, Zhao X, Zhao H, Wang S, Jia L. CRL3 Keap1 E3 ligase facilitates ubiquitin-mediated degradation of oncogenic SRX to suppress colorectal cancer progression. Nat Commun 2024; 15:10536. [PMID: 39627198 PMCID: PMC11615322 DOI: 10.1038/s41467-024-54919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
The antioxidant protein sulfiredoxin-1 (SRX) is an oncogenic factor that promotes tumor progression, but the regulatory mechanism underlying SRX degradation remains to be understood. Herein, we report that Keap1, the substrate-specific adapter of CRL3 complex, specifically binds and promotes the ubiquitin-mediated degradation of SRX at residue K61. Keap1 knockdown accumulates SRX, which in turn facilitates colorectal cancer (CRC) metastasis by activating the activator protein-1/matrix metalloproteinase 9 (AP-1/MMP9) pathway. CRC-associated Keap1 mutants within the BACK domain lose the capability to ubiquitinate SRX and instead promote CRC metastasis. Moreover, inactivation of Keap1 facilitates CRC tumorigenesis and metastasis in mouse models of tumor xenograft due to SRX accumulation. Clinical sample analysis reveals that Keap1 is downregulated while SRX is overexpressed in CRC, which correlates with poor prognosis. Our findings elucidate a mechanism by which CRL3Keap1 ubiquitin ligase degrades SRX to suppress CRC progression, indicating that the Keap1-SRX axis will guide the targeted therapy towards CRC.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liangshan Li
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoxue Zhao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China.
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lijun Jia
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Ren H, Luan Z, Zhang R, Zhang H, Bian C. A novel approach to explore metabolic diseases: Neddylation. Pharmacol Res 2024; 210:107532. [PMID: 39637955 DOI: 10.1016/j.phrs.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Protein post translational modification (PTM) is the main regulatory mechanism for eukaryotic cell function, among which ubiquitination is based on the reversible degradation of proteins by the ubiquitin proteasome system to regulate cell homeostasis. The neural precursor cell expressed developmental downregulated gene 8 (NEDD8) is a kind of ubiquitin like protein that shares 80 % homology and 60 % identity with ubiquitin. The PTM process by covalently binding NEDD8 to lysine residues in proteins is called neddylation. The neddylation reaction could be regulated by NEDD8, its precursors, substrates, E1 activating enzymes, E2 binding enzymes, E3 ligases, de-neddylases, and its inhibitors, such as MLN4924. NEDD8 is widely expressed in the whole cell structure of multiple tissues and species, and neddylation related factors are highly expressed in metabolism related adrenal glands, thyroid glands, parathyroid glands, skeletal muscles, myocardium, and adipose tissues, related to metabolic cardiovascular, cerebrovascular and liver diseases, adipogenic and osteogenic differentiation, as well as tumor glycolysis and glucose metabolism resulting from angiogenesis and endothelial disfunction, hepatotoxicity, adipogenesis, osteogenesis, Warburg effect, and insulin function. This review provides researchers with a new approach to explore metabolic diseases via searching and analyzing the histological, cytological, and subcellular localization of neddylation specific molecules in databases, and exploring specific mechanism neddylation mediating metabolic diseases by searching for neddylation related terms with the development of pre-clinical neddylation pharmacological inhibitors.
Collapse
Affiliation(s)
- Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haibo Zhang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Che Bian
- Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Wu Q, Geng Z, Lu J, Wang S, Yu Z, Wang S, Ren X, Guan S, Liu T, Zhu C. Neddylation of protein, a new strategy of protein post-translational modification for targeted treatment of central nervous system diseases. Front Neurosci 2024; 18:1467562. [PMID: 39564524 PMCID: PMC11573765 DOI: 10.3389/fnins.2024.1467562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Neddylation, a type of protein post-translational modification that links the ubiquitin-like protein NEDD8 to substrate proteins, can be involved in various significant cellular processes and generate multiple biological effects. Currently, the best-characterized substrates of neddylation are the Cullin protein family, which is the core subunit of the Cullin-RING E3 ubiquitin ligase complex and controls many important biological processes by promoting ubiquitination and subsequent degradation of various key regulatory proteins. The normal or abnormal process of protein neddylation in the central nervous system can lead to a series of occurrences of normal functions and the development of diseases, providing an attractive, reasonable, and effective targeted therapeutic strategy. Therefore, this study reviews the phenomenon of neddylation in the central nervous system and summarizes the corresponding substrates. Finally, we provide a detailed description of neddylation involved in CNS diseases and treatment methods that may be used to regulate neddylation for the treatment of related diseases.
Collapse
Affiliation(s)
- Qian Wu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Lu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shisong Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
11
|
Liu Q, Xin L, Ma X, Yuan Y. Dual role of targeting NAE1 in nasopharyngeal carcinoma: Antitumor effects yet inducing radiotherapy resistance. Heliyon 2024; 10:e37219. [PMID: 39296043 PMCID: PMC11408763 DOI: 10.1016/j.heliyon.2024.e37219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Background and objectives The inhibitor MLN4924 of Neural Precursor Cell-Expressed Developmentally Down-Regulated 8 (NEDD8) Activating Enzyme 1 (NAE1) has been found to suppress the growth of nasopharyngeal carcinoma (NPC). However, its effect on NPC's radiotherapy sensitivity remains unclear. Methods By integrating single-cell RNA sequencing and bulk RNA sequencing, we predict the impact of NAE1 on the cell cycle, cell death, and its relationship with radiotherapy sensitivity and prognosis in NPC. The effect of inhibiting NAE1 on NPC cell behavior and radiation sensitivity is explored through MLN4924 intervention in vitro and in vivo. We construct a prognosis prediction model based on NAE1 using machine learning methods and validate the efficacy of NAE1 and the model in clinical cohorts. Results NPC patients with high NAE1 expression have better prognosis and higher expression in the radiotherapy-sensitive group. Inhibiting NAE1 with MLN4924 causes cell cycle arrest in NPC cells, preventing them from entering the G2/M phase, thereby inhibiting proliferation but not affecting migration and metastasis. However, in vitro and in vivo experiments demonstrate that inhibiting NAE1 with MLN4924 leads to increased resistance of NPC to radiation. Conclusions Targeting NAE1 for NPC treatment may have dual effects, inhibiting NPC proliferation while also increasing radiation resistance.
