1
|
Carman LE, Samulevich ML, Aneskievich BJ. Repressive Control of Keratinocyte Cytoplasmic Inflammatory Signaling. Int J Mol Sci 2023; 24:11943. [PMID: 37569318 PMCID: PMC10419196 DOI: 10.3390/ijms241511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.
Collapse
Affiliation(s)
- Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
2
|
Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, Zhang JT, Yang X, Fu QY, Fu DN, Hu J, Liu T. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol 2023; 238:257-273. [PMID: 36436135 DOI: 10.1002/jcp.30923] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Teng-Teng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Haian, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China.,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Samulevich ML, Shamilov R, Aneskievich BJ. Thermostable Proteins from HaCaT Keratinocytes Identify a Wide Breadth of Intrinsically Disordered Proteins and Candidates for Liquid-Liquid Phase Separation. Int J Mol Sci 2022; 23:ijms232214323. [PMID: 36430801 PMCID: PMC9692912 DOI: 10.3390/ijms232214323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) move through an ensemble of conformations which allows multitudinous roles within a cell. Keratinocytes, the predominant cell type in mammalian epidermis, have had only a few individual proteins assessed for intrinsic disorder and its possible contribution to liquid-liquid phase separation (LLPS), especially in regard to what functions or structures these proteins provide. We took a holistic approach to keratinocyte IDPs starting with enrichment via the isolation of thermostable proteins. The keratinocyte protein involucrin, known for its resistance to heat denaturation, served as a marker. It and other thermostable proteins were identified by liquid chromatography tandem mass spectrometry and subjected to extensive bioinformatic analysis covering gene ontology, intrinsic disorder, and potential for LLPS. Numerous proteins unique to keratinocytes and other proteins with shared expression in multiple cell types were identified to have IDP traits (e.g., compositional bias, nucleic acid binding, and repeat motifs). Among keratinocyte-specific proteins, many that co-assemble with involucrin into the cell-specific structure known as the cornified envelope scored highly for intrinsic disorder and potential for LLPS. This suggests intrinsic disorder and LLPS are previously unrecognized traits for assembly of the cornified envelope, echoing the contribution of intrinsic disorder and LLPS to more widely encountered features such as stress granules and PML bodies.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269-3092, USA
- Correspondence: ; Tel.: +1-860-486-3053; Fax: +1-860-486-5792
| |
Collapse
|
4
|
Jing Q, Ruan H, Li J, Wang Z, Pei L, Hu H, He Z, Wu T, Ruan S, Guo T, Wang Y, Feng N, Zhang Y. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials 2021; 278:121142. [PMID: 34571433 DOI: 10.1016/j.biomaterials.2021.121142] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of actively targeting drug delivery carriers for the topical treatment of epidermal diseases, which results in drug waste and an increased incidence of toxic side effects in the clinic. We recently discovered that epidermal cells (HaCaT cells) have homologous targeting functions and developed HaCaT cell membrane-coated pH-sensitive micelles for therapeutic active targeting of skin disease. We encapsulated shikonin in these biomimetic nanocarriers and found that the nanocarriers accumulated mainly in the active epidermis when delivered with karaya gum-fabricated water-soluble microneedles. The nanocarriers were internalized by the target cells, resulting in swelling of histidine fragments with protonation and subsequent triggering of drug release, which increased the therapeutic efficacy of shikonin against imiquimod-induced psoriatic epidermal hyperplasia. This emerging biomimetic delivery strategy is a new approach for improving the treatment of skin diseases and is also very promising for use in the field of cosmetics. Additionally, we found abnormally high protein expression of Na+/K+-ATPase in diseased skin; thus, this protein may be a biomarker of psoriasis.