Collapse
Affiliation(s)
- Qinsong Liu
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Lu Xin
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Xiaoning Ma
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yong Yuan
- Department of Otolaryngology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
12
|
Lin X, Sun D, Yang S, Cheng K, Wang X, Meng W, Wu H, Liu W, Wu X, Yang H, Wang X, Zhou L. UBE2M forms a positive feedback loop with estrogen receptor to drive breast cancer progression and drug resistance. Cell Death Dis 2024; 15:590. [PMID: 39138151 PMCID: PMC11322533 DOI: 10.1038/s41419-024-06979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
UBE2M, a NEDD8-conjugating enzyme, is dysregulated in various human cancers and promotes tumor cell proliferation. However, its role in estrogen receptor-positive (ER+) breast cancer remains unknown. We found that UBE2M expression was significantly higher in ER+ breast cancer tissues than in ER-negative (ER-) breast cancer tissues. Higher expression of UBE2M indicated a poorer prognosis in patients with ER+ breast cancer but not in those with ER- breast cancer. Of interest, a positive feedback loop was observed between UBE2M and ERα. Specifically, ERα enhanced the HIF-1α-mediated transcription of UBE2M. In turn, UBE2M maintained ERα expression by inhibiting its ubiquitination and degradation through UBE2M-CUL3/4A-E6AP-ERα axis. Functionally, silencing of UBE2M suppressed the growth of breast cancer cells by inducing cell cycle arrest and apoptosis and improved their sensitivity to fulvestrant both in vitro and in vivo. Altogether, our findings reveal that the UBE2M-ERα feedback loop drives breast cancer progression and fulvestrant resistance, suggesting UBE2M as a viable target for endocrine therapy of ER+ breast cancer.
Collapse
Affiliation(s)
- Xiongzhi Lin
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Dongsheng Sun
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Shuhan Yang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Kai Cheng
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - XingYi Wang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Weijia Meng
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Haowei Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlin Liu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiaoyu Wu
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Wang
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China.
| | - Lisha Zhou
- Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang, China.
| |
Collapse
|
13
|
Llerena Schiffmacher DA, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal ACO, Hoeijmakers JHJ, Marteijn JA, Lans H, Demmers JAA, Vermeulen M, Sixma TK, Ogi T, Vermeulen W, Pines A. The small CRL4 CSA ubiquitin ligase component DDA1 regulates transcription-coupled repair dynamics. Nat Commun 2024; 15:6374. [PMID: 39075067 PMCID: PMC11286758 DOI: 10.1038/s41467-024-50584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931, Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Ishikawa C, Mori N. Inhibitory effect of a neddylation blockade on HTLV-1-infected T cells via modulation of NF-κB, AP-1, and Akt signaling. Leuk Lymphoma 2024; 65:978-988. [PMID: 38489672 DOI: 10.1080/10428194.2024.2328219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Adult T-cell leukemia (ATL), caused by HTLV-1, is the most lethal hematological malignancy. NEDD8-activating enzyme (NAE) is a component of the NEDD8 conjunction pathway that regulates cullin-RING ubiquitin ligase (CRL) activity. HTLV-1-infected T cells expressed higher levels of NAE catalytic subunit UBA3 than normal peripheral blood mononuclear cells. NAE1 knockdown inhibited proliferation of HTLV-1-infected T cells. The NAE1 inhibitor MLN4924 suppressed neddylation of cullin and inhibited the CRL-mediated turnover of tumor suppressor proteins. MLN4924 inhibited proliferation of HTLV-1-infected T cells by inducing DNA damage, leading to S phase arrest and caspase-dependent apoptosis. S phase arrest was associated with CDK2 and cyclin A downregulation. MLN4924-induced apoptosis was mediated by the upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins. Furthermore, MLN4924 inhibited NF-κB, AP-1, and Akt signaling pathways and activated JNK. Therefore, neddylation inhibition is an attractive strategy for ATL therapy. Our findings support the use of MLN4924 in ATL clinical trials.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
15
|
Tang H, Pang X, Li S, Tang L. The Double-Edged Effects of MLN4924: Rethinking Anti-Cancer Drugs Targeting the Neddylation Pathway. Biomolecules 2024; 14:738. [PMID: 39062453 PMCID: PMC11274557 DOI: 10.3390/biom14070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The neddylation pathway assumes a pivotal role in the initiation and progression of cancer. MLN4924, a potent small-molecule inhibitor of the NEDD8-activating enzyme (NAE), effectively intervenes in the early stages of the neddylation pathway. By instigating diverse cellular responses, such as senescence and apoptosis in cancer cells, MLN4924 also exerts regulatory effects on non-malignant cells within the tumor microenvironment (TME) and tumor virus-infected cells, thereby impeding the onset of tumors. Consequently, MLN4924 has been widely acknowledged as a potent anti-cancer drug. (2) Recent findings: Nevertheless, recent findings have illuminated additional facets of the neddylation pathway, revealing its active involvement in various biological processes detrimental to the survival of cancer cells. This newfound understanding underscores the dual role of MLN4924 in tumor therapy, characterized by both anti-cancer and pro-cancer effects. This dichotomy is herein referred to as the "double-edged effects" of MLN4924. This paper delves into the intricate relationship between the neddylation pathway and cancer, offering a mechanistic exploration and analysis of the causes underlying the double-edged effects of MLN4924-specifically, the accumulation of pro-cancer neddylation substrates. (3) Perspectives: Here, the objective is to furnish theoretical support and novel insights that can guide the development of next-generation anti-cancer drugs targeting the neddylation pathway.
Collapse
Affiliation(s)
- Haoming Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Xin Pang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| |
Collapse
|
16
|
Chang Y, Chen Q, Li H, Xu J, Tan M, Xiong X, Sun Y. The UBE2F-CRL5 ASB11-DIRAS2 axis is an oncogene and tumor suppressor cascade in pancreatic cancer cells. Dev Cell 2024; 59:1317-1332.e5. [PMID: 38574733 DOI: 10.1016/j.devcel.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/04/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
UBE2F, a neddylation E2, neddylates CUL5 to activate cullin-RING ligase-5, upon coupling with neddylation E3 RBX2/SAG. Whether and how UBE2F controls pancreatic tumorigenesis is previously unknown. Here, we showed that UBE2F is essential for the growth of human pancreatic cancer cells with KRAS mutation. In the mouse KrasG12D pancreatic ductal adenocarcinoma (PDAC) model, Ube2f deletion suppresses cerulein-induced pancreatitis, and progression of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Mechanistically, Ube2f deletion inactivates the Mapk-c-Myc signals via blocking ubiquitylation of Diras2, a substrate of CRL5Asb11 E3 ligase. Biologically, DIRAS2 suppresses growth and survival of human pancreatic cancer cells harboring mutant KRAS, and Diras2 deletion largely rescues the phenotypes induced by Ube2f deletion. Collectively, Ube2f or Diras2 plays a tumor-promoting or tumor-suppressive role in the mouse KrasG12D PDAC model, respectively. The UBE2F-CRL5ASB11 axis could serve as a valid target for pancreatic cancer, whereas the levels of UBE2F or DIRAS2 may serve as prognostic biomarkers for PDAC patients.
Collapse
Affiliation(s)
- Yu Chang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qian Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Hua Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Xu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiufang Xiong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou 310009, China; Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Liu D, Wu G, Wang S, Zheng X, Che X. Evaluating the Role of Neddylation Modifications in Kidney Renal Clear Cell Carcinoma: An Integrated Approach Using Bioinformatics, MLN4924 Dosing Experiments, and RNA Sequencing. Pharmaceuticals (Basel) 2024; 17:635. [PMID: 38794205 PMCID: PMC11125012 DOI: 10.3390/ph17050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Neddylation, a post-translational modification process, plays a crucial role in various human neoplasms. However, its connection with kidney renal clear cell carcinoma (KIRC) remains under-researched. METHODS We validated the Gene Set Cancer Analysis Lite (GSCALite) platform against The Cancer Genome Atlas (TCGA) database, analyzing 33 cancer types and their link with 17 neddylation-related genes. This included examining copy number variations (CNVs), single nucleotide variations (SNVs), mRNA expression, cellular pathway involvement, and methylation. Using Gene Set Variation Analysis (GSVA), we categorized these genes into three clusters and examined their impact on KIRC patient prognosis, drug responses, immune infiltration, and oncogenic pathways. Afterward, our objective is to identify genes that exhibit overexpression in KIRC and are associated with an adverse prognosis. After pinpointing the specific target gene, we used the specific inhibitor MLN4924 to inhibit the neddylation pathway to conduct RNA sequencing and related in vitro experiments to verify and study the specificity and potential mechanisms related to the target. This approach is geared towards enhancing our understanding of the prognostic importance of neddylation modification in KIRC. RESULTS We identified significant CNV, SNV, and methylation events in neddylation-related genes across various cancers, with notably higher expression levels observed in KIRC. Cluster analysis revealed a potential trade-off in the interactions among neddylation-related genes, where both high and low levels of gene expression are linked to adverse prognoses. This association is particularly pronounced concerning lymph node involvement, T stage classification, and Fustat score. Simultaneously, our research discovered that PSMB10 exhibits overexpression in KIRC when compared to normal tissues, negatively impacting patient prognosis. Through RNA sequencing and in vitro assays, we confirmed that the inhibition of neddylation modification could play a role in the regulation of various signaling pathways, thereby influencing the prognosis of KIRC. Moreover, our results underscore PSMB10 as a viable target for therapeutic intervention in KIRC, opening up novel pathways for the development of targeted treatment strategies. CONCLUSION This study underscores the regulatory function and potential mechanism of neddylation modification on the phenotype of KIRC, identifying PSMB10 as a key regulatory target with a significant role in influencing the prognosis of KIRC.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (G.W.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (G.W.); (S.W.)
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (G.W.); (S.W.)
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (G.W.); (S.W.)
| |
Collapse
|
18
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Su J, Li M, Chang Y, Jia M, Zhao M, Guan S, Niu J, Zhang S, Yang H, Sun M. Discovery of the 2,4-disubstituted quinazoline derivative as a novel neddylation inhibitor for tumor therapy. Bioorg Chem 2024; 145:107237. [PMID: 38442613 DOI: 10.1016/j.bioorg.2024.107237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Overactivation of neddylation has been found in a number of common human tumor-related diseases. In recent years, targeting the neddylation pathway has become an appealing anti-cancer strategy, and it is critical to find neddylation inhibitors with novel structures and higher efficacy. Here, we present the discovery of novel inhibitors of the NEDD8-activating enzyme (NAE) and their antitumor activity in vitro. All synthesized 1,4-disubstituted piperidine compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549, and KYSE-30 cells. Among five representative compounds, III-26 bearing a quinazoline motif was identified as the lead one due to the fact that it significantly hindered the neddylation of Cullin1. Cellular mechanisms elucidated that III-26 inhibited the proliferation, migration, and invasion of UBC12-overexpressed MGC-803 cell lines, as well as induced apoptosis and arrested the cell cycle at G2/M phase. Importantly, III-26 reduced NAE activity, thus selectively preventing neddylation of Cullin3 and Cullin1 over other Cullin members. At a dose of 4 μM, III-26 virtually entirely blocked UBC12-NEDD8 conjugation in MGC-803 cells. Our molecular modeling and kinetic investigation suggested that this compound may function as a non-covalent inhibitor of NAE.
Collapse
Affiliation(s)
- Jingtian Su
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengyu Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanyuan Chang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meiqi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mei Zhao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Sumeng Guan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jinbo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Saiyang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
20
|
Di Gregorio J, Di Giuseppe L, Terreri S, Rossi M, Battafarano G, Pagliarosi O, Flati V, Del Fattore A. Protein Stability Regulation in Osteosarcoma: The Ubiquitin-like Modifications and Glycosylation as Mediators of Tumor Growth and as Targets for Therapy. Cells 2024; 13:537. [PMID: 38534381 PMCID: PMC10969184 DOI: 10.3390/cells13060537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.