Collapse
Affiliation(s)
- Qian Jing
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongmei Hu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Youjie Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Chen J, Yuan F, Fan X, Wang Y. Psoriatic arthritis: A systematic review of non-HLA genetic studies and important signaling pathways. Int J Rheum Dis 2020; 23:1288-1296. [PMID: 32761870 DOI: 10.1111/1756-185x.13879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/30/2020] [Accepted: 05/17/2020] [Indexed: 01/20/2023]
Abstract
Psoriatic arthritis (PsA) is a common, chronic inflammatory disease with complex pathogenesis. In recent years, a number of susceptibility non-human leukocyte antigen (HLA) genes of PsA have been revealed, which also act as important factors in the pathogenesis of PsA as well as HLA genes. By searching the databases National Center for Biotechnology Information, Google and PubMed, 37 articles are included and 50 susceptibility non-HLA genes for PsA are presented, such as IL23A, TNIP1, TYK2, STAT4, IL12B, RUNX3 and TRAF3IP2. In these non-HLA genes, some are common genes shared with other diseases, whereas most of these susceptibility genes are related to the pathogenesis of PsA by activation or inhibition of the signaling pathways. Several signaling pathways possibly implicated in the pathogenesis of PsA are introduced in this paper, including the 2 mainly signaling pathways, IL23/Th17 signaling pathway and NF-κB signaling pathway, and the other involved signaling pathways, such as JAK-STAT signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Dermatology, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei, China
| | - Feng Yuan
- Department of Dermatology, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei, China
| | - Xing Fan
- Institute of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yahua Wang
- Department of Dermatology, Anhui Provincial Corps Hospital of Chinese People's Armed Police Forces, Hefei, China
| |
Collapse
|
6
|
Enhanced Wound Healing- and Inflammasome-Associated Gene Expression in TNFAIP3-Interacting Protein 1- (TNIP1-) Deficient HaCaT Keratinocytes Parallels Reduced Reepithelialization. Mediators Inflamm 2020; 2020:5919150. [PMID: 32377162 PMCID: PMC7191359 DOI: 10.1155/2020/5919150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
TNIP1 protein is a widely expressed, cytoplasmic inhibitor of inflammatory signaling initiated by membrane receptors such as TLRs which recognize pathogen-associated and damage-associated molecular patterns (PAMPs and DAMPs). Keratinocyte TNIP1 deficiency sensitizes cells to PAMPs and DAMPs promoting hyperresponsive expression and secretion of cytokine markers (e.g., IL-8 and IL-6) relevant to cases of chronic inflammation, like psoriasis, where TNIP1 deficiency has been reported. Here, we examined the impact of TNIP1 deficiency on gene expression and cellular responses (migration and viability) relevant to acute inflammation as typically occurs in wound healing. Using siRNA-mediated TNIP1 expression knockdown in cultured HaCaT keratinocytes, we investigated TNIP1 deficiency effects on signaling downstream of TLR3 agonism with low-concentration poly (I:C), a representative PAMP/DAMP. The combination of TNIP1 knockdown and PAMP/DAMP signaling disrupted expression of specific keratinocyte differentiation markers (e.g., transglutaminase 1 and involucrin). These same conditions promoted synergistically increased expression of wound-associated markers (e.g., S100A8, TGFβ, and CCN2) suggesting potential benefit of increased inflammatory response from reduced TNIP1 protein. Unexpectedly, poly (I:C) challenge of TNIP1-deficient cells restricted reepithelialization and reduced cell viability. In these cells, there was not only increased expression for genes associated with inflammasome assembly (e.g., ASC, procaspase 1) but also for A20, a TNIP1 partner protein that represses cell-death signaling. Despite this possibly compensatory increase in A20 mRNA, there was a decrease in phospho-A20 protein, the form necessary for quenching inflammation. Hyperresponsiveness to poly (I:C) in TNIP1-deficient keratinocytes was in part mediated through p38 and JNK pathways. Taken together, we conclude that TNIP1 deficiency promotes enhanced expression of factors associated with promoting wound healing. However, the coupled, increased potential priming of the inflammasome and reduced compensatory activity of A20 has a net negative effect on overall cell recovery potential manifested by poor reepithelialization and viability. These findings suggest a previously unrecognized role for TNIP1 protein in limiting inflammation during successful progression through early wound healing stages.