Collapse
Affiliation(s)
- Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy;
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Olivia Pagliarosi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.T.); (M.R.); (G.B.); (O.P.); (A.D.F.)
| |
Collapse
|
21
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024; 16:AD.2024.0219. [PMID: 38502582 PMCID: PMC11745454 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan Liu
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jie Du
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
22
|
Dean B, Scarr E. Common changes in rat cortical gene expression after antidepressant drug treatment: Impacts on metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. World J Biol Psychiatry 2024; 25:200-213. [PMID: 38349617 DOI: 10.1080/15622975.2024.2312475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES This study sought to identify pathways affected by rat cortical RNA that were changed after treatment with fluoxetine or imipramine. METHODS We measured levels of cortical RNA in male rats using GeneChip® Rat Exon 1.0 ST Array after treatment with vehicle (0.9% NaCl), fluoxetine (10 mg/kg/day) or imipramine (20 mg/kg/day) for 28 days. Levels of coding and non-coding RNA in vehicle treated rats were compared to those in treated rats using ANOVA in JMP Genomics 13 and the Panther Gene Ontology Classification System was used to identify pathways involving the changed RNAs. RESULTS 18,876 transcripts were detected; there were highly correlated changes in 1010 levels of RNA after both drug treatments that would principally affect the metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding. Using our previously published data, we compared changes in transcripts after treatment with antipsychotic and mood stabilising drugs. CONCLUSIONS Our study shows there are common, correlated, changes in coding and non-coding RNA in the rat cortex after treatment with fluoxetine or imipramine; we propose the pathways affected by these changes are involved in the therapeutic mechanisms of action of antidepressant drugs.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Wang X, Zhao M, Chang Y, Guan S, Li M, Yang H, Sun M. Identification of novel benzothiazole derivatives as inhibitors of NEDDylation pathway to inhibit the progression of gastric cancer. Bioorg Med Chem Lett 2024; 100:129647. [PMID: 38320715 DOI: 10.1016/j.bmcl.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
The overexpression of neddylation modification is frequently observed in human tumor cells. Targeting the neddylation pathway has been recognized as a promising anticancer therapeutic strategy, thus discovering potent and selective neddylation inhibitors is of great importance. In this study, we designed and synthesized a series of novel neddylation inhibitors bearing benzothiazole scaffolds by molecular hybridization strategy and all compounds were evaluated for antiproliferative activity against MGC-803, MCF-7, A549 and KYSE-30 cell lines. In vitro anti-tumor studies showed that the most promising compound X-10, effectively suppressed MGC-803 cells growth and migration, induced apoptosis and arrested cell cycle at G2/M phase. Importantly, by directly interacting with NAE1, X-10 blocked NAE1 activity, specifically preventing neddylation of Cullin 3 and Cullin 1, and produced a dose-response decline in the level of UBC12-NEDD8 complex. Overall, our data indicate that X-10 inhibits the process of neddylation, making it a potentially agent for both cancer prevention and therapy purposes.
Collapse
Affiliation(s)
- Xuan Wang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mei Zhao
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yuanyuan Chang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Sumeng Guan
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengyu Li
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hua Yang
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Moran Sun
- School of Pharmaceutical Sciences, and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Li Y, Shen S, Guo H, Li H, Zhang L, Zhang B, Yu XF, Wei W. Pharmacological inhibition of neddylation impairs long interspersed element 1 retrotransposition. Cell Rep 2024; 43:113749. [PMID: 38329876 DOI: 10.1016/j.celrep.2024.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Siyu Shen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Haoran Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Huili Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lili Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
25
|
Pérez-González A, Ramírez-Díaz I, Guzmán-Linares J, Sarvari P, Sarvari P, Rubio K. ncRNAs Orchestrate Chemosensitivity Induction by Neddylation Blockades. Cancers (Basel) 2024; 16:825. [PMID: 38398217 PMCID: PMC10886669 DOI: 10.3390/cancers16040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
We performed an integrative transcriptomic in silico analysis using lung adenocarcinoma A549 cells treated with the neddylation inhibitor MLN4924 and the gefitinib-resistant PC9 cell line (PC9GR). We focused on the transcriptional effects of the top differentially expressed ncRNA biotypes and their correlating stemness factors. Interestingly, MLN4924-treated cells showed a significant upregulation of mRNAs involved in carcinogenesis, cell attachment, and differentiation pathways, as well as a parallel downregulation of stemness maintenance and survival signaling pathways, an effect that was inversely observed in PC9GR cells. Moreover, we found that stemness factor expression could be contrasted by selected up-regulated ncRNAs upon MLN4924 treatment in a dose and time-independent manner. Furthermore, upregulated miRNAs and lncRNA-targeted mRNAs showed an evident enrichment of proliferation, differentiation, and apoptosis pathways, while downregulated ncRNA-targeted mRNAs were implicated in stem cell maintenance. Finally, our results proved that stemness (KLF4 and FGFR2) and epithelial-mesenchymal transition (ZEB2, TWIST2, SNAI2, CDH2, and VIM) factors, which are highly expressed in PC9GR cells compared to gefitinib-sensitive PC9 cells, could be abrogated with the neddylation inhibitor MLN4924 mainly through activation of epithelial differentiation pathways, thus exerting a protective role in lung cancer cells and chemosensitivity against lung tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
- Faculty of Biotechnology, Popular and Autonomous, University of Puebla State (UPAEP), Puebla 72410, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| | - Pouya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Pourya Sarvari
- Iran National Elite Foundation (INEF), Tehran 1461965381, Iran; (P.S.); (P.S.)
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico; (A.P.-G.); (I.R.-D.); (J.G.-L.)
| |
Collapse
|
26
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Tao Y, Dai L, Liang W, Li X, Lyu Y, Li J, Li Z, Shi Z, Liang X, Zhou S, Fu X, Hu W, Wang X. Advancements and perspectives of RBX2 as a molecular hallmark in cancer. Gene 2024; 892:147864. [PMID: 37820940 DOI: 10.1016/j.gene.2023.147864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Cancer is a challenging issue for human health. One of the key methods to address this issue is by comprehending the molecular causes of tumors and creating medications that target those causes. RBX2 (RING box protein 2), also known as ROC2 (Regulator of Cullins 2), RNF7 (RING Finger Protein 7), or SAG (Sensitive to Apoptosis Gene) is a key component of the Cullin-RING-type E3 ubiquitin ligases (CRLs) and overexpressed in various human cancers. RBX2 is a potential drug target, the expression of which correlates with tumor staging, grading, and prognosis analysis. Through a synergistically biological interaction with Kras mutation in preclinical models, RBX2 accelerated the progression of skin cancer, pancreatic cancer, and lung cancer. In accordance, the aberrant expression of RBX2 will lead to dysregulation of many signaling pathways, which is crucial for tumor initiation and growth. However, the impact of RBX2 on tumors also intriguingly demonstrates a spatial reliance manner. In this review, we summarized the current understanding of RBX2 in multiple cancer types and suggested a significant potential of RBX2 as a therapeutic target.
Collapse
Affiliation(s)
- Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Lirui Dai
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Yuan Lyu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Junqi Li
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xianyin Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Shaolong Zhou
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xudong Fu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China.
| |
Collapse
|
28
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
29
|
Guo YJ, Pang JR, Zhang Y, Li ZR, Zi XL, Liu HM, Wang N, Zhao LJ, Gao Y, Wang B, Herdewijn P, Jin CY, Liu Y, Zheng YC. Neddylation-dependent LSD1 destabilization inhibits the stemness and chemoresistance of gastric cancer. Int J Biol Macromol 2024; 254:126801. [PMID: 37689288 DOI: 10.1016/j.ijbiomac.2023.126801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.
Collapse
Affiliation(s)
- Yan-Jia Guo
- Henan Key Laboratory of Precision Clinical Pharmacy, Academy of Medical Sciences, Zhengzhou University, Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-Lin Zi
- Department of Urology, University of California, Irvine, CA, USA; Department of Pharmacology, University of California, Irvine, CA, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Piet Herdewijn
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Ying Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
| |
Collapse
|
30
|
Taylor B, Tang N, Hao Y, Lee M, Peng S, Bybee R, Hartman L, Garcia-Mansfield K, Sharma R, Pirrotte P, Ma J, Parisian AD, Furnari F, Dhruv HD, Berens ME. Glioblastoma vulnerability to neddylation inhibition is dependent on PTEN status, and dysregulation of the cell cycle and DNA replication. Neurooncol Adv 2024; 6:vdae104. [PMID: 39119276 PMCID: PMC11306933 DOI: 10.1093/noajnl/vdae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Neddylation (NAE) inhibition, affecting posttranslational protein function and turnover, is a promising therapeutic approach to cancer. We report the cytotoxic vulnerability to NAE inhibitors in a subset of glioblastoma (GBM) preclinical models and identify genetic alterations and biological processes underlying differential response. Methods GBM DNA sequencing and transcriptomic data were queried for genes associated with response to NAE inhibition; candidates were validated by molecular techniques. Multi-omics and functional assays revealed processes implicated in NAE inhibition response. Results Transcriptomics and shotgun proteomics depict PTEN signaling, DNA replication, and DNA repair pathways as significant differentiators between sensitive and resistant models. Vulnerability to MLN4924, a NAE inhibitor, is associated with elevated S-phase populations, DNA re-replication, and DNA damage. In a panel of GBM models, loss of WT PTEN is associated with resistance to different NAE inhibitors. A NAE inhibition response gene set could segregate the GBM cell lines that are most resistant to MLN4924. Conclusions Loss of WT PTEN is associated with non-sensitivity to 3 different compounds that inhibit NAE in GBM. A NAE inhibition response gene set largely consisting of DNA replication genes could segregate GBM cell lines most resistant to NAEi and may be the basis for future development of NAE inhibition signatures of vulnerability and clinical trial enrollment within a precision medicine paradigm.
Collapse
Affiliation(s)
- Brett Taylor
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Nanyun Tang
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Yue Hao
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matthew Lee
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Sen Peng
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Rita Bybee
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Lauren Hartman
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Jianhui Ma
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alison D Parisian
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Frank Furnari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| |
Collapse
|
31
|
JIang W, Dong J, Zhang W, Huang Z, Guo T, Zhang K, Jiang X, Du T. Development and Validation of a Prognostic Model based on 11 E3-related Genes for Colon Cancer Patients. Curr Pharm Des 2024; 30:935-951. [PMID: 38898815 DOI: 10.2174/0113816128292398240306160051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colon cancer is a common tumor in the gastrointestinal tract with a poor prognosis. According to research reports, ubiquitin-dependent modification systems have been found to play a crucial role in the development and advancement of different types of malignant tumors, including colon cancer. However, further investigation is required to fully understand the mechanism of ubiquitination in colon cancer. METHODS We collected the RNA expression matrix of the E3 ubiquitin ligase-related genes (E3RGs) from the patients with colon adenocarcinoma (COAD) using The Cancer Genome Atlas program (TCGA). The "limma" package was used to obtain differentially expressed E3RGs between COAD and adjacent normal tissues. Then, univariate COX regression and least absolute shrinkage and selection operator (LASSO) analysis were performed to construct the prognostic signature and nomogram model. Afterward, we used the original copy number variation data of COAD to find potential somatic mutation and employed the "pRRophetic" package to investigate the disparity in the effectiveness of chemotherapy drugs between high and low-risk groups. The RT-qPCR was also implied to detect mRNA expression levels in tumor tissues. RESULTS A total of 137 differentially expressed E3RG3 were screened and 11 genes (CORO2B, KCTD9, RNF32, BACH2, RBCK1, DPH7, WDR78, UCHL1, TRIM58, WDR72, and ZBTB18) were identified for the construction of prognostic signatures. The Kaplan-Meier curve showed a worse prognosis for patients with high risk both in the training and test cohorts (P = 1.037e-05, P = 5.704e-03), and the area under the curve (AUC) was 0.728 and 0.892 in the training and test cohorts, respectively. Based on the stratified analysis, this 11- E3RGs signature was a novel and attractive prognostic model independent of several clinicopathological parameters (age, sex, stage, TNM) in COAD. The DEGs were subjected to GO and KEGG analysis, which identified pathways associated with cancer progression. These pathways included the cAMP signaling pathway, calcium signaling pathway, Wnt signaling pathway, signaling pathways regulating stem cell pluripotency, and proteoglycans in cancer. Additionally, immune infiltration analysis revealed significant differences in the infiltration of macrophages M0, T cells follicular helper, and plasma cells between the two groups. CONCLUSION We developed a novel independent risk model consisting of 11 E3RGs and verified the effectiveness of this model in test cohorts, providing important insights into survival prediction in COAD and several promising targets for COAD therapy.