Collapse
|
7
|
Harirchian P, Lee J, Hilz S, Sedgewick AJ, Perez White BE, Kesling MJ, Mully T, Golovato J, Gray M, Mauro TM, Purdom E, Kim EA, Sbitany H, Bhutani T, Vaske CJ, Benz SC, Cho RJ, Cheng JB. A20 and ABIN1 Suppression of a Keratinocyte Inflammatory Program with a Shared Single-Cell Expression Signature in Diverse Human Rashes. J Invest Dermatol 2019; 139:1264-1273. [PMID: 30543901 PMCID: PMC6642632 DOI: 10.1016/j.jid.2018.10.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Genetic variation in the NF-κB inhibitors, ABIN1 and A20, increase risk for psoriasis. While critical for hematopoietic immune cell function, these genes are believed to additionally inhibit psoriasis by dampening inflammatory signaling in keratinocytes. We dissected ABIN1 and A20's regulatory role in human keratinocyte inflammation using an RNA sequencing-based comparative genomic approach. Here we show subsets of the IL-17 and tumor necrosis factor-α signaling pathways are robustly restricted by A20 overexpression. In contrast, ABIN1 overexpression inhibits these genes more modestly for IL-17, and weakly for tumor necrosis factor-α. Our genome-scale analysis also indicates that inflammatory program suppression appears to be the major transcriptional influence of A20/ABIN1 overexpression, without obvious influence on keratinocyte viability genes. Our findings thus enable dissection of the differing anti-inflammatory mechanisms of two distinct psoriasis modifiers, which may be directly exploited for therapeutic purposes. Importantly, we report that IL-17-induced targets of A20 show similar aberrant epidermal layer-specific transcriptional upregulation in keratinocytes from diseases as diverse as psoriasis, atopic dermatitis, and erythrokeratodermia variabilis, suggesting a contributory role for epidermal inflammation in a broad spectrum of rashes.
Collapse
Affiliation(s)
- Paymann Harirchian
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Jerry Lee
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | | | - Bethany E Perez White
- Skin Tissue Engineering Core and Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Thaddeus Mully
- Department of Pathology, University of California, San Francisco, California
| | | | | | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, California
| | - Esther A Kim
- Department of Plastic Surgery, University of California, San Francisco, California
| | - Hani Sbitany
- Department of Plastic Surgery, University of California, San Francisco, California
| | - Tina Bhutani
- Department of Dermatology, University of California, San Francisco, California
| | | | | | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, California
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California, USA.
| |
Collapse
|
8
|
Zhang QL, Jiang RH, Li XM, Ko JW, Kim CD, Zhu MJ, Lee JH. Inhibition of Poly(I:C)-Induced Inflammation by Salvianolic Acid A in Skin Keratinocytes. Ann Dermatol 2019; 31:279-285. [PMID: 33911592 PMCID: PMC7992737 DOI: 10.5021/ad.2019.31.3.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
Background Skin keratinocytes participate actively in inducing immune responses when external pathogens are introduced, thereby contributing to elimination of pathogens. However, in condition where the excessive inflammation is occurred, chronic skin disease such as psoriasis can be provoked. Objective We tried to screen the putative therapeutics for inflammatory skin disease, and found that salvianolic acid A (SAA) has an inhibitory effect on keratinocyte inflammatory reaction. The aim of this study is to demonstrate the effects of SAA in poly(I:C)-induced inflammatory reaction in skin keratinocytes. Methods We pre-treated keratinocytes with SAA then stimulated with poly(I:C). Inflammatory reaction of keratinocytes was verified using real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot. Results When skin keratinocytes were pre-treated with SAA, it significantly inhibited poly (I:C)-induced expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and CCL20. SAA inhibited poly(I:C)-induced activation of nuclear factor-κB signaling. And SAA also inhibited inflammasome activation, evidenced by decrease of IL-1β secretion. Finally, SAA markedly inhibited poly(I:C)-induced NLRP3 expression. Conclusion These results demonstrate that SAA has an inhibitory effect on poly(I:C)-induced inflammatory reaction of keratinocytes, suggesting that SAA can be developed for the treatment of inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xue Mei Li