Collapse
Affiliation(s)
- Wanju JIang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth Peoples Hospital, Tongji University, Shanghai 200072, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kehui Zhang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Effects of neddylation on viral infection: an overview. Arch Virol 2023; 169:6. [PMID: 38081982 DOI: 10.1007/s00705-023-05930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
Neddylation is a post-translational modification that plays an important role not only in cancer development but also in regulating viral infection and replication. Upregulation of neddylation occurs in viral infections, and inhibition of neddylation can suppress viral replication. Neddylation is thought to enhance viral protein stability and replication. Neddylation has been reported to enhance the stability of the regulatory hepatitis B virus (HBV) X protein, modulate viral replication, and enhance hepatocarcinogenesis. Inhibition of neddylation using the NEDD8-activating enzyme E1 inhibitor MLN4924 inhibits viral replication, including that of HBV. Understanding of the role of neddylation in viral infections is critical for developing new therapeutic targets and potential treatment strategies. In this review, we discuss recent progress in the understanding of the effects of neddylation during viral infection, particularly in HBV infection, and strategies for curing viral infection by targeting the neddylation pathway.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
33
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
34
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
35
|
Schiffmacher DL, Lee SH, Kliza KW, Theil AF, Akita M, Helfricht A, Bezstarosti K, Gonzalo-Hansen C, van Attikum H, Verlaan-de Vries M, Vertegaal AC, Hoeijmakers JH, Marteijn JA, Lans H, Demmers JA, Vermeulen M, Sixma T, Ogi T, Vermeulen W, Pines A. DDA1, a novel factor in transcription-coupled repair, modulates CRL4 CSA dynamics at DNA damage-stalled RNA polymerase II. RESEARCH SQUARE 2023:rs.3.rs-3385435. [PMID: 37886519 PMCID: PMC10602077 DOI: 10.21203/rs.3.rs-3385435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we applied a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis showed that DDA1 is an integral component of the CRL4CSA complex. Functional analysis revealed that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
Collapse
Affiliation(s)
- Diana Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- These authors contributed equally
| | - Shun-Hsiao Lee
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
- These authors contributed equally
| | - Katarzyna W. Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
- Current address: Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Arjan F. Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Masaki Akita
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Current address: Department of Biology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A7, Brno, Czech Republic
| | - Angela Helfricht
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Matty Verlaan-de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Alfred C.O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H.J. Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- University Hospital of Cologne, CECAD Forschungszentrum, Institute for Genome Stability in Aging and Disease, Joseph Stelzmann Strasse 26, 50931 Köln, Germany
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- Oncode Institute, The Netherlands
| | - Jurgen A. Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Jeroen A.A. Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
- Division of Molecular Genetics and Oncode institute, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
- Oncode Institute, The Netherlands
| | - Titia Sixma
- Division of Biochemistry and Oncode institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Dutta H, Jain N. Post-translational modifications and their implications in cancer. Front Oncol 2023; 13:1240115. [PMID: 37795435 PMCID: PMC10546021 DOI: 10.3389/fonc.2023.1240115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial regulatory mechanisms that alter the properties of a protein by covalently attaching a modified chemical group to some of its amino acid residues. PTMs modulate essential physiological processes such as signal transduction, metabolism, protein localization, and turnover and have clinical relevance in cancer and age-related pathologies. Majority of proteins undergo post-translational modifications, irrespective of their occurrence in or after protein biosynthesis. Post-translational modifications link to amino acid termini or side chains, causing the protein backbone to get cleaved, spliced, or cyclized, to name a few. These chemical modifications expand the diversity of the proteome and regulate protein activity, structure, locations, functions, and protein-protein interactions (PPIs). This ability to modify the physical and chemical properties and functions of proteins render PTMs vital. To date, over 200 different protein modifications have been reported, owing to advanced detection technologies. Some of these modifications include phosphorylation, glycosylation, methylation, acetylation, and ubiquitination. Here, we discuss about the existing as well as some novel post-translational protein modifications, with their implications in aberrant states, which will help us better understand the modified sites in different proteins and the effect of PTMs on protein functions in core biological processes and progression in cancer.
Collapse
Affiliation(s)
- Hashnu Dutta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
37
|
Gu S, Lin C, Li Y, Wei Z, Cao B, Shen Z, Deng H. Neddylation inhibitor MLN4924 sensitizes head and neck squamous carcinoma cells to (S)-10-hydroxycamptothecin. Eur J Med Res 2023; 28:326. [PMID: 37689760 PMCID: PMC10492332 DOI: 10.1186/s40001-023-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
Head and neck squamous carcinoma (HNSCC) is the seventh most common cancer worldwide. Targeted therapeutic drugs for HNSCC are still being explored. Among them, (S)-10-hydroxycamptothecin (10-HCPT), a specific inhibitor of TOP1, functions by DNA double-strand breaks that can inhibit DNA replication and trigger apoptotic cell death subsequently. Previous studies have reported that MLN4924 exerts potent anti-tumor effects by inhibiting cullin-RING ligases and causing substrate accumulation in a variety of cancers. Here, we show that MLN4924 effectively causes dose-dependent accumulation of topoisomerase I (TOP1) and blocks TOP1 ubiquitination. Importantly, neddylation inhibition with MLN4924 acts synergistically with 10-HCPT to suppress cell growth, migration and apoptosis in HNSCC cells. Mechanistically, transcriptome sequencing shows that the cytotoxic effects of the combination of MLN4924 and 10-HCPT may involve activation of the NFKB1 pathway. Taken together, our results suggest that combined treatment with MLN4924 and 10-HCPT may be an effective strategy in HNSCC.
Collapse
Affiliation(s)
- Shanshan Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Chen Lin
- School of Medicine, Ningbo University, Ningbo, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zhengyu Wei
- School of Medicine, Ningbo University, Ningbo, China
| | - Bing Cao
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital affiliated to Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
38
|
He ZX, Yang WG, Zengyangzong D, Gao G, Zhang Q, Liu HM, Zhao W, Ma LY. Targeting cullin neddylation for cancer and fibrotic diseases. Theranostics 2023; 13:5017-5056. [PMID: 37771770 PMCID: PMC10526667 DOI: 10.7150/thno.78876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 09/30/2023] Open
Abstract
Protein neddylation is a post-translational modification, and its best recognized substrates are cullin family proteins, which are the core component of Cullin-RING ligases (CRLs). Given that most neddylation pathway proteins are overactivated in different cancers and fibrotic diseases, targeting neddylation becomes an emerging approach for the treatment of these diseases. To date, numerous neddylation inhibitors have been developed, of which MLN4924 has entered phase I/II/III clinical trials for cancer treatment, such as acute myeloid leukemia, melanoma, lymphoma and solid tumors. Here, we systematically describe the structures and biological functions of the critical enzymes in neddylation, highlight the medicinal chemistry advances in the development of neddylation inhibitors and propose the perspectives concerning targeting neddylation for cancer and fibrotic diseases.
Collapse
Affiliation(s)
- Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei-guang Yang
- Children's hospital affiliated of Zhengzhou university; Henan children's hospital; Zhengzhou children's hospital, Henan Zhengzhou 450000, China
| | - Dan Zengyangzong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ge Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qian Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- China Meheco Topfond Pharmaceutical Co., Zhumadian 463000, China
- Key Laboratory of Cardio-cerebrovascular Drug, Henan Province, Zhumadian 463000, China
| |
Collapse
|
39
|
Aubry A, Pearson JD, Charish J, Yu T, Sivak JM, Xirodimas DP, Avet-Loiseau H, Corre J, Monnier PP, Bremner R. Deneddylation of ribosomal proteins promotes synergy between MLN4924 and chemotherapy to elicit complete therapeutic responses. Cell Rep 2023; 42:112925. [PMID: 37552601 DOI: 10.1016/j.celrep.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.
Collapse
Affiliation(s)
- Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jason Charish
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeremy M Sivak
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Hervé Avet-Loiseau
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Jill Corre
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Bakti F, Stupperich H, Schmitt K, Valerius O, Köhler AM, Meister C, Strohdiek A, Harting R, Sasse C, Heimel K, Neumann P, Ficner R, Braus GH. Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase. Proc Natl Acad Sci U S A 2023; 120:e2305049120. [PMID: 37603767 PMCID: PMC10477865 DOI: 10.1073/pnas.2305049120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.
Collapse
Affiliation(s)
- Fruzsina Bakti
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Helena Stupperich
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Cindy Meister
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Anja Strohdiek
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Christoph Sasse
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, 37077Goettingen, Germany
| |
Collapse
|
41
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
42
|
Wu D, Sun Y. The Functional Redundancy of Neddylation E2s and E3s in Modulating the Fitness of Regulatory T Cells. RESEARCH (WASHINGTON, D.C.) 2023; 6:0212. [PMID: 37600496 PMCID: PMC10437198 DOI: 10.34133/research.0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Neddylation is necessary for activation of Cullin-RING ligases (CRLs), which degrade various immune regulatory proteins. Our recent study showed that while depletion of neddylation E2-E3 pair Ube2f-Sag in regulatory T (Treg) cells had no obvious phenotype, the same depletion of either Ube2m or Rbx1 caused inflammation disorders with different severity. Whether these E2s or E3s compensate each other in functional regulations of Treg cells is, however, previously unknown. In this report, we generated Foxp3Cre;Ube2mfl/fl;Ube2ffl/fl or Foxp3Cre;Rbx1fl/fl;Sagfl/fl double-null mice by simultaneous deletion of both neddylation E2s or E3s in Treg cells, respectively. Remarkably, Ube2m&Ube2f double-null mice developed much severe autoimmune phenotypes than did Ube2m-null mice, indicating that Ube2m markedly compensates Ube2f in Treg cells. The minor worsened autoimmune phenotypes seen at the very early stage in Rbx1&Sag double-null than Rbx1-null mice is likely due to already severe phenotypes of the later, indicating a minor compensation of Rbx1 for Sag. The RNA profiling-based analyses revealed that up- and down-regulations of few signaling pathways in Treg cells are associated with the severity of autoimmune phenotypes. Finally, severer inflammation phenotypes seen in mice with double E3-null than with double E2-null Treg cells indicate a neddylation-independent mechanism of 2 E3s, also known to serve as the RING component of CRLs in regulation of Treg cell fitness.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
43
|
Murai J, Ceribelli M, Fu H, Redon CE, Jo U, Murai Y, Aladjem MI, Thomas CJ, Pommier Y. Schlafen 11 (SLFN11) Kills Cancer Cells Undergoing Unscheduled Re-replication. Mol Cancer Ther 2023; 22:985-995. [PMID: 37216280 PMCID: PMC10524552 DOI: 10.1158/1535-7163.mct-22-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Schlafen 11 (SLFN11) is an increasingly prominent predictive biomarker and a molecular sensor for a wide range of clinical drugs: topoisomerases, PARP and replication inhibitors, and platinum derivatives. To expand the spectrum of drugs and pathways targeting SLFN11, we ran a high-throughput screen with 1,978 mechanistically annotated, oncology-focused compounds in two isogenic pairs of SLFN11-proficient and -deficient cells (CCRF-CEM and K562). We identified 29 hit compounds that selectively kill SLFN11-proficient cells, including not only previously known DNA-targeting agents, but also the neddylation inhibitor pevonedistat (MLN-4924) and the DNA polymerase α inhibitor AHPN/CD437, which both induced SLFN11 chromatin recruitment. By inactivating cullin-ring E3 ligases, pevonedistat acts as an anticancer agent partly by inducing unscheduled re-replication through supraphysiologic accumulation of CDT1, an essential factor for replication initiation. Unlike the known DNA-targeting agents and AHPN/CD437 that recruit SLFN11 onto chromatin in 4 hours, pevonedistat recruited SLFN11 at late time points (24 hours). While pevonedistat induced unscheduled re-replication in SLFN11-deficient cells after 24 hours, the re-replication was largely blocked in SLFN11-proficient cells. The positive correlation between sensitivity to pevonedistat and SLFN11 expression was also observed in non-isogenic cancer cells in three independent cancer cell databases (NCI-60, CTRP: Cancer Therapeutics Response Portal and GDSC: Genomic of Drug Sensitivity in Cancer). The present study reveals that SLFN11 not only detects stressed replication but also inhibits unscheduled re-replication induced by pevonedistat, thereby enhancing its anticancer efficacy. It also suggests SLFN11 as a potential predictive biomarker for pevonedistat in ongoing and future clinical trials.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Fu DJ, Wang T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J Hematol Oncol 2023; 16:87. [PMID: 37525282 PMCID: PMC10388525 DOI: 10.1186/s13045-023-01485-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