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Woo Ko
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Skin Med Company, Daejeon, Korea
| |
Collapse
|
9
|
Shamilov R, Aneskievich BJ. TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling. J Immunol Res 2018; 2018:3491269. [PMID: 30402506 PMCID: PMC6192141 DOI: 10.1155/2018/3491269] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023] Open
Abstract
TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Rambon Shamilov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
- Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
10
|
Erdei L, Bolla BS, Bozó R, Tax G, Urbán E, Kemény L, Szabó K. TNIP1 Regulates Cutibacterium acnes-Induced Innate Immune Functions in Epidermal Keratinocytes. Front Immunol 2018; 9:2155. [PMID: 30319618 PMCID: PMC6165910 DOI: 10.3389/fimmu.2018.02155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Human skin cells recognize the presence of the skin microbiome through pathogen recognition receptors. Epidermal keratinocytes are known to activate toll-like receptors (TLRs) 2 and 4 in response to the commensal Cutibacterium acnes (C. acnes, formerly known as Propionibacterium acnes) bacterium and subsequently to induce innate immune and inflammatory events. These events may lead to the appearance of macroscopic inflammatory acne lesions in puberty: comedos, papules and, pustules. Healthy skin does not exhibit inflammation or skin lesions, even in the continuous presence of the same microbes. As the molecular mechanism for this duality is still unclear, we aimed to identify factors and mechanisms that control the innate immune response to C. acnes in keratinocytes using a human immortalized keratinocyte cell line, HPV-KER, normal human keratinocytes (NHEK) and an organotypic skin model (OSM). TNIP1, a negative regulator of the NF-κB signaling pathway, was found to be expressed in HPV-KER cells, and its expression was rapidly induced in response to C. acnes treatment, which was confirmed in NHEK cells and OSMs. Expression changes were not dependent on the C. acnes strain. However, we found that the extent of expression was dependent on C. acnes dose. Bacterial-induced changes in TNIP1 expression were regulated by signaling pathways involving NF-κB, p38, MAPKK and JNK. Experimental modification of TNIP1 levels affected constitutive and C. acnes-induced NF-κB promoter activities and subsequent inflammatory cytokine and chemokine mRNA and protein levels. These results suggest an important role for this negative regulator in the control of bacterially induced TLR signaling pathways in keratinocytes. We showed that all-trans retinoic acid (ATRA) induced elevated TNIP1 expression in HPV-KER cells and also in OSMs, where TNIP1 levels increased throughout the epidermis. ATRA also reduced constitutive and bacterium-induced levels of TNFα, CCL5 and TLR2, while simultaneously increasing CXCL8 and TLR4 expression. Based on these findings, we propose that ATRA may exhibit dual effects in acne therapy by both affecting the expression of the negative regulator TNIP1 and attenuating TLR2-induced inflammation. Overall, TNIP1, as a possible regulator of C. acnes-induced innate immune and inflammatory events in keratinocytes, may play important roles in the maintenance of epidermal homeostasis.
Collapse
Affiliation(s)
- Lilla Erdei
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Beáta Szilvia Bolla
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Renáta Bozó
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Gábor Tax
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | | |
Collapse
|
11
|
Zhang Y, Lei X, Li W, Ding X, Bai J, Wang J, Wu G. TNIP1 alleviates hepatic ischemia/reperfusion injury via the TLR2-Myd88 pathway. Biochem Biophys Res Commun 2018; 501:186-192. [DOI: 10.1016/j.bbrc.2018.04.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
|