NEDDylation, a post-translational modification through three-step enzymatic cascades, plays crucial roles in the regulation of diverse biological processes. NEDD8-activating enzyme (NAE) as the only activation enzyme in the NEDDylation modification has become an attractive target to develop anticancer drugs. To date, numerous inhibitors or agonists targeting NAE have been developed. Among them, covalent NAE inhibitors such as MLN4924 and TAS4464 currently entered into clinical trials for cancer therapy, particularly for hematological tumors. This review explains the relationships between NEDDylation and cancers, structural characteristics of NAE and multistep mechanisms of NEDD8 activation by NAE. In addition, the potential approaches to discover NAE inhibitors and detailed pharmacological mechanisms of NAE inhibitors in the clinical stage are explored in depth. Importantly, we reasonably investigate the challenges of NAE inhibitors for cancer therapy and possible development directions of NAE-targeting drugs in the future.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
45
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
46
|
Brandt B, Németh M, Berta G, Szünstein M, Heffer M, Rauch TA, Pap M. A Promising Way to Overcome Temozolomide Resistance through Inhibition of Protein Neddylation in Glioblastoma Cell Lines. Int J Mol Sci 2023; 24:ijms24097929. [PMID: 37175636 PMCID: PMC10178391 DOI: 10.3390/ijms24097929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
There is no effective therapy for the lately increased incidence of glioblastoma multiforme (GBM)-the most common primary brain tumor characterized by a high degree of invasiveness and genetic heterogeneity. Currently, DNA alkylating agent temozolomide (TMZ) is the standard chemotherapy. Nevertheless, TMZ resistance is a major problem in the treatment of GBM due to numerous molecular mechanisms related to DNA damage repair, epigenetic alterations, cellular drug efflux, apoptosis-autophagy, and overactive protein neddylation. Low molecular weight inhibitors of NEDD8-activating enzyme (NAE), such as MLN4924, attenuate protein neddylation and present a promising low-toxicity anticancer agent. The aim of our study was to find an effective combination treatment with TMZ and MLN4924 in our TMZ-resistant GBM cell lines and study the effect of these combination treatments on different protein expressions such as O6-methylguanine methyltransferase (MGMT) and p53. The combination treatment successfully decreased cell viability and sensitized TMZ-resistant cells to TMZ, foreshadowing a new treatment strategy for GBM.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marica Németh
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Máté Szünstein
- Department of Ecology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tibor A Rauch
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
47
|
Xie D, Huang Q, Zhou P. Drug Discovery Targeting Post-Translational Modifications in Response to DNA Damages Induced by Space Radiation. Int J Mol Sci 2023; 24:ijms24087656. [PMID: 37108815 PMCID: PMC10142602 DOI: 10.3390/ijms24087656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
DNA damage in astronauts induced by cosmic radiation poses a major barrier to human space exploration. Cellular responses and repair of the most lethal DNA double-strand breaks (DSBs) are crucial for genomic integrity and cell survival. Post-translational modifications (PTMs), including phosphorylation, ubiquitylation, and SUMOylation, are among the regulatory factors modulating a delicate balance and choice between predominant DSB repair pathways, such as non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we focused on the engagement of proteins in the DNA damage response (DDR) modulated by phosphorylation and ubiquitylation, including ATM, DNA-PKcs, CtIP, MDM2, and ubiquitin ligases. The involvement and function of acetylation, methylation, PARylation, and their essential proteins were also investigated, providing a repository of candidate targets for DDR regulators. However, there is a lack of radioprotectors in spite of their consideration in the discovery of radiosensitizers. We proposed new perspectives for the research and development of future agents against space radiation by the systematic integration and utilization of evolutionary strategies, including multi-omics analyses, rational computing methods, drug repositioning, and combinations of drugs and targets, which may facilitate the use of radioprotectors in practical applications in human space exploration to combat fatal radiation hazards.
Collapse
Affiliation(s)
- Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
| | - Qi Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| |
Collapse
|
48
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
49
|
Kamarehei F, Saidijam M, Taherkhani A. Prognostic biomarkers and molecular pathways mediating Helicobacter pylori–induced gastric cancer: a network-biology approach. Genomics Inform 2023; 21:e8. [PMID: 37037466 PMCID: PMC10085735 DOI: 10.5808/gi.22072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori–induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori–induced cancer compared with the H. pylori–positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori–induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori–induced GC. However, experimental validation is necessary in the future.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
50
|
Cordes BLA, Bilger A, Kraus RJ, Ward-Shaw ET, Labott MR, Lee S, Lambert PF, Mertz JE. Drugs That Mimic Hypoxia Selectively Target EBV-Positive Gastric Cancer Cells. Cancers (Basel) 2023; 15:1846. [PMID: 36980731 PMCID: PMC10046841 DOI: 10.3390/cancers15061846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV's latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we tested three classes of these drugs for preferential killing of the EBV-positive gastric cancer AGS-Akata cell line compared to its matched EBV-negative AGS control. We observed preferential killing with iron chelators [Deferoxamine (DFO); Deferasirox (DFX)] and a prolyl hydroxylase inhibitor (BAY 85-3934 (Molidustat)), but not with a neddylation inhibitor [MLN4924 (Pevonedistat)]. DFO and DFX also induced preferential killing of the EBV-positive gastric cancer AGS-BDneo and SNU-719 cell lines. Preferential killing was enhanced when low-dose DFX (10 μM) was combined with the antiviral prodrug ganciclovir. DFO and DFX induced lytic EBV reactivation in approximately 10% of SNU-719 and 20-30% of AGS-Akata and AGS-BDneo cells. However, neither DFO nor DFX significantly induced synthesis of lytic EBV proteins in xenografts grown in NSG mice from AGS-Akata cells above the level observed in control-treated mice. Therefore, these FDA-approved iron chelators are less effective than gemcitabine at promoting EBV reactivation in vivo despite their high specificity and efficiency in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Janet E. Mertz
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (B.-l.A.C.); (A.B.); (R.J.K.); (E.T.W.-S.); (M.R.L.); (S.L.); (P.F.L.)
| |
Collapse
